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Shuqi Dong1,2,8, Huadong Li3,8, Meilin Wang3,8, Nadia Rasheed1,3,8, Binqian Zou1, Xijie Gao3,4, Jiali Guan1,2, Weijie Li5, Jiale Zhang1,2,
Chi Wang6, Ningkun Zhou1, Xue Shi1,2, Mei Li7, Min Zhou7, Junfeng Huang1, He Li4, Ying Zhang5, Koon Ho Wong3, Xiaofei Zhang 1,4,
William Chong Hang Chao3✉ and Jun He 1,4✉

© The Author(s) 2023

In Saccharomyces cerevisiae, cryptic transcription at the coding region is prevented by the activity of Sin3 histone deacetylase
(HDAC) complex Rpd3S, which is carried by the transcribing RNA polymerase II (RNAPII) to deacetylate and stabilize chromatin.
Despite its fundamental importance, the mechanisms by which Rpd3S deacetylates nucleosomes and regulates chromatin
dynamics remain elusive. Here, we determined several cryo-EM structures of Rpd3S in complex with nucleosome core particles
(NCPs), including the H3/H4 deacetylation states, the alternative deacetylation state, the linker tightening state, and a state in which
Rpd3S co-exists with the Hho1 linker histone on NCP. These structures suggest that Rpd3S utilizes a conserved Sin3 basic surface to
navigate through the nucleosomal DNA, guided by its interactions with H3K36 methylation and the extra-nucleosomal DNA linkers,
to target acetylated H3K9 and sample other histone tails. Furthermore, our structures illustrate that Rpd3S reconfigures the DNA
linkers and acts in concert with Hho1 to engage the NCP, potentially unraveling how Rpd3S and Hho1 work in tandem for gene
silencing.
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INTRODUCTION
The longevity of eukaryotes is negatively impacted by cryptic
transcription, which is suppressed by the action of the Rpd3S/
Sin3B corepressor complex.1–4 Reduced potassium dependency-3
small complex (Rpd3S), a conserved Sin3 histone deacetylase
(HDAC) complex in Saccharomyces cerevisiae, is recruited to genes’
coding regions by phosphorylated the C-terminal domain (CTD) of
RNA polymerase II (RNAPII) and stimulated by Set2-modified
H3K36me3 to deacetylate chromatin.1–3,5–8 The coding regions are
highly marked with H3K36me3, which is specifically recognized by
the combined action of the Eaf3 and Rco1 subunits of Rpd3S.2,9 In
contrast, the promoter regions are commonly labeled with
H3K4me3, which is recognized by the Cti6 and Pho23 subunits
in the Rpd3 large complex (Rpd3L).10,11 The differential histone
methylation marks allow the Rpd3S and Rpd3L to utilize different
subunits to target specific genomic locations for transcription
regulation.
The five-subunit Rpd3S complex contains a unique subunit

Rco1, three core subunits (Rpd3, Sin3, and Ume1) that are shared
between the 12-subunit Rpd3L complex, and an Eaf3 subunit that
is also a component of the NuA4 histone acetyltransferase
(HAT).1,12–16 Rpd3 is a class-I histone deacetylase, which binds to
the large Sin3 base in Rpd3S1,2,5,13,14,17 and targets all 4 histone

tails.18–21 Apart from its deacetylase activity, Rpd3S also functions
as an HDAC-independent chromatin stabilizer and prevents
nucleosome eviction by chromatin remodeler RSC.8 The chromatin
regulator function of Rpd3S is consistent with the observation that
H3K36me3 suppresses histone exchange over coding regions to
suppress cryptic transcription22 and that Rpd3S opposes the
functions of both FACT and the Spt6–Spn1 transcription elonga-
tion complex in vivo.15,23

In eukaryotes, gene silencing is maintained by the engagement
of H1 linker histone to facilitate the formation of higher-order
nucleosome arrays post-transcription.24–26 Ume6, a component of
Rpd3L, promotes Hho1 (H1 homologue in Saccharomyces cerevi-
siae) binding to the meiotic gene promoters.27 Furthermore, an
hho1Δrpd3Δ double mutant results in additive derepression of
early meiotic gene transcription, thus implying that Rpd3 works
together with Hho1 to stabilize the repressive chromatin structure
established by Rpd3L and Rpd3S.8,27 It is therefore conceivable
that there is a transition from Rpd3S-mediated cryptic transcrip-
tion repression to Hho1-mediated chromatin compaction.28

The recent studies on Rpd3S and Rpd3L revealed the complex
assemblies and architecture in their apo states.29–31 Several
structural studies have focused on the HDACs’ recognition of
nucleosome substrates.32,33 The structure of Sirt6 was believed to

Received: 30 June 2023 Accepted: 16 August 2023
Published online: 4 September 2023

1CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong–Hong Kong Stem Cell and
Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health,
Chinese Academy of Sciences, Guangzhou, Guangdong, China. 2University of Chinese Academy of Sciences, Beijing, China. 3Faculty of Health Sciences, University of Macau,
Macau SAR, China. 4Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of
Guangzhou Medical University, Guangzhou, Guangdong, China. 5Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen,
Guangdong, China. 6School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China. 7Guangzhou Laboratory, Guangzhou International Bio Island,
Guangzhou, Guangdong, China. 8These authors contributed equally: Shuqi Dong, Huadong Li, Meilin Wang, Nadia Rasheed. ✉email: williamchao@um.edu.mo; he_jun@gibh.ac.cn

www.nature.com/cr
www.cell-research.com Cell Research

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-023-00869-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-023-00869-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-023-00869-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41422-023-00869-1&domain=pdf
http://orcid.org/0000-0002-2564-9258
http://orcid.org/0000-0002-2564-9258
http://orcid.org/0000-0002-2564-9258
http://orcid.org/0000-0002-2564-9258
http://orcid.org/0000-0002-2564-9258
http://orcid.org/0000-0003-0270-9729
http://orcid.org/0000-0003-0270-9729
http://orcid.org/0000-0003-0270-9729
http://orcid.org/0000-0003-0270-9729
http://orcid.org/0000-0003-0270-9729
https://doi.org/10.1038/s41422-023-00869-1
mailto:williamchao@um.edu.mo
mailto:he_jun@gibh.ac.cn
www.nature.com/cr
http://www.cell-research.com


be the first HDAC in a complex with an H3 tail substrate in the
context of nucleosome.32 However, Sirt6 prefers H3 acetylated
nucleosome over other histone acetylation, which significantly
contrasts with other HDAC complexes (CoREST, MIDAC, Sin3,
NuRD).29,30,32

