Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

When worlds collide: Th17 and Treg cells in cancer and autoimmunity

Abstract

The balance between Th17 cells and regulatory T cells (Tregs) has emerged as a prominent factor in regulating autoimmunity and cancer. Th17 cells are vital for host defense against pathogens but have also been implicated in causing autoimmune disorders and cancer, though their role in carcinogenesis is less well understood. Tregs are required for self-tolerance and defense against autoimmunity and often correlate with cancer progression. This review addresses the importance of a functional homeostasis between these two subsets in health and the consequences of its disruption when these forces collide in disease. Importantly, we discuss the ability of Th17 cells to mediate cancer regression in immunotherapy, including adoptive transfer and checkpoint blockade therapy, and the therapeutic possibilities of purposefully offsetting the Th17/Treg balance to treat patients with cancer as well as those with autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CD4+ cell differentiation and effector function.
Fig. 2: Cytokines induce functional plasticity of Th17s and Tregs.

Similar content being viewed by others

References

  1. Tada, T., Takemori, T., Okumura, K., Nonaka, M. & Tokuhisa, T. Two distinct types of helper T cells involved in the secondary antibody response: independent and synergistic effects of Ia- and Ia+ helper T cells. J. Exp. Med. 147, 446–458 (1978).

    CAS  PubMed  Google Scholar 

  2. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 28, 445–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Luckheeram, R. V., Zhou, R., Verma, A. D. & Xia, B. CD4(+)T cells: differentiation and functions. Clin. Dev. Immunol. 2012, 925135 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Szabo, S. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  5. Zheng, W. & Flavell, R. The transcription factor GATA3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    CAS  PubMed  Google Scholar 

  6. Reiner, S. L. Development in motion: helper T cells at work. Cell 129, 33–36 (2007).

    CAS  PubMed  Google Scholar 

  7. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  8. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell. Res. 17, 435–440 (2007).

    PubMed  Google Scholar 

  10. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    CAS  PubMed  Google Scholar 

  11. Noack, M. & Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 13, 668–677 (2014).

    CAS  PubMed  Google Scholar 

  12. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    CAS  PubMed  Google Scholar 

  13. Adeegbe, D., Bayer, A. L., Levy, R. B. & Malek, T. R. Cutting edge: allogeneic CD4+CD25+Foxp3+T regulatory cells suppress autoimmunity while establishing transplantation tolerance. J. Immunol. 176, 7149–7153 (2006).

    CAS  PubMed  Google Scholar 

  14. Dardalhon, V. et al. IL-4 inhibits TGF-beta-induced Foxp3+T cells and, together with TGF-beta, generates IL-9+IL-10+Foxp3(-) effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Veldhoen, M. et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    CAS  PubMed  Google Scholar 

  16. Schmitt, E. et al. IL-9 production of naive CD4+T cells depends on IL-2, is synergistically enhanced by a combination of TGF-B and IL-4, and is inhibited by IFN-y. J. Immunol. 153, 3989–3996 (1994).

    CAS  PubMed  Google Scholar 

  17. Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15, 676–686 (2014).

    CAS  PubMed  Google Scholar 

  18. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    CAS  PubMed  Google Scholar 

  19. Jabeen, R. et al. Th9 cell development requires a BATF-regulated transcriptional network. J. Clin. Invest. 123, 4641–4653 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Malik, S. et al. Transcription factor Foxo1 is essential for IL-9 induction in T helper cells. Nat. Commun. 8, 815 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Nowak, E. C. et al. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Townsend, M. et al. IL-9 deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13, 573–583 (2000).

    CAS  PubMed  Google Scholar 

  23. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+natural regulatory T cells. Proc. Natl Acad. Sci. USA 106, 12885–12890 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vegran, F. et al. The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat. Immunol. 15, 758–766 (2014).

