Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of Hippo signaling in regulating immunity

Abstract

The Hippo signaling pathway has been established as a key regulator of organ size control, tumor suppression, and tissue regeneration in multiple organisms. Recently, emerging evidence has indicated that Hippo signaling might play an important role in regulating the immune system in both Drosophila and mammals. In particular, patients bearing a loss-of-function mutation of MST1 are reported to have an autosomal recessive primary immunodeficiency syndrome. MST1/2 kinases, the mammalian orthologs of Drosophila Hippo, may activate the non-canonical Hippo signaling pathway via MOB1A/B and/or NDR1/2 or cross-talk with other essential signaling pathways to regulate both innate and adaptive immunity. In this review, we present and discuss recent findings of cellular mechanisms/functions of Hippo signaling in the innate immunity in Drosophila and in mammals, T cell immunity, as well as the implications of Hippo signaling for tumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Hippo pathway plays critical roles in the innate immune regulation.
Fig. 2: Hippo signaling plays vital roles in T cell proliferation, migration and differentiation.

Similar content being viewed by others

References

  1. Yu, F. X., Zhao, B. & Guan, K. L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015).

    Article  CAS  Google Scholar 

  2. Avruch, J. et al. Protein kinases of the Hippo pathway: regulation and substrates. Semin. Cell Dev. Biol. 23, 770–784 (2012).

    Article  CAS  Google Scholar 

  3. Chen, L., Qin, F., Deng, X., Avruch, J. & Zhou, D. Hippo pathway in intestinal homeostasis and tumorigenesis. Protein Cell 3, 305–310 (2012).

    Article  CAS  Google Scholar 

  4. Zhang, Q. et al. Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nat. Cell Biol. 19, 362–374 (2017).

    Article  CAS  Google Scholar 

  5. Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc. Natl Acad. Sci. USA 108, E1312–1320 (2011).

    Article  CAS  Google Scholar 

  6. Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438 (2009).

    Article  CAS  Google Scholar 

  7. Wu, H. et al. The Ets transcription factor GABP is a component of the hippo pathway essential for growth and antioxidant defense. Cell Rep. 3, 1663–1677 (2013).

    Article  CAS  Google Scholar 

  8. Fan, F. et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8, 352ra108 (2016).

    Article  Google Scholar 

  9. Zhang, S. et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2. Cancer Cell 31, 669–684 (2017). e667.

    Article  CAS  Google Scholar 

  10. Katagiri, K. et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat. Immunol. 5, 1045–1051 (2004).

    Article  CAS  Google Scholar 

  11. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4, 741–748 (2003).

    Article  CAS  Google Scholar 

  12. Abdollahpour, H. et al. The phenotype of human STK4 deficiency. Blood 119, 3450–3457 (2012).

    Article  CAS  Google Scholar 

  13. Nehme, N. T. et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 119, 3458–3468 (2012).

    Article  CAS  Google Scholar 

  14. Zhou, D. et al. The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naive T cells. Proc. Natl Acad. Sci. USA 105, 20321–20326 (2008).

    Article  CAS  Google Scholar 

  15. Mou, F. et al. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J. Exp. Med. 209, 741–759 (2012).

    Article  CAS  Google Scholar 

  16. Halacli, S. O. et al. STK4 (MST1) deficiency in two siblings with autoimmune cytopenias: a novel mutation. Clin. Immunol. 161, 316–323 (2015).

    Article  CAS  Google Scholar 

  17. Liu, J. & Cao, X. Cellular and molecular regulation of innate inflammatory responses. Cell. Mol. Immunol. 13, 711–721 (2016).

    Article  CAS  Google Scholar 

  18. Liu, B. et al. Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell 164, 406–419 (2016).

    Article  CAS  Google Scholar 

  19. Dubey, S. K. & Tapadia, M. G. Yorkie regulates neurodegeneration through canonical pathway and innate immune response. Mol. Neurobiol. 55, 1193–1207 (2017).

    Article  Google Scholar 

  20. Geng, J. et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat. Immunol. 16, 1142–1152 (2015).

    Article  CAS  Google Scholar 

  21. Li, W. et al. STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma. J. Clin. Invest. 125, 4239–4254 (2015).

    Article  Google Scholar 

  22. Boro, M., Singh, V. & Balaji, K. N. Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci. Rep. 6, 37695 (2016).

    Article  CAS  Google Scholar 

  23. Wen, M. et al. Stk38 protein kinase preferentially inhibits TLR9-activated inflammatory responses by promoting MEKK2 ubiquitination in macrophages. Nat. Commun. 6, 7167 (2015).

    Article  CAS  Google Scholar 

  24. Kim, N., Park, Y. Y., Joo, C. H. & Kim, H. S. Relief of YAP-mediated inhibition by IKKvarepsilon promotes innate antiviral immunity. Cell. Mol. Immunol. 14, 1–3 (2017).

    Article  Google Scholar 

  25. Wang, S. et al. YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKvarepsilon-mediated phosphorylation. Nat. Immunol. 18, 733–743 (2017).