Despite its fundamental role in epigenetic regulation, the
mechanism by which Rpd3S deacetylates histone tails and how it
coordinates with other factors to control the chromatin dynamics
during transcription is still poorly understood. To gain mechanistic
insights, we reconstituted the five-subunit Rpd3S complex in vitro
and obtained a 3.5 Å structure using cryo-electron microscopy (cryo-
EM). To capture different dynamic states of Rpd3S on NCP (nucleo-
some core particle), we further applied the following modifications in
different combinations on the NCP: i) the addition of DNA linker(s) to
NCP; ii) a methylated-lysine analog (MLA) at H3K36 to mimic
trimethylation; and iii) a lysine-to-glutamine mutation at H3K9 (K9Q)
to mimic an acetyl-lysine substrate. The modified NCPs were
combined with Rpd3S to create four complexes namely
Rpd3S–NCP187bp/MLA, Rpd3S–NCP187bp/MLA/K9Q, Rpd3S–NCP167bp/MLA,
and Rpd3S–NCP187bp. Our structures reveal how Rpd3S potentially
navigate through the core and extra nucleosomal DNA on the NCP,
guided by its interaction with the acidic patch as well as H3K36MLA
to sample and target the histone tails for deacetylation. During the
process of deacetylation, Rpd3S further tightens the nucleosomal
DNA linkers, which probably precludes the binding of transcription
factors at cryptic transcription start sites. To further explore the
transition from Rpd3S-mediated cryptic transcription repression to
Hho1-mediated chromatin compaction, we determined an
Rpd3S–NCP187bp–Hho1 complex structure with clear Hho1 density
at the canonical dyad binding site of H1. The combined results lead to
a model that Rpd3S not only deacetylates the NCP, but also acts in
concert with Hho1 to engage the NCP and reconfigure the extra-
nucleosomal DNA linkers, thereby promoting gene silencing.

RESULTS
Architecture of Rpd3S
The five-subunit Rpd3S complex (Rpd3, Sin3 (residues 214–1536),
Ume1, Rco1, and Eaf3) was reconstituted using a baculovirus/
insect-cell expression system (Fig. 1a; Supplementary information,
Fig. S1a).34 Multi-angle light scattering (MALS) yielded an
experimental molecular weight of 528 kDa, which translates to a
stoichiometry of a Sin3–Rpd3–Ume1–Rco1A–Eaf3A–Rco1B–Eaf3B
complex (Supplementary information, Fig. S2a). To visualize the
structural architecture of Rpd3S, cryo-EM structure determination
was performed using the purified Rpd3S complex to generate a
three-dimensional (3D) map of 3.5 Å (Supplementary information,
Figs. S1a, S3a, S9 and Table S1). The electron density of the Rpd3S
structure allowed us to accurately define the Rpd3, Sin3, Rco1A/B,
and Eaf3A/B subunits. No density can accommodate the predicted
WD40 domain structure of the Ume1 subunit in this high-
resolution map. However, extended classification and refinement
with a lowpass filter result in a Ume1 WD40 domain density
(Supplementary information, Fig. S3b, c). The overall structure of
Rpd3S reveals that the Sin3, Rco1A, and Eaf3A subunits form a
large continuous scaffold to hold the Rpd3 deacetylase in position
(Fig. 1c). Rpd3 contacts an extended conserved motif of Sin3
(residues 748–801) that we term the histone-interacting motif
(HIM) as it coordinates the H3 tail substrate binding (see later
sections) (Supplementary information, Fig. S4a, b). HIM criss-
crosses the Rpd3 deacetylase active site and connects to the Sin3
base (residues 801–1324), whose solution structure was partially
determined in a complex with an Sds3 peptide by NMR
previously.35 The equivalent binding site of the Sds3 peptide is
occupied by the Rco1A N terminus (residues 33–66) as revealed by
de novo model building into the corresponding density and
further validated by cross-linking mass spectrometry (XL-MS)
(Supplementary information, Fig. S2b). Rco1A N terminus binds to

the Sin3 base to form an elongated scaffold, which makes
extensive contact with Rpd3 and the rest of Rco1A (Fig. 1c, d;
Supplementary information, Fig. S5).
At the center of the Rpd3S structure is Rco1A (residues

258–561), which contains the PHD-SID domain (plant homeobox
domain and Sin3-interacting domain) (residues 260–374) and the
conserved acidic patch-interacting motif (AIM) (residues 377–397)
(Supplementary information, Figs. S5, S6a, b). Rco1A coordinates
Rpd3, Sin3, and the MRG domain of Eaf3A. Removal of Eaf3 from
Rpd3S (Rpd3SΔEaf3) results in the formation of a core complex of
Rpd3–Sin3–Ume1 without Rco1 (Supplementary information,
Fig. S1b). AIM coordinates the Sin3 HIM in the apo Rpd3S
structure but changes its conformation to bind to the NCP’s acidic
patch in the alternative deacetylation state (see later sections).
The C terminus of Rco1A consists of a long helix, which interacts
with the equivalent helical segment of Rco1B. This helical
interaction connects Rco1B–Eaf3B to Rpd3S (Supplementary
information, Fig. S1c). Both MRG domains of Eaf3 adopt identical
structures and bind to the respective PHD-SID domains of Rco1A
and Rco1B, forming two MRG-PHD arms (Supplementary informa-
tion, Figs. S1c, S6c). The density of the N-terminal chromodo-
mains (CHDs) of the two Eaf3 is not visible, suggesting that their
CHDs are likely mobile in the absence of the nucleosome
substrate.