    CAS  PubMed  Google Scholar 

  25. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    CAS  PubMed  Google Scholar 

  26. Cai, Y., Fleming, C. & Yan, J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol. Immunol. 9, 302–309 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 10, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  29. Honda, K. IL-22 from T cells: better late than never. Immunity 37, 952–954 (2012).

    CAS  PubMed  Google Scholar 

  30. Basu, R. et al. Th22 cells are an important source of IL-22 for host protectioni against enteropathogenic bacteria. Immunity 37, 1061–1075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat. Immunol. 18, 921–930 (2017).

    CAS  PubMed  Google Scholar 

  33. Weinstein J. S. et al. STAT4 and T-bet control follicular helper T cell development in viral infections. J Exp Med. 215, 337–355 (2017).

    PubMed  Google Scholar 

  34. Andris, F. et al. The transcription factor c-Maf promotes the differentiation of follicular helper T cells. Front. Immunol. 8, 480 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Bollig, N. et al. Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation. Proc. Natl Acad. Sci. USA 109, 8664–8669 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol. 12, 536–543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Coffman, R. Origins of the Th1-Th2 model: a personal perspective. Nat. Immunol. 7, 539–541 (2006).

    CAS  PubMed  Google Scholar 

  38. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677–688 (2006).

    CAS  PubMed  Google Scholar 

  39. Mossman, T., Cherwinski, H., Bond, M., Giedlin, M. & Coffman, R. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    Google Scholar 

  40. Steinman, L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    CAS  PubMed  Google Scholar 

  41. Billiau, A. et al. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immunol. 140, 1506–1510 (1988).

    CAS  PubMed  Google Scholar 

  42. Voorthuis, J. et al. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin. Exp. Immunol. 81, 183–188 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Willenborg, D., Fordhan, S., Bernard, C., Cowden, W. & Ramshaw, I. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    CAS  PubMed  Google Scholar 

  44. Krakowski, M. & Owens, T. Interferon-y confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol. 26, 1641–1646 (1996).

    CAS  PubMed  Google Scholar 

  45. Ferber, I. et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalitis (EAE). J. Immunol. 156, 5–7 (1996).

    CAS  PubMed  Google Scholar 

  46. Cruz, A. et al. Cutting Edge: IFN- Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection. J. Immunol. 177, 1416–1420 (2006).

    CAS  PubMed  Google Scholar 

  47. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  49. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  50. Tato, C. & O’Shea, J. J. What does it mean to be just 17? Nature 441, 166–168 (2006).

    CAS  PubMed  Google Scholar 

  51. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 42, 744–748 (2003).

    Google Scholar 

  52. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Harrington, L. E. et al. Interleukin 17-producing CD4+effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  PubMed  Google Scholar 

  54. Stritesky, G. L., Yeh, N. & Kaplan, M. H. IL-23 promotes maintenance but not commitment to the Th17 lineage. J. Immunol. 181, 5948–5955 (2008).

    CAS  PubMed  Google Scholar 

  55. Mailer, R. K. et al. IL-1beta promotes Th17 differentiation by inducing alternative splicing of FOXP3. Sci. Rep. 5, 14674 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, S. et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551, 105–109 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Qin, H. et al. TGF-beta promotes Th17 cell development through inhibition of SOCS3. J. Immunol. 183, 97–105 (2009).

    CAS  PubMed  Google Scholar 

  58. Kim, H. S. et al. PTEN drives Th17 cell differentiation by preventing IL-2 production. J. Exp. Med. 214, 3381–3398 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    CAS  PubMed  Google Scholar 

  60. O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+T cells. Science 327, 1098–1102 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. McGeachy, M. J. et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    CAS  PubMed  Google Scholar 

  62. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484–487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Carr, T. M., Wheaton, J. D., Houtz, G. M. & Ciofani, M. JunB promotes Th17 cell identity and restrains alternative CD4(+) T-cell programs during inflammation. Nat. Commun. 8, 301 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Khader, S. A., Gaffen, S. L. & Kolls, J. K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2, 403–411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kinugasa, T., Sakaguchi, T., Gu, X. & Reinecker, H. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 118, 1001–1011 (2000).

