Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three macrophage subsets are identified in the uterus during early human pregnancy

Abstract

Macrophages are crucial for a successful pregnancy, and malfunctions of decidual macrophages correlate with adverse pregnancy outcomes, such as spontaneous abortion and preeclampsia. Previously, decidual macrophages were often thought to be a single population. In the present study, we identified three decidual macrophage subsets, CCR2−CD11cLO (CD11clow, ~80%), CCR2−CD11cHI (CD11chigh, ~5%), and CCR2+CD11cHI (CD11chigh, 10–15%), during the first trimester of human pregnancy by flow cytometry analysis. CCR2−CD11cLO macrophages are widely distributed in the decidua, while CCR2−CD11cHI and CCR2+CD11cHI macrophages are primarily detected close to extravillous trophoblast cells according to immunofluorescence staining. According to RNA sequencing bioinformatics analysis and in vitro functional studies, these three subsets of macrophages have different phagocytic capacities. CCR2+CD11cHI macrophages have pro-inflammatory characteristics, while the CCR2−CD11cHI population is suggested to be anti-oxidative and anti-inflammatory due to its high expression of critical heme metabolism-related genes, suggesting that these two subsets of macrophages maintain an inflammatory balance at the leading edge of trophoblast invasion to facilitate the clearance of pathogen infection as well as maintain the homeostasis of the maternal-fetal interface. The present study physiologically identifies three decidual macrophage subsets. Further clarification of the functions of these subsets will improve our understanding of maternal-fetal crosstalk in the maintenance of a healthy pregnancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of three distinct subsets of macrophages at the maternal–fetal interface during the first trimester of human pregnancy.
Fig. 2: Localization of the three macrophage subsets at the maternal–fetal interface.
Fig. 3: RNA-Seq analysis of the three decidual macrophage subsets.
Fig. 4: Phagocytic capacity of the three decidual macrophage subsets.
Fig. 5: CCR2+CD11cHI macrophages are pro-inflammatory.
Fig. 6: CCR2−CD11cHI macrophages expressed the highest levels of heme metabolism-related genes.
Fig. 7: A proposed model for the distribution and major functions of the three macrophage subsets at the maternal–fetal interface during early human pregnancy.

Similar content being viewed by others

References

  1. Erlebacher, A. Immunology of the maternal-fetal interface. Annu. Rev. Immunol. 31, 387–411 (2013).

    Article  CAS  Google Scholar 

  2. Wallace, A. E., Whitley, G. S., Thilaganathan, B. & Cartwright, J. E. Decidual natural killer cell receptor expression is altered in pregnancies with impaired vascular remodeling and a higher risk of pre-eclampsia. J. Leukoc. Biol. 97, 79–86 (2015).

    Article  Google Scholar 

  3. Fu, B. et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47, 1100–1113 (2017). e1106.

    Article  CAS  Google Scholar 

  4. Zhang, J. et al. Human dNK cell function is differentially regulated by extrinsic cellular engagement and intrinsic activating receptors in first and second trimester pregnancy. Cell. Mol. Immunol. 14, 203–213 (2017).

    Article  CAS  Google Scholar 

  5. Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  Google Scholar 

  6. Lash, G. E. et al. Decidual macrophages: key regulators of vascular remodeling in human pregnancy. J. Leukoc. Biol. 100, 315–325 (2016).

    Article  CAS  Google Scholar 

  7. Abrahams, V. M., Kim, Y. M., Straszewski, S. L., Romero, R. & Mor, G. Macrophages and apoptotic cell clearance during pregnancy. Am. J. Reprod. Immunol. 51, 275–282 (2004).

    Article  Google Scholar 

  8. Egashira, M. et al. F4/80+ macrophages contribute to clearance of senescent cells in the mouse postpartum uterus. Endocrinology 158, 2344–2353 (2017).

    Article  Google Scholar 

  9. Hamilton, S. et al. Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor. Biol. Reprod. 86, 39 (2012).

    Article  Google Scholar 

  10. Wang, H. et al. Role of decidual CD14(+) macrophages in the homeostasis of maternal-fetal interface and the differentiation capacity of the cells during pregnancy and parturition. Placenta 38, 76–83 (2016).

    Article  Google Scholar 

  11. Care, A. S. et al. Macrophages regulate corpus luteum development during embryo implantation in mice. J. Clin. Invest. 123, 3472–3487 (2013).

    Article  CAS  Google Scholar 

  12. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  Google Scholar 

  13. Gustafsson, C. et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS ONE 3, e2078 (2008).

    Article  Google Scholar 

  14. Jaiswal, M. K. et al. V-ATPase upregulation during early pregnancy: a possible link to establishment of an inflammatory response during preimplantation period of pregnancy. Reproduction 143, 713–725 (2012).

    Article  CAS  Google Scholar 

  15. Zhang, Y. H., He, M., Wang, Y. & Liao, A. H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol. 8, 120 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Ning, F., Liu, H. & Lash, G. E. The role of decidual macrophages during normal and pathological pregnancy. Am. J. Reprod. Immunol. 75, 298–309 (2016).

    Article  Google Scholar 

  17. Heyward, C. Y. et al. The decidua of preeclamptic-like BPH/5 mice exhibits an exaggerated inflammatory response during early pregnancy. J. Reprod. Immunol. 120, 27–33 (2017).

    Article  CAS  Google Scholar 

  18. Tsao, F. Y., Wu, M. Y., Chang, Y. L., Wu, C. T., Ho, H. N. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions. J. Formos. Med. Assoc. (2017).

  19. Xu, Y. et al. An M1-like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment. J. Immunol. 196, 2476–2491 (2016).