Rpd3S engages NCP via multiple contacts at superhelical
location (SHL)+ 2 for H3/H4 deacetylation
Previous studies indicated that Rpd3S exhibits higher affinity
towards NCP containing extra DNA linkers and the H3K36
methylation.2,20,36 To understand how these nucleosomal features
impact Rpd3S binding to the NCP, we reconstituted an NCP with
two extra 20 bp DNA linkers flanking the Widom 601 sequence
(187 bp) and an MLA at the lysine-36 position of the H3 histone to
mimic a tri-methylated lysine (H3K36MLA) (Supplementary
information, Fig. S2c).37 The resulting NCP187bp/MLA was used to
form a complex with Rpd3S under gradient fixation (GraFix)
conditions for cryo-EM structure determination.38

3D classification of the Rpd3S–NCP187bp/MLA complex results in
one overall conformation containing three classes, in which the
Rpd3S broadly engages the NCP at the SHL+ 2 position with
slightly different local positionings. Further local refinement of
Rpd3S and NCP density allowed us to obtain high-resolution maps
of Rpd3S–NCP187bp/MLA complex with the Rpd3S complex at
2.8–3.1 Å and NCP at 2.6–2.7 Å resolution (Supplementary informa-
tion, Figs. S7a, S10 and Table S1). We rationalize that the local
differential positionings of Rpd3S were due to the absence of an
acetylated histone substrate and that the plasticity allows the HDAC
to sample H3/H4 histone tails with different modifications. To test
this hypothesis, we further introduced an acetyl-lysine analog to
mimic a previously known Rpd3S target, acetylated H3K9 (Supple-
mentary information, Fig. S8a, b),22,39 by mutating the lysine-9
residue to glutamine (K9Q)26,40 with the aim to lock Rpd3S at a
definitive position at SHL+ 2. 3D classification and further local
refinement of the Rpd3S–NCP187bp/MLA/K9Q complex indeed results
in one single SHL+ 2 class with the Rpd3S complex at 2.65 Å and
NCP at 2.55 Å resolution (Figs. 1b, c, 2a; Supplementary information,
Figs. S11, S14 and Table S1). We named the 3D classes of
Rpd3S–NCP187bp/MLA at the SHL+ 2 positions collectively as the
H3/H4 deacetylation states of the Rpd3S–NCP complex, and we
termed the K9Q-locked class as the H3K9 deacetylation state. These
high-resolution maps of Rpd3S at the SHL+ 2 positions enabled de
novo model building and allowed structural comparison with the
apo Rpd3S structure (Fig. 1d; Supplementary information, Table S1).
Within the H3/H4 deacetylation states, the active site of Rpd3

exhibits positional shifts of approximately 10–15 Å (Supplementary
information, Fig. S7b). The Rpd3 active site is ~33 Å away from the
H4 N-terminal residue Leu22 (Supplementary information, Fig. S7c).
A peptide of 9 residues could, in theory, cover this distance, which
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suggests that Rpd3S is able to target the H4 N-terminal tail from
this location (Supplementary information, Fig. S7c). Significantly,
within one of the three H3/H4 deacetylation states, designated as
class 3, the H4 N-terminal main chain exhibits a distinctive
trajectory leading towards the active site of Rpd3, unlike the other
two H3/H4 deacetylation states (Supplementary information,

Fig. S7d). Notably, weak density from a putatively unmodified
histone tail can be observed near the Rpd3 active site in these H3/
H4 deacetylation states (Supplementary information, Fig. S7e, f).
This supports the hypothesis that Rpd3S can sample histone tails at
the SHL+ 2 position for deacetylation in the absence of the H3K9Q
substrate mimic.
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In all H3/H4 and the locked H3K9 deacetylation states, Rpd3S
binds to SHL+ 2 of the NCP via a conserved Sin3 basic surface
while the MRGA-PHDA arm binds to the phosphodiester backbone
of the exiting DNA linker via Rco1A K320/K321/K328 (Figs. 1d, 2c,
g, 3f). This structural observation is consistent with a previous
study showing that mutations in Rco1 PHD1 (known as PHD in our
study) lead to the initiation of cryptic transcription.10 Because
mutations of Rco1 PHD will likely disrupt the structural integrity of
the MRGA-PHDA arm, the ability to bind to the DNA linker is also
compromised. Both H3K36MLA tails protrude through the gyres’
minor grooves at SHL – 7 and SHL+ 7, fitting into the conserved
aromatic pockets of the CHDs from Eaf3A and Eaf3B, which
engages the local nucleosomal DNA at cross-gyre manners
(Figs. 1c, d, 2a, e, 3f). The Sin3 basic surface and the CHDs are
essential in binding NCP, as combining mutations on key Sin3
conserved basic residues K936E/K941E/K946E (Supplementary
information, Fig. S4c) and the deletion of the Eaf3 CHDs result
in a dramatic reduction in the Rpd3S–NCP complex formation in
electrophoretic mobility shift assay (EMSA) (Fig. 2h, i). The deletion
of the CHD or the combined deletion of both the CHD and the
DNA-binding region (DBR) of Eaf3 do not affect the integrity of the
complex as both Rpd3SΔCHD and Rpd3SΔCHD-DBR can still be
purified (Fig. 2h). Therefore, the reduction in NCP binding is not
due to the disruption of the structural integrity of Rpd3S.
In the H3K9 deacetylation state, in which the deacetylation