    CAS  PubMed  Google Scholar 

  67. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  68. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Ex. Med. 183, 2593–2603 (1996).

    CAS  Google Scholar 

  69. Ye, P. et al. Requirement of Interleukin 17 receptor signalling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Laan, M. et al. Neutrophil recruitment by human IL-17 via CXC chemokine release in the airways. J. Immunol. 162, 2347–2352 (1999).

    CAS  PubMed  Google Scholar 

  71. Tan, W., Huang, W., Zhong, Q. & Schwarzenberger, P. IL-17 receptor knockout mice have enhanced myelotoxicity and impaired hemopoietic recovery following gamma irradiation. J. Immunol. 176, 6186–6193 (2006).

    CAS  PubMed  Google Scholar 

  72. Cho, J. et al. IL-17 is essential for host defense against Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Siegemund, S. et al. Production of IL-12, IL-23 and IL-27p28 by bone marrow-derived conventional dendritic cells rather than macrophages after LPS/TLR4-dependent induction by Salmonella Enteritidis. Immunobiology 212, 739–750 (2007).

    CAS  PubMed  Google Scholar 

  74. Sellge, G. et al. Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. J. Immunol. 184, 2076–2085 (2010).

    CAS  PubMed  Google Scholar 

  75. Griffiths, K. L. et al. Th1/Th17 cell induction and corresponding reduction in ATP consumption following vaccination with the novel Mycobacterium tuberculosis vaccine MVA85A. PLoS ONE 6, e23463 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Davis S., Schaller J. Job’s Syndrome: recurrent, “cold”, staphylococcal abcesses. Lancet. 1, 1013–1015 (1966).

    CAS  PubMed  Google Scholar 

  78. Okada, S., Puel, A., Casanova, J. L. & Kobayashi, M. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin. Transl. Immunol. 5, e114 (2016).

    Google Scholar 

  79. Gershon, R. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 19, 723–737 (1970).

    Google Scholar 

  80. Green, D., Flood, P. & Gershon, R. Immunoregulatory T-cell pathways. Ann. Rev. Immunol. 1, 439–463 (1983).

    CAS  Google Scholar 

  81. Kronenberg, M. et al. RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc. Natl Acad. Sci. USA 80, 5704–5708 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nishizuka, Y. & Sakakura, T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166, 753–755 (1969).

    CAS  PubMed  Google Scholar 

  83. Penhale, W., Farmer, A., McKenna, R. & Irvine, W. Spontaneous thyroiditis in thymectomized and irradiated wistar rats. Clin. Exp. Immunol. 15, 225–236 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Takahashi, H. et al. Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    CAS  PubMed  Google Scholar 

  85. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  86. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    CAS  PubMed  Google Scholar 

  87. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    CAS  PubMed  Google Scholar 

  88. Willerford, D. et al. Interleukin-2 receptor a chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    CAS  PubMed  Google Scholar 

  89. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dwyer, C. et al. Altered homeostasis and development of regulatory T cell subsets represent an IL-2R-dependent risk for diabetes in NOD mice. Sci. Signal. 10, eeam9563 (2017).

    Google Scholar 

  91. Kurtulus, S. et al. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Invest. 125, 4053–4062 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Wang, R. et al. Expression of GARP selectively identifies activated human FOXP3+regulatory T cells. Proc. Natl Acad. Sci. USA 106, 13439–13444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rudensky, A. Y., Gavin, M. & Zheng, Y. FOXP3 and NFAT: partners in tolerance. Cell 126, 253–256 (2006).