    Article  CAS  Google Scholar 

  26. Meng, F. et al. Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes Dev. 30, 1086–1100 (2016).

    Article  CAS  Google Scholar 

  27. Geng, J. et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat. Immunol. 18, 800–812 (2017).

    Article  CAS  Google Scholar 

  28. Katagiri, K. et al. Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J. 28, 1319–1331 (2009).

    Article  CAS  Google Scholar 

  29. Dong, Y. et al. A cell-intrinsic role for Mst1 in regulating thymocyte egress. J. Immunol. 183, 3865–3872 (2009).

    Article  CAS  Google Scholar 

  30. Du, X. et al. Mst1/Mst2 regulate development and function of regulatory T cells through modulation of Foxo1/Foxo3 stability in autoimmune disease. J. Immunol. 192, 1525–1535 (2014).

    Article  CAS  Google Scholar 

  31. Katagiri, K., Imamura, M. & Kinashi, T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat. Immunol. 7, 919–928 (2006).

    Article  CAS  Google Scholar 

  32. Bai, X. et al. Mst1 positively regulates B-cell receptor signaling via CD19 transcriptional levels. Blood Adv. 1, 219–230 (2016).

    Article  CAS  Google Scholar 

  33. Ueda, Y. et al. Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus. Nat. Commun. 3, 1098 (2012).

    Article  Google Scholar 

  34. Choi, J. et al. Mst1-FoxO signaling protects naive T lymphocytes from cellular oxidative stress in mice. PLoS ONE 4, e8011 (2009).

    Article  Google Scholar 

  35. Tang, F. et al. The kinases NDR1/2 act downstream of the Hippo homolog MST1 to mediate both egress of thymocytes from the thymus and lymphocyte motility. Sci. Signal. 8, ra100 (2015).

    Article  Google Scholar 

  36. Cornils, H., Kohler, R. S., Hergovich, A. & Hemmings, B. A. Downstream of human NDR kinases: impacting on c-myc and p21 protein stability to control cell cycle progression. Cell Cycle 10, 1897–1904 (2011).

    Article  CAS  Google Scholar 

  37. Cornils, H. et al. Ablation of the kinase NDR1 predisposes mice to the development of T cell lymphoma. Sci. Signal. 3, ra47 (2010).

    Article  Google Scholar 

  38. Katagiri, K. et al. Deficiency of Rap1-binding protein RAPL causes lymphoproliferative disorders through mislocalization of p27kip1. Immunity 34, 24–38 (2011).

    Article  CAS  Google Scholar 

  39. Nishikimi, A. et al. Rab13 acts downstream of the kinase Mst1 to deliver the integrin LFA-1 to the cell surface for lymphocyte trafficking. Sci. Signal. 7, ra72 (2014).

    Article  Google Scholar 

  40. Kondo, N. et al. NDR1-dependent regulation of kindlin-3 controls high-affinity LFA-1 binding and immune synapse organization. Mol. Cell. Biol. 37, e00424–16 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, C. et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat. Commun. 8, 14275 (2017).

    Article  CAS  Google Scholar 

  42. Li, J. et al. Mammalian sterile 20-like kinase 1 (Mst1) enhances the stability of Forkhead Box P3 (Foxp3) and the function of regulatory T Cells by modulating Foxp3 acetylation. J. Biol. Chem. 290, 30762–30770 (2015).

    Article  CAS  Google Scholar 

  43. Tomiyama, T. et al. Antigen-specific suppression and immunological synapse formation by regulatory T cells require the Mst1 kinase. PLoS ONE 8, e73874 (2013).

    Article  CAS  Google Scholar 

  44. Wang, G. et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6, 80–95 (2016).

    Article  Google Scholar 

  45. Murakami, S. et al. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma. Oncogene 36, 1232–1244 (2017).

    Article  CAS  Google Scholar 

  46. Guo, X. et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev. 31, 247–259 (2017).

    Article  CAS  Google Scholar 

  47. Moroishi, T. et al The hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167, 1525–1539.e17 (2016).

    Article  CAS  Google Scholar 

  48. Thaventhiran, J. E. et al. Activation of the Hippo pathway by CTLA-4 regulates the expression of Blimp-1 in the CD8+ T cell. Proc. Natl Acad. Sci. USA 109, E2223–2229 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Key R&D Program of China (2017YFA0504502 to D.Z. and L.C., 2015CB910502 to L.C.), The National Natural Science Foundation of China (U1405225 to L.C.; 31625010, 81790254, and U1505224 to D.Z.; 81472229 to L.H.; 81302529 to X.L.), and the Fundamental Research Funds for the Central Universities of China-Xiamen University (20720180047 to L.C., 20720160071 to D.Z., and 20720160054 to L.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfen Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, L., Li, X., Zhou, D. et al. Role of Hippo signaling in regulating immunity. Cell Mol Immunol 15, 1003–1009 (2018). https://doi.org/10.1038/s41423-018-0007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0007-1

Keywords

This article is cited by

Search

Quick links