activity of Rpd3S was confirmed by the nucleosomal H3K9ac
deacetylation assay (Supplementary information, Fig. S8), the
active site of the Rpd3 subunit is occupied by the acetyl-lysine
analog H3K9Q, whose C-terminal region lies on a hydrophobic
trough formed between the conserved underwound helix of
P786/V787/W788/A789 and F795 of Sin3 HIM (Fig. 2b). The Rpd3
active site is ~58 Å away from the H3K36MLA residue at SHL – 7
(Fig. 2f). Considering a peptide of 17–25 residues could span
across this distance, Rpd3S may be able to target the H3 N
terminus from this location (Fig. 2f). Rco1A AIM, which adopts loop
conformation in apo Rpd3S, changed to a helical segment at
residues R384/Q385/L386/F387 and binds to the phosphodiester
backbone of the NCP via R384 (Fig. 2d; Supplementary informa-
tion, Fig. S5).
Overall, our structures suggest that Rpd3S primarily targets H3/

H4 histone tails through a concerted mechanism involving the
coordinated bindings of the Sin3 basic surface to core nucleoso-
mal DNA at SHL+ 2, Eaf3 CHDs to H3K36MLA, and the MRGA-
PHDA arm to the exit DNA linker. We propose that the H3/H4 and
H3K9 deacetylation states capture snapshots of Rpd3S being in
the process of sampling and targeting acetylated H3/H4 on the
nucleosome.

Removal of DNA entry linker frees Rpd3S for alternative
deacetylation
It was reported that chromatin remodelers fine-tune nucleosome
spacing to control Rpd3S deacetylation activity.41 We rationa-
lized that the H3/H4 deacetylation states obtained were due to
the combined interactions between DNA linker and H3K36MLA
with Rpd3S. To mimic the DNA linker undergoing remodeling in
the wake of RNAPII, we removed the 20 bp DNA entry linker from
the NCP (NCP167bp/MLA) to reconstitute a complex with Rpd3S.
3D classification of the Rpd3S–NCP167bp/MLA complex results in
two predominant Rpd3S binding states, one of which resembles
the H3/H4 deacetylation states at SHL+ 2 and the other at
SHL+ 5 we termed the alternative deacetylation state since
Rpd3S could deacetylate multiple histone tails including H2A
and H2B18,19 (Supplementary information, Figs. S12, S14 and
Table S1).
In the alternative deacetylation state, Rpd3S is freed from being

constrained by the Eaf3B-entry linker interaction and rotates by
~90° along the plane of the nucleosomal disc relative to the H3/H4
deacetylation states to bind to the top side of the NCP via multiple

contacts (Fig. 3a). On nucleosomal DNA, the conserved Sin3 basic
surface and the MRGA-PHDA arm bind to the phosphodiester
backbone of the SHL+ 5 and SHL+ 1.5 of the NCP, respectively
(Fig. 3g). The CHD of Eaf3A continues to interact with the
H3K36MLA tails and engages the nucleosomal DNA at SHL+ 7
(Fig. 3a, g). At SHL – 7, the Eaf3B CHD is no longer visible, although
the density of the H3K36MLA tail is still present (Fig. 3a). Together
with the EMSA data showing Eaf3 CHDs are essential for optimal
binding of NCP by Rpd3S (Fig. 2h), we propose that the interaction
between CHDs and H3K36me3 is one of the key factors in
maintaining Rpd3S on the nucleosomal disc at certain positions in
order to sample and target multiple histone tails.
On Rpd3S, Rco1A AIM leaves HIM and becomes largely invisible,

while the conserved R384 fits into an acidic pocket created by H2A
(E61/E92) and H2B (E102) at the acidic patch (Fig. 3b), hence the
naming of the AIM. The interaction between Rpd3S and the acidic
patch is further confirmed by the finding that a Chd1 ChEx
peptide, a known acidic-patch binding peptide,42 is able to
compete Rpd3S away from the NCP (Fig. 3c). Cryo-EM image
processing of Rpd3S–NCP167bp/MLA reveals that the number of
particles with Rpd3S binding to the SHL+ 2 position is four times
more than that at the SHL+ 5 position (Supplementary informa-
tion, Fig. S12). Therefore, it is likely that Rpd3S has a higher affinity
towards the NCP at SHL+ 2 and that this position is the first point
of Rpd3S contact on the H3K36 trimethylated NCP. Since Ume1
homologue mammalian RbAp46/48 and Drosophila Nurf55/P55
are the histone chaperone of H3 and H4,43–45 Rpd3S could
potentially utilize the Ume1 subunit to assemble H3/H4 and target
their histone tails at SHL+ 2 position prior to transitioning to the
alternative deacetylation state at SHL+ 5 where it could further
target other proximal histone tails such as H2A/H2B.18,19,21

Rpd3S tightens DNA linkers post deacetylation
Having understood the structural mechanism of deacetylation by
Rpd3S, we created an Rpd3S–NCP187bp complex that mimics a
stage when the nucleosome is deacetylated and Rpd3S is no
longer activated by methylation. 3D classification of the
Rpd3S–NCP187bp complex results in two Rpd3S binding states
(Supplementary information, Figs. S13, S14 and Table S1). One is
identical to the SHL+ 2 state and another novel state that we
termed the linker tightening state (Fig. 3d). In the linker tightening
state, Rpd3S rotates around the nucleosomal DNA axis by ~150°
with the Sin3 conserved basic surface binding to the nucleosomal
DNA at the SHL+ 7 position (Fig. 3d). This rotation makes the
Rpd3S main body leaving the nucleosomal disc entirely, with
MRGA-PHDA and MRGB-PHDB arms interacting with the entry and
exit DNA linkers (Fig. 3d, h). The position of Rpd3S in the linker
tightening state, which is created without H3K36MLA, further
reinforces the notion that the interaction between Eaf3 CHDs and
H3K36MLA is the key factor in maintaining Rpd3S on the
nucleosomal disc and hence the ability of Rpd3S to sample and
target histone tails within proximity. Notably, by measuring the
angle between the linker and the dyad axis in the planes parallel
(α) and perpendicular (β) to the nucleosomal disc plane, we
observed that the exit DNA linker bends with an α angle of 37° in
the linker tightening state compared to 27° in H3K9 deacetylation
state (Fig. 3e). This indicates that Rpd3S further tightens the exit
DNA linker post deacetylation.
It is generally accepted that the histone–DNA interactions at the