    CAS  PubMed  Google Scholar 

  94. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    CAS  PubMed  Google Scholar 

  95. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  96. Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    CAS  PubMed  Google Scholar 

  98. Getnet, D. et al. A role for the transcription factor helios in human CD4+CD25+regulatory cells. Mol. Immunol. 47, 1595–1600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Elkord, E., Abd Al Samid, M. & Chaudhary, B. Helios, and not FoxP3, is the marker of activated Tregs expressing GARP/LAP. Oncotarget 6, 20026–20036 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppresive function of human CD4+T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ono, M. & Tanaka, R. J. Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective. Immunol. Cell. Biol. 94, 3–10 (2016).

    CAS  PubMed  Google Scholar 

  102. Zhou, L. et al. IL-6 programs Th1-7 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  PubMed  Google Scholar 

  103. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    CAS  PubMed  Google Scholar 

  104. Ichiyama, K. et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J. Biol. Chem. 283, 17003–17008 (2008).

    CAS  PubMed  Google Scholar 

  105. Yang, X. P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding, Y., Xu, J. & Bromberg, J. S. Regulatory T cell migration during an immune response. Trends Immunol. 33, 174–180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kishore, M. et al. Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity 47, 875–89 e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. van der Vliet, H. J. & Nieuwenhuis, E. E. IPEX as a result of mutations in FOXP3. Clin. Dev. Immunol. 2007, 89017 (2007).

    PubMed  PubMed Central  Google Scholar 

  109. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Maggi, L. et al. Distinctive features of classic and nonclassic (Th17 derived) human Th1 cells. Eur. J. Immunol. 42, 3180–3188 (2012).

    CAS  PubMed  Google Scholar 

  111. Basdeo, S. A. et al. Ex-Th17 (Nonclassical Th1) cells are functionally distinct from classical Th1 and Th17 cells and are not constrained by regulatory T cells. J. Immunol. 198, 2249–2259 (2017).

    CAS  PubMed  Google Scholar 

  112. Muranski, P. & Restifo, N. P. Essentials of Th17 cell commitment and plasticity. Blood 121, 2402–2414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Komatsu, N. et al. Pathogenic conversion of Foxp3+T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    CAS  PubMed  Google Scholar 

  115. Downs-Canner, S. et al. Suppressive IL-17A(+)Foxp3(+) and ex-Th17 IL-17A(neg)Foxp3(+) Treg cells are a source of tumour-associated Treg cells. Nat. Commun. 8, 14649 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    CAS  PubMed  Google Scholar 

  117. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Martin, D. A. et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J. Invest. Dermatol. 133, 17–26 (2013).

    CAS  PubMed  Google Scholar 

  119. Kaneko S. et al. The RORgammat-CCR6-CCL20 axis augments Th17 cells invasion into the synovia of rheumatoid arthritis patients. Mod. Rheumatol. 2017:1–26.

  120. Skroza, N. et al. Correlations between psoriasis and inflammatory bowel diseases. Biomed. Res. Int. 2013, 983902 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Martin, J. C., Baeten, D. L. & Josien, R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin. Immunol. 154, 1–12 (2014).

    CAS  PubMed  Google Scholar 

  122. Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 7, 287ra74 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104 (1999).

    CAS  PubMed  Google Scholar 

  124. Hu, D. et al. Transcriptional signature of human pro-inflammatory TH17 cells identifies reduced IL10 gene expression in multiple sclerosis. Nat. Commun. 8, 1600 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Putheti, P., Pettersson, A., Soderstrom, M., Link, H. & Huang, Y. Circulating CD4+CD25+T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J. Clin. Immunol. 24, 155–161 (2004).

    CAS  PubMed  Google Scholar 

  126. Segal, B. M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    CAS  PubMed  Google Scholar 

  127. Havrdova, E. et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J. Neurol. 263, 1287–1295 (2016).

    CAS  PubMed  Google Scholar 

  128. Jewell C., Tostanoski L., Royal W. Self-assembly of immune signals to induce and control tolerance. J Immunol. 2017;198 (1 Supplement) 81.3.