    Article  CAS  Google Scholar 

  20. Gomez-Lopez, N., StLouis, D., Lehr, M. A., Sanchez-Rodriguez, E. N. & Arenas-Hernandez, M. Immune cells in term and preterm labor. Cell. Mol. Immunol. 11, 571–581 (2014).

    Article  CAS  Google Scholar 

  21. Fu, B. et al. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunology 133, 350–359 (2011).

    Article  CAS  Google Scholar 

  22. Zeng, W. et al. Distinct transcriptional and alternative splicing signatures of decidual CD4+ T cells in early human pregnancy. Front. Immunol. 8, 682 (2017).

    Article  Google Scholar 

  23. Piccinni, M. P. et al. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat. Med. 4, 1020–1024 (1998).

    Article  CAS  Google Scholar 

  24. Houser, B. L., Tilburgs, T., Hill, J., Nicotra, M. L. & Strominger, J. L. Two unique human decidual macrophage populations. J. Immunol. 186, 2633–2642 (2011).

    Article  CAS  Google Scholar 

  25. Tilburgs, T. et al. Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes. Proc. Natl Acad. Sci. USA 112, 7219–7224 (2015).

    Article  CAS  Google Scholar 

  26. Li, Y. H. et al. The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy. Cell. Mol. Immunol. 13, 73–81 (2016).

    Article  Google Scholar 

  27. Hung, J. H. & Weng, Z. Analyzing MicroarrayData. Cold Spring Harb. Protoc. 2017, pdbprot093112 (2017).

    Article  Google Scholar 

  28. Law, C. W., Alhamdoosh, M., Su, S., Smyth, G. K. & Ritchie, M. E. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res 5, 1408 (2016).

    Article  Google Scholar 

  29. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article  CAS  Google Scholar 

  30. Rhee, S. Y., Wood, V., Dolinski, K. & Draghici, S. Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 9, 509–515 (2008).

    Article  CAS  Google Scholar 

  31. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  Google Scholar 

  32. Pirooznia, M., Nagarajan, V. & Deng, Y. GeneVenn - a web application for comparing gene lists using Venn diagrams. Bioinformation 1, 420–422 (2007).

    Article  Google Scholar 

  33. Wang, Z. et al. Interferon-gamma inhibits nonopsonized phagocytosis of macrophages via an mTORC1-c/EBPbeta pathway. J. Innate Immun. 7, 165–176 (2015).

    Article  CAS  Google Scholar 

  34. Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186, 1757–1762 (1997).

    Article  CAS  Google Scholar 

  35. Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).

    Article  CAS  Google Scholar 

  36. Zhang, Y. et al. Human trophoblast cells induced MDSCs from peripheral blood CD14(+) myelomonocytic cells via elevated levels of CCL2. Cell. Mol. Immunol. 13, 615–627 (2016).

    Article  CAS  Google Scholar 

  37. Guilliams, M. & Scott, C. L. Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol. 17, 451–460 (2017).

    Article  CAS  Google Scholar 

  38. Elomaa, O. et al. Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J. Biol. Chem. 273, 4530–4538 (1998).

    Article  CAS  Google Scholar 

  39. Arredouani, M. et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med. 200, 267–272 (2004).

    Article  CAS  Google Scholar 

  40. Thelen, T. et al. The class A scavenger receptor, macrophage receptor with collagenous structure, is the major phagocytic receptor for Clostridium sordellii expressed by human decidual macrophages. J. Immunol. 185, 4328–4335 (2010).

    Article  CAS  Google Scholar 

  41. Aldape, M. J., Bryant, A. E. & Stevens, D. L. Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin. Infect. Dis. 43, 1436–1446 (2006).

    Article  CAS  Google Scholar 

  42. Callewaert, L. & Michiels, C. W. Lysozymes in the animal kingdom. J. Biosci. 35, 127–160 (2010).

    Article  CAS  Google Scholar 

  43. Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).

    Article  CAS  Google Scholar 

  44. Naito, Y., Takagi, T. & Higashimura, Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys. 564, 83–88 (2014).

    Article  CAS  Google Scholar 

  45. Gibbings, S. L. et al. Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell Mol. Biol. 57, 66–76 (2017).

    Article  CAS  Google Scholar 

  46. Hess, A. P. et al. Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biol. Reprod. 76, 102–117 (2007).

    Article  CAS  Google Scholar 

  47. Ozen, M., Zhao, H., Lewis, D. B., Wong, R. J. & Stevenson, D. K. Heme oxygenase and the immune system in normal and pathological pregnancies. Front. Pharmacol. 6, 84 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Xili Zhu and Shiwen Li for confocal image capture, Hua Qin for FACS, Can Peng and Lei Sun for TEM, and Tingting Wu for the phagocytosis experiment. We thank Meijing Wang, Rong Jing, and Jinglei Zhai for collecting samples from the hospital, and we thank Yong Zhao, Jingpian Peng, Yanling Wang, and Jay. C. Cross for discussion. This study was supported by grants from the National Natural Science Foundation of China (81490741 and 81401224) and the Ministry of Science and Technology of the People’s Republic of China (2016YFC1000208 and 2017YFC1001401).

Authors’ contributions

X.J. performed the experiments. H.W. and X.J. designed the study and interpreted the data. M.L. collected samples from the hospital. X.J. wrote the original manuscript. M.R.D. and H.W. modified the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Du, MR., Li, M. et al. Three macrophage subsets are identified in the uterus during early human pregnancy. Cell Mol Immunol 15, 1027–1037 (2018). https://doi.org/10.1038/s41423-018-0008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0008-0

Keywords

This article is cited by

Search

Quick links