nucleosomal entry/exit DNA regions are weaker compared to
those at core nucleosomal DNA.46 The entry/exit regions are often
the binding sites for transcription factors,47–49 which unwrap the
nucleosomal DNA for RNAPII passage. Collectively, our results
indicate that following deacetylation and absence of constraints
from H3K36me3, Rpd3S disengages from the nucleosomal disc
while maintaining its interactions with the DNA linkers, which are
in turn tightened. The Rpd3S-mediated tightening of the DNA
linker could potentially serve as a mechanism that counteracts the
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Fig. 3 Details of Rpd3S bound to the nucleosome in the alternative deacetylation state and linker tightening state. a Top view (left) and
dyad view (right) of the cryo-EM map of the Rpd3S–nucleosome complex at its alternative deacetylation state. Two MRG-PHD arms are
illustrated with bold contours. In this state, the Sin3 basic surface binds to the SHL+ 5 DNA. b Interaction of the R384 anchor of Rco1A AIM
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for 30min. Increased ChEx concentrations can out-compete Rpd3S away from nucleosome, resulting in the formation of the ChEx–NCP
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S. Dong et al.

795

Cell Research (2023) 33:790 – 801



binding of transcription factors to nucleosomes at cryptic start
sites for repressing cryptic transcription.

Rpd3S acts in concert with Hho1 for NCP engagement
H1 linker histone has been shown to engage chromatin post-
deacetylation to facilitate the formation of a higher-ordered
nucleosome array after transcription.24–26 Chromatin remodelers,
such as Chd1 and Isw1, can fine-tune the histone deacetylation
activity of Rpd3S by altering the nucleosomal spacing and
compete with Hho1 to bind to nucleosomes in vivo.41,50,51

Furthermore, Hho1 utilizes its two globular domains to interact
with di-nucleosome,51 which is a preferred substrate of Rpd3S.20,41

To explore the possibility of Rpd3S poising the NCP for H1
engagement, we recombinantly purified the globular domain of
the Hho1 and reconstituted an Rpd3S–NCP187bp–Hho1 complex
for structure determination (Supplementary information, Fig. S13
and Table S1). 3D classification reveals that 15.2% of particles
contain the putative Hho1 density (Supplementary information,
Fig. S13). This allows the reconstruction of a consensus map of
6.2 Å containing both the Rpd3S and Hho1 densities (Fig. 4a).
Further focus refinement of the Hho1 density revealed clear
helical densities, in which Hho1 globular domain can be fitted
(Fig. 4a, b). Hho1 exhibits canonical dyad binding with its loop 1
and helix 3 coordinating the two DNA linkers while helix 2
contacts the dyad (Fig. 4b). The Rpd3S in the consensus map
exhibits substantial flexibility, resulting in a fragmented density
that rotates further away from the NCP body towards the entry
DNA linker. To confirm the fragmented density being Rpd3S, we
performed density subtraction and subsequent ab-initial recon-
struction, which yielded a map of 6 Å (Supplementary information,

Fig. S13). This map can unambiguously accommodate the Rpd3S
complex structure, thus confirming the co-existence of Rpd3S and
Hho1 on the NCP (Fig. 4c). The co-existence of the Rpd3S and
Hho1 on NCP187bp was further confirmed by the EMSA (Fig. 4d). In
order to accommodate Hho1, the exit/proximal linker adopts a
characteristic bend with a β angle of ~3° (Fig. 4e), which
reminisces those of linker histone H1–NCP structures.52–55 Taken
together, our combined structural data demonstrate that Rpd3S
samples the NCP at multiple nucleosomal superhelical locations to
deacetylate its histone substrates and acts in concert with Hho1 to
engage the NCP26 (Fig. 5).

DISCUSSION
In this study, we recapitulate the dynamic states of nucleosome
deacetylation and DNA linker tightening mediated by Rpd3S
(Fig. 5). Rpd3S is recruited by the phosphorylated CTD of RNAPII,
leading it to travel with RNAPII.6,7 Rpd3S utilizes the conserved
Sin3 basic surface to bind to the nucleosomal DNA positions at
SHL+ 2, SHL+ 5, and SHL+ 7, under the conditions involving
different H3K36me3–CHD interactions and DNA linker interac-
tions. Based on these states, we propose a working model of
Rpd3S probing and engaging with multiple nucleosomal posi-
tions, thus providing a conceptual framework for understanding
the complex’s multifaceted engagement with nucleosomes.
Additionally, inspired by recent studies that elucidated the
progression of RNAPII through nucleosomes,56,57 the H3K36me3-
and DNA linker-mediated nucleosomal positionings may also
imply that Rpd3S could navigate through the NCP in a way similar
to the superhelical passage taken by the RNAPII on NCP.56,57
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However, the actual dynamic behavior of the complex still
requires further investigation.
During the initial engagement, Rpd3S may be guided by its