  129. Fitch, E., Harper, E., Skorcheva, I., Kurtz, S. & Blauvelt, A. Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr. Rheumatol. Rep. 9, 461–467 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kagami, S., Rizzo, H. L., Lee, J. J., Koguchi, Y. & Blauvelt, A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J. Invest. Dermatol. 130, 1373–1383 (2010).

    CAS  PubMed  Google Scholar 

  131. Wilke, C. M., Bishop, K., Fox, D. & Zou, W. Deciphering the role of Th17 cells in human disease. Trends Immunol. 32, 603–611 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Harper, E. G. et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J. Invest. Dermatol. 129, 2175–2183 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Johansen, C. et al. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br. J. Dermatol. 160, 319–324 (2009).

    CAS  PubMed  Google Scholar 

  134. Kryczek, I. et al. et al. Induction of IL-17+T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J. Immunol. 181, 4733–4741 (2008).

    CAS  PubMed  Google Scholar 

  135. Ramirez-Carrozzi, V. et al. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat. Immunol. 12, 1159–1166 (2011).

    CAS  PubMed  Google Scholar 

  136. Ciric, B., El-behi, M., Cabrera, R., Zhang, G. X. & Rostami, A. IL-23 drives pathogenic IL-17-producing CD8+T cells. J. Immunol. 182, 5296–5305 (2009).

    CAS  PubMed  Google Scholar 

  137. Nograles, K. E. et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol. 159, 1092–1102 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sugiyama, H. et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol. 174, 164–173 (2004).

    Google Scholar 

  139. Bovenschen, H. et al. Foxp3+regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Inv Derm. 131, 1853–1860 (2011).

    CAS  Google Scholar 

  140. Langley R. G. et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: results of the randomized, double-blind, phase III NAVIGATE trial. Br. J. Dermatol. 2017.

  141. Blanco, F. J. et al. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 69, 1144–1153 (2017).

    CAS  PubMed  Google Scholar 

  142. Sarkar, S. & Fox, D. A. Targeting IL-17 and Th17 cells in rheumatoid arthritis. Rheum. Dis. Clin. North. Am. 36, 345–366 (2010).

    PubMed  Google Scholar 

  143. Haque, M., Fino, K., Lei, F., Xiong, X. & Song, J. Utilizing regulatory T cells against rheumatoid arthritis. Front Oncol. 4, 209 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Samson, M. et al. Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 64, 2499–2503 (2012).

    CAS  PubMed  Google Scholar 

  145. Boden, E. K. & Snapper, S. B. Regulatory T cells in inflammatory bowel disease. Curr. Opin. Gastroenterol. 24, 733–741 (2008).

    PubMed  Google Scholar 

  146. Sandborn, W. et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s Disease. Gastroenterology 135, 1130–1141 (2008).

    CAS  PubMed  Google Scholar 

  147. Plevy, S. et al. A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology 133, 1414–1422 (2007).

    CAS  PubMed  Google Scholar 

  148. Fujino, S. et al. Increased expression of interleukin 17 i inflammatory bowel disease. Gut 52, 65–70 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kyttaris, V. C., Zhang, Z., Kuchroo, V. K., Oukka, M. & Tsokos, G. C. Cutting edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J. Immunol. 184, 4605–4609 (2010).

    CAS  PubMed  Google Scholar 

  150. Lee, H. Y. et al. Altered frequency and migration capacity of CD4+CD25+regulatory T cells in systemic lupus erythematosus. Rheumatology 47, 789–794 (2008).

    CAS  PubMed  Google Scholar 

  151. Wang, D. et al. Allogenic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transp. 22, 2267–2277 (2013).

    Google Scholar 

  152. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wilck, N. et al. Salt-responsive gut commensal modulates Th17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wenzel, U. et al. Immune mechanisms in arterial hypertension. J. Am. Soc. Nephrol. 27, 677–686 (2016).

    CAS  PubMed  Google Scholar 

  155. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Parsonnet, J. et al. Helicobacter Pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131 (1991).