interactions with H3K36me3 and the DNA linkers to bind to the
SHL+ 2 position of the nucleosomal DNA. The flexible H3
N-terminal tail protruded from the gyres’ minor groove at SHL – 7
is putatively guided by a passage created by the Eaf3B CHD,
Rco1A, and Sin3 HIM that leads to the active site of Rpd3 for the
deacetylation (Fig. 2f). The H3K9 deacetylation state obviously
represents a snapshot of Rpd3S deacetylating H3K9ac as the
introduction of the acetyl-lysine mimic H3K9Q locks the
Rpd3S–NCP187bp/MLA/K9Q complex in a single conformation. In
this state, the MRGA-PHDA arm binds to the exiting DNA linker at
SHL+ 7, likely facilitating the initial DNA linker tightening
(Fig. 3e).
Once the nucleosome spacing is fine-tuned by chromatin

remodelers such as Chd1 and Isw1,41,58 Rpd3S may lose its stable
interaction with the DNA linker and H3K36me3. Without the
constraint by the Eaf3B CHD at SHL – 7, Rpd3S could gain the
freedom to move away from its SHL+ 2 position and reposition
itself at SHL+ 5 on the top side of the NCP (Fig. 5). H2A/H2B could
be the potential target of this state due to the local proximity. The
transition to this alternative deacetylation state is exhibited by the
Rpd3S–NCP167bp/MLA complex, which is made possible by the Sin3
basic surface maintaining Rpd3S on the nucleosomal DNA track.
The repositioning at SHL+ 5 is likely guided by Rco1A AIM’s
interaction with the acidic patch and Eaf3A CHD interaction with
H3K36MLA at SHL+ 7 (Fig. 3a, g).
In the Rpd3S–NCP187bp complex, the absence of H3K36MLA

further removes the constraints on Rpd3S and allows it to leave
the NCP disc entirely (Fig. 5). In this linker tightening state, Rpd3S
binds to the SHL+ 7 position via the conserved Sin3 basic surface,
while the MRGA-PHDA and MRGB-PHDB arms interact and tighten
the DNA linkers. The further tightening could be a precautionary

step to prevent the cryptic binding of transcription factors at the
nucleosomal entry/exit DNA regions and thus suppressing
spurious intragenic transcription.
Rpd3S is allosterically activated by H3K36me3.36 By comparing

the distinct nucleosomal locations of Rpd3S in the H3/H4
deacetylation states, the alternative deacetylation state, and the
linker tightening state, we suggest that apart from the recognition
of H3K36me3 by Eaf3 CHDs, the binding of MRG-PHD arms to the
DNA linkers is also likely to be a factor in nucleosome recognition
by Rpd3S. A previous study showed that mutations in Rco1 PHD1
(known as PHD in our study) would result in cryptic transcription
initiation.10 As our structures reveal that PHD binds to Eaf3 MRG,
PHD mutations will most likely disrupt the structural integrity of
the MRG-PHD arms and affect their interaction with DNA linkers.
Therefore, we propose that the combined engagement of
H3K36me3 and DNA linkers cooperatively activates Rpd3S by
restraining it to certain positions on the NCP where the active site
of Rpd3 is close enough to sample different histone tails for
deacetylation.
During the revision of this manuscript, Guan et al. reported

the cryo-EM structures of Rpd3S–NCP in the ‘close’ and ‘loose’
states.59 These states are structurally equivalent to the H3/H4
deacetylation states described in our study. The investigation of
the alternative deacetylation state and linker tightening state in
our study provides additional insights into the diverse modes of
Rpd3S engaging the nucleosomal substrate and outlines a
putative working mechanism, which has not been proposed
before.
Previously, genome-wide analysis revealed that there was an

inverse correlation between linker histone occupancy and histone
acetylation.26 Furthermore, an rpd3Δ mutant rescued the growth
defect caused by Hho1 overexpression in a synthetic dosage
screen.26 These results suggest that Rpd3 could set nucleosomes
up for Hho1 binding in cells by deacetylating histone tails. Due to
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the fine-tuning of the linker angles by Rpd3S and the potential
optimization of nucleosomal spacing by chromatin remodelers,41,50

a favorable environment can be created for the engagement of
Hho1 linker histone. Our Rpd3S–NCP187bp–Hho1 structure, which
exhibits a canonical DNA linker conformation of an H1–NCP
complex,53,55 unites our structural observations with the above-
mentioned in vivo studies and compels us to propose a novel idea
that Rpd3S acts in concert with Hho1 to engage the NCP by
reconfiguring DNA linker angles. This Rpd3S–Hho1 co-existing
state on NCP could be an intermediate state (Fig. 5) of Rpd3S
moving towards the next cycle of histone deacetylation while
promoting transcription repression mediated by Hho1 in certain
genes.24,27,50

MATERIALS AND METHODS
Preparation and purification of Rpd3S complex
The coding sequences of Rpd3S subunits (Rpd3, Sin3(214–1536), Ume1,
Rco1, and Eaf3) were amplified by PCR respectively and were cloned into
modified pFBDM vectors.60 The double-StrepII tag was engineered at the N
terminus of Sin3 and C terminus of Rco1 for affinity purification. The
viruses containing five-subunit genes of Rpd3S were mixed to infect High
Five insect cells and co-expressed for 54 h. The insect cells were pelleted
and lysed in buffer A (25mM Tris-HCl pH 7.5, 300mM NaCl, 0.5 mM TCEP,
10% glycerol, 1 mM PMSF, Protease inhibitor cocktail and Supernuclease)
via the high-pressure homogenizer. The lysate was spun at 22,000 rpm for
1 h. After the binding and washing to the streptavidin column, the protein
complex was eluted in buffer A with 25mM Desthiobiotin. The fractions
containing Rpd3S were diluted to buffer B (10 mM Tris-HCl pH 7.5, 80 mM
NaCl, 10% glycerol, 0.5 mM TCEP) and then purified by anion-exchange
chromatography with Resource Q column (GE Healthcare) and eluted with
a gradient 0%–100% buffer C (10mM Tris-HCl pH 7.5, 1 M NaCl, 10%
glycerol, 0.5 mM TCEP). Finally, the protein complex was further purified by
gel filtration in buffer D (25mM HEPES pH 7.5, 150mM NaCl, and 0.5 mM
TCEP). The peak fractions from gel filtration were concentrated and the
aliquots were stored at −80 °C.