    CAS  PubMed  Google Scholar 

  158. Munoz, N., Bosch, F., De Sanjose, S. & Shah, K. The role of HPV in the etiology of cervical cancer. Mutat. Res. 305, 293–301 (1994).

    CAS  PubMed  Google Scholar 

  159. Sfanos, K. S. et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin. Cancer Res. 14, 3254–3261 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Murugaiyan, G. & Saha, B. Protumor vs antitumor functions of IL-17. J. Immunol. 183, 4169–4175 (2009).

    CAS  PubMed  Google Scholar 

  162. Takahashi, H., Numasaki, M., Lotze, M. T. & Sasaki, H. Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. Immunol. Lett. 98, 189–193 (2005).

    CAS  PubMed  Google Scholar 

  163. Benevides, L. et al. IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75, 3788–3799 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71, 1263–1271 (2011).

    CAS  PubMed  Google Scholar 

  165. Martin-Orozco, N., Chung, Y., Chang, S. H., Wang, Y. H. & Dong, C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur. J. Immunol. 39, 216–224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Duan, M. et al. Disturbed Th17/Treg balance in patients with non-small cell lung cancer. Inflammation 38, 2156–2165 (2015).

    CAS  PubMed  Google Scholar 

  167. Horlock, C. et al. The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br. J. Cancer. 100, 1061–1067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tang, Y. et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS ONE 9, e91551 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. Shou, J., Zhang, Z., Lai, Y., Chen, Z. & Huang, J. Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+Tregs: a systematic review and meta-analysis. BMC Cancer 16, 687 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Alessandra Metelli et al. Surface Expression of TGFÎ2 Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer. Cancer Research. 76, 7106–7117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Budhu B. et al. Blockade of surace-bound TGF-B on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal. 10, eaak9702 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Leone, R. D., Lo, Y. C. & Powell, J. D. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput. Struct. Biotechnol. J. 13, 265–272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tran, E. H. et al. Cancer immunotherapy based on mutation-specific CD4+T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bailey, S. R. et al. Human CD26 high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistance. Nat. Commun. 8, 1961 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Muranski, P. et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112, 362–372 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Muranski, P. et al. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972–985 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Xie, Y. et al. Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207, 651–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Paulos C. M. et al. The inducible costimulator (ICOS) is critical for the development of human Th17 cells. Sci. Transl. Med. 2, 55ra78 (2018).

    Google Scholar 

  183. Kryczek, I. et al. Human TH17 cells are long-lived effector memory cells. Sci. Transl. Med. 3, 104ra0 (2011).

    Google Scholar 

  184. Yu, Y. et al. Abundant c-Fas-associated death domain-like interleukin-1-converting enzyme inhibitory protein expression determines resistance of T helper 17 cells to activation-induced cell death. Blood 114, 1026–1028 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Bowers, J. S. et al. Th17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. JCI Insight 2, e90772 (2017).

    PubMed  PubMed Central  Google Scholar 

  186. Bailey, S. R. et al. Th17 cells in cancer: the ultimate identity crisis. Front. Immunol. 5, 276 (2014).

    PubMed  PubMed Central  Google Scholar 

  187. Webb E. S. et al. Immune checkpoint inhibitors in cancer therapy. J. Biomed. Res. 0, 1–10 2017.

  188. June, C. H., Warshauer, J. T. & Bluestone, J. A. Corrigendum: Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 23, 1004 (2017).

    CAS  PubMed  Google Scholar 

  189. Vanderlugt, C. L. & Miller, S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    CAS  PubMed  Google Scholar 

  190. Linardou, H. & Gogas, H. Toxicity management of immunotherapy for patients with metastatic melanoma. Ann. Transl. Med. 4, 272 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Muro, K. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 17, 717–726 (2016).

    CAS  PubMed  Google Scholar 

  192. Shi, V. J. et al. Clinical and histologic features of lichenoid mucocutaneous eruptions due to anti-programmed cell death 1 and anti-programmed cell death ligand 1 immunotherapy. JAMA Dermatol. 152, 1128–1136 (2016).