Preparation and purification of histone octamer
The modified vector pETDuet-1-Xenopus laevis co-expresses the histones in
octamer form using a polycistronic approach.61 Escherichia coli Rosetta
(DE3) cells containing this vector were induced with 0.4 mM IPTG when the
OD600 reached 0.4–0.5. The culture was further shaken at 170 rpm at 37 °C
for 20 h. These bacterial pellets were lysed in buffer (20mM Tris pH 8.0,
500mM NaCl, 0.1 mM EDTA, 0.5 mM TCEP), and the supernatant was
loaded into the Heparin affinity column (Cytiva). The column was washed
with 500mM NaCl buffer and slowly eluted with a salt gradient from
500mM to 2M NaCl. Since these recombinant histones were wrapped with
a lot of E. coli DNA, a gel filtration with buffer containing 2M salt (20mM
Tris pH 8.0, 2 M NaCl, 0.5 mM EDTA, 0.5 mM TCEP) was used to remove the
endogenous DNA. The histone octamer was eluted as a single peak,
although a few fragile protein peaks were also found.

Preparation of H3K36MLA containing histone octamer
Histone H3 C110 was mutated to alanine and later H3K36 was mutated
to cysteine. Histone octamer containing H3 with these double mutations
was expressed and purified as wild-type histone octamer. The H3K36C of
the octamer was modified by the installation of MLA as previously
described.37 (2-bromoethyl) trimethyl ammonium bromide reagent was
used to generate histone octamer containing-H3K36me3 (MLA). To
generate the acetyl-mimetic MLA mutant, lysine (K) 9 of H3 was mutated
to glutamine (Q) within the C110A/K36C mutant and later MLAs were
installed.

Preparation of Rco1-deleted strain and extraction of
endogenous histone octamer
The Saccharomyces cerevisiae strain used in this study is derived from
BY4741.62 Rco1 was deleted using the rapamycin-mediated “anchor away”
technique.63 To extract the endogenous histone octamer, the Rco1-deleted
strain was grown in YPD media at 30 °C at 220 rpm shaking until the OD600

reached 0.8. The purification of endogenous histone octamer was the
same as the recombinant histone octamer.

Preparation of Hho1 protein
The expression vector of Hho1 globular domain, pETDuet-1-His-TEV-Hho1
(residues 41–117), was synthesized. E. coli BL21(DE3) cells containing this
vector were induced with 0.4 mM IPTG when the OD600 reached 0.4–0.8
and further shaken at 170 rpm at 37 °C for 6 h. This Hho1 protein was
purified initially using the His-tag affinity chromatography column, and
His-tag was removed using Tobacco etch virus protease (TEV). Similar to
the histone octamer purification, one round of gel filtration in 2 M salt was
used for removing bacterial endogenous DNA, followed by a second round
of gel filtration in a low salt buffer (25mM HEPES, pH 7.5, 150mM NaCl,
and 0.5 mM TCEP). The peak fractions of Hho1 were concentrated and the
aliquots were stored at −80 °C.

Preparation of nucleosome
The ‘double bag’ dialysis approach was used to prepare the nucleosome.64

DNA was resuspended in the high-salt buffer (20mM Tris pH 8.0, 2 M NaCl,
0.5 mM EDTA, 0.5 mM TCEP) and mixed with the histone octamer which
was in the same high-salt buffer, and the molar ratio of histone octamer to
DNA was 1.1 to 1. Dialysis buttons made from an Eppendorf tube lid
holding 0.2 mL of the histone octamer-DNA mixture were put inside a
dialysis bag containing 50mL of the high-salt buffer. The dialysis was
performed overnight at 4 °C using 1 L buffer containing 20mM Tris pH 8.0,
1 M NaCl, 0.5 mM EDTA, and 0.5 mM TCEP. After 12 h, the dialysis bag
holding 50mL of 1 M salt buffer and the dialysis buttons were submerged
in 1 L low-salt buffer (20 mM Tris pH 8.0, 50 mM NaCl, 0.5 mM EDTA,
0.5 mM TCEP) and was dialyzed for 5–6 h. Finally, only the dialysis buttons
were further dialyzed in the low-salt buffer for 3–4 h.

Analytical gel filtration chromatography
Analytical gel filtration chromatography was performed on an ÄKTA Pure
Protein Purification System (Cytiva). Protein samples (10–50 μM in 300 μL)
were injected into a Superose 6 increase 10/300 GL column (Cytiva) that
was running with gel filtration buffer (10 mM HEPES pH 7.5, 150mM NaCl,
0.5 mM TCEP).

Size exclusion chromatography-MALS (SEC-MALS)
100 μL Rpd3S sample (40 μM) was loaded onto a Superdex 200 5/150
column (Cytiva) with a buffer containing 20mM Tris-HCl pH 7.5, 150mM
NaCl. A static light-scattering detector and a differential refractive index
detector (Wyatt) were connected to the analytical gel filtration chromato-
graphy system. Data were analyzed with ASTRA7 provided by Wyatt.

EMSA
The samples were loaded and run on a 4.5% native PAGE gel for 100min at
70 Volts with 0.5× TBE buffer at 4 °C. The gels were stained in 10mL 0.5×
TBE buffer with 1–2 μL of ethidium bromide for 10min at room
temperature. The gels were subsequently washed with TBE buffer and
imaged using the ChemiDoc (Bio-Rad) in UV mode.

Sample preparation of EM
The gradient master was used to prepare the gradient by mixing the top
solution and bottom solution. The top solution (20 mM HEPES pH 7.5,
50 mM NaCl, 10% glycerol) and bottom solution (20 mM HEPES pH 7.5,
50 mM NaCl, 30% glycerol, 0.125% glutaraldehyde) was prepared. 6 mL
top solution was loaded into the 13 mL centrifuge tube (Beckman), and
6 mL bottom solution was then slowly injected into the tube bottom
using a syringe with a long needle. The centrifuge tubes were covered
completely. And then the gradient master was used to roll the centrifuge
tubes with different programs that have different speeds and angles.
The protein complex samples (150 μL about 10 mg/mL) were added
above the solution level of centrifuge tubes and spun down for 14 h at
35,000 rpm and 4 °C in the SW41-Ti centrifuge rotor (Beckman). The
independent fraction separator gently sucked out around 30 fractions
from each tube. SDS-PAGE gels or native gels were used to detect these
fractions. The cryo-EM grids (Quantifoil, Au, R1.2/R1.3 300 mesh) were
treated in a glow discharge system (GloQube) and the cryo-EM samples
were prepared by using the vitrobot (Thermo Fisher Scientific). In the
environment of 100% humidity and at 4 °C, 3.5 μL samples were added
to the grids, and the girds were blotted for 2 s with force 4 and then
inserted into liquid ethane for quick freezing. The girds were screened or
stored in liquid nitrogen.
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Negative-stain EM data collection
The copper grids were prepared with a glow discharge, usually 15mA,
negative charge, for 60 s. 3 μL of protein sample was loaded onto the
copper girds for 1 min. The excess solution was removed with filter papers
and the grids were washed with two drops of ddH2O. The grids were
stained with two drops of uranium formate, staining for 1 min on the
second drop. Excess uranium formate was removed and the grids were air-
dried for 10min. Finally, the micrographs were taken using a 120 kV Tecnai
T12 transmission electron microscope (FEI).

Cryo-EM data collection and image processing
The apo Rpd3S dataset was collected by 200 kV Talos Arctica electron
microscope (Thermo Fisher Scientific) using the Serial EM software for
automated collection. The images were recorded by a K3 summit direct
detector at a nominal magnification of 45,000× in the super-resolution
counting mode, which resulted in a super-resolution pixel size of 0.44 Å. The
micrographs were fractionated into 27 frames and used a −0.8 μm to
–2.2 μmdefocus range set with an electron dose rate of 30 e–/pix2/s. The raw
movies used MotionCor2 in RELION software which aligned with 5 by 5
patches and binned 2-fold to a calibrated pixel size of 0.88 Å/pix. And then,
the contrast transfer function was estimated by Gctf,65,66 and particles were
picked by WARP software.67 Several rounds of 2D classification were
performed in RELION to discard poorly averaged particles. After generating
an initial model in an ab-initial job at CryoSPARC,68 the cleaned particles
were returned to RELION for 3D classification. Particles from the best 3D class
were selected and subjected to 3D auto-refine to reach a higher resolution.
The Rpd3S–NCP datasets were collected by 300 kV Titan Krios electron

microscope (Thermo Fisher Scientific) and automatically collected using
the EPU software. Movies were recorded by Falcon4 direct electron
detector equipped with a SelectrisX energy filter with a 10 eV slit width. In
electron event representation (EER) mode, movies were recorded at a
nominal magnification of 165,000× with a raw pixel size of 0.71 Å on the
image plane. The movies were recorded in a –0.8 μm to −2.2 μm defocus
range, with an electron dose rate of 26 e–/Å2/s and a total dose of 50 e–/Å2.
All the EER movies were processed by CryoSPARC software, and
CryoSPARC Live preprocessed the initial motion correction and CTF
estimate. After several rounds of 2D classification, the average particles
from the good class were submitted to ab-initial. The best initial volume
map was selected to further clean by heterogeneous refinement and
generate a final global map at homogenous refinement. The volume was
split into two and subjected to local refinement. And then two local
volume maps were combined in the model building.

Model building
For the model building of the apo Rpd3S complex, the initial models of
Eaf3–Rco1, Rpd3, and PAH3 of Sin3 were based on the published structures
(PDB: 2LKM, 1C3P, 2N2H, and 6XAW), respectively. The other subunit
sequences were uploaded to the SWISS-MODEL server for initial model
generation.69 The initial models were rigidly docked into density maps by
PHENIX,70 and the subsequent modeling was manually built based on the
high-resolution map in COOT.71 Structure real-space refinement and
flexible fitting were performed with PHENIX. For the model building of
Rpd3S–NCP complexes, we generated the initial model from the apo
Rpd3S structure and manually adjusted it in COOT. NAMDINATOR was
used to adjust the map-to-model fit for low-resolution regions and to
reduce clashes between atoms for the overall models.72 The nucleosome
models were based on the available crystal structure (PDB: 4LD9), and the
Hho1 model was built by fitting the previous structure (PDB: 7PFX) and
then manually edited in COOT. Different-length DNA chains were modeled
from different EM maps, which were low-pass filtered to 6 Å. Finally,
methylation modifications and mutations were adjusted in COOT. All
above models were subjected to PHENIX for several rounds of real-space
refinement and obtained validation finally. PyMOL (https://pymol.org/2/)
and UCSF ChimeraX were used for the generation of figures.73

XL-MS
The protein samples were exchanged to HEPES buffer and adjusted the
concentration to 1.5 mg/mL. For XL-MS analysis, the purified apo Rpd3S
was incubated with 1mM BS3 (bis(sulfosuccinimidyl)suberate) at room
temperature for 30min. The sample was quenched with 50mM Tris buffer
(the same pH as the HEPES buffer). The sample was frozen in liquid
nitrogen and stored at −80 °C. The cross-linked protein was digested first
and pre-fractionated by HPLC. After desalting, the sample was submitted

to LC-MS/MS analysis. The result was analyzed in pLink2 software and
viewed on the xiView.74
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