    PubMed  PubMed Central  Google Scholar 

  193. Hwang, S. J. et al. Cutaneous adverse events (AEs) of anti-programmed cell death (PD)-1 therapy in patients with metastatic melanoma: a single-institution cohort. J. Am. Acad. Dermatol. 74, 455–61 e1 (2016).

    PubMed  Google Scholar 

  194. Sibaud, V. et al. Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr. Opin. Oncol. 28, 254–263 (2016).

    CAS  PubMed  Google Scholar 

  195. Hua, C. et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 152, 45–51 (2016).

    PubMed  Google Scholar 

  196. Jour, G. et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: a report on bullous skin eruptions. J. Cutan. Pathol. 43, 688–696 (2016).

    PubMed  Google Scholar 

  197. Parakh, S., Nguyen, R., Opie, J. & Andrews, M. Late presentation of generalised bullous pemphigoid-like reaction in a patient treated with pembrolizumab for metastatic melanoma. Australas. J. Dermatol. 58, 109–112 (2017).

    Google Scholar 

  198. Bonigen, J. et al. Anti-PD1-induced psoriasis: a study of 21 patients. J. Eur. Acad. Dermatol. Venereol. 31, e254–e257 (2017).

    CAS  PubMed  Google Scholar 

  199. Maker, A. et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann. Surg. Oncol. 12, 1005–1016 (2005).

    PubMed  PubMed Central  Google Scholar 

  200. Yang, J. et al. Ipilumumab (Anti-CTLA4 Antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Di Giacomo, A. M., Biagioli, M. & Maio, M. The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin. Oncol. 37, 499–507 (2010).

    PubMed  Google Scholar 

  202. Sznol, M. et al. Pooled analysis safety profile of nivolumab and ipilumumab combination therapy in patients with advanced melanoma. J. Clin. Oncol. 35, 3815–3822 (2017).

    CAS  PubMed  Google Scholar 

  203. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Hassel, J. C. et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): evaluation and management of adverse drug reactions. Cancer Treat. Rev. 57, 36–49 (2017).

    CAS  PubMed  Google Scholar 

  206. Weber, J. S. et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J. Clin. Oncol. 26, 5950–5956 (2008).

    CAS  PubMed  Google Scholar 

  207. Attia, P. et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol. 23, 6043–6053 (2005).

    CAS  PubMed  Google Scholar 

  208. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Beck, K. E. et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 24, 2283–2289 (2006).

    CAS  PubMed  Google Scholar 

  210. Downey, S. G. et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin. Cancer Res. 13, 6681–6688 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-beta1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    PubMed  PubMed Central  Google Scholar 

  212. Yurkovetsky, Z. R. et al. Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alpha2b. Clin. Cancer Res. 13, 2422–2428 (2007).

    CAS  PubMed  Google Scholar 

  213. Esfahani, K. & Miller, W. Reversal of autoimmune toxicity and loss of tumor response by interleukin-17 blockade. N. Engl. J. Med. 376, 1989–1991 (2017).

    PubMed  Google Scholar 

  214. Krieg C. et al. High dimensional analysis of the immune landscape during anti-PD-1 immunotherapy of melanoma predicts responsiveness. Nat. Med. 24, 144–153 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Training grant T32 GM08716 to H.M.K., NIH Fellowship grant F31 CA192787 to S.R.B., NIH Training grant T32 AI132164-01 to C.J.D., NCI Grants R01 CA175061 and R01 CA208514, KL2 South Carolina Clinical & Translational Research grant UL1 TR000062, ACS-IRG grant 016623-004 and MUSC Start-up funds to C.M.P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hannah M. Knochelmann or Chrystal M. Paulos.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knochelmann, H.M., Dwyer, C.J., Bailey, S.R. et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 15, 458–469 (2018). https://doi.org/10.1038/s41423-018-0004-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0004-4

Keywords

This article is cited by

Search

Quick links