Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lin28a maintains a subset of adult muscle stem cells in an embryonic-like state

Abstract

During homeostasis and after injury, adult muscle stem cells (MuSCs) activate to mediate muscle regeneration. However, much remains unclear regarding the heterogeneous capacity of MuSCs for self-renewal and regeneration. Here, we show that Lin28a is expressed in embryonic limb bud muscle progenitors, and that a rare reserve subset of Lin28a+Pax7 skeletal MuSCs can respond to injury at adult stage by replenishing the Pax7+ MuSC pool to drive muscle regeneration. Compared with adult Pax7+ MuSCs, Lin28a+ MuSCs displayed enhanced myogenic potency in vitro and in vivo upon transplantation. The epigenome of adult Lin28a+ MuSCs showed resemblance to embryonic muscle progenitors. In addition, RNA-sequencing revealed that Lin28a+ MuSCs co-expressed higher levels of certain embryonic limb bud transcription factors, telomerase components and the p53 inhibitor Mdm4, and lower levels of myogenic differentiation markers compared to adult Pax7+ MuSCs, resulting in enhanced self-renewal and stress-response signatures. Functionally, conditional ablation and induction of Lin28a+ MuSCs in adult mice revealed that these cells are necessary and sufficient for efficient muscle regeneration. Together, our findings connect the embryonic factor Lin28a to adult stem cell self-renewal and juvenile regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lin28a+ stem cells contribute to satellite cells and myofibers during regeneration.
Fig. 2: Lin28a+ stem cells contribute to myofibers during regeneration.
Fig. 3: Lin28a+ cells are MuSCs with robust myogenic capacity.
Fig. 4: Lin28a+ MuSCs show enhanced myogenic potency in vitro.
Fig. 5: Epigenomic profiles show that Lin28a+ MuSCs resemble embryonic muscle progenitors.
Fig. 6: Transcriptomic profiles show that Lin28a promotes MuSC dedifferentiation.
Fig. 7: Lin28a+ MuSCs are necessary for efficient muscle regeneration.
Fig. 8: Injury-inducible Lin28a is sufficient to enhance adult muscle regeneration.

Similar content being viewed by others

References

  1. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. von Maltzahn, J., Chang, N. C., Bentzinger, C. F. & Rudnicki, M. A. Wnt signaling in myogenesis. Trends Cell Biol. 22, 602–609 (2012).

    Article  Google Scholar 

  4. Rossi, G. & Messina, G. Comparative myogenesis in teleosts and mammals. Cell Mol. Life Sci. 71, 3081–3099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuang, S., Chargé, S. B., Seale, P., Huh, M. & Rudnicki, M. A. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J. Cell Biol. 172, 103–113 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Joe, A. W. B. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mitchell, K. J. et al. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat. Cell Biol. 12, 257–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Fry, C. S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med. 21, 76–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. McCarthy, J. J. et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138, 3657–3666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walker, D. K. et al. PAX7+ satellite cells in young and older adults following resistance exercise. Muscle Nerve 46, 51–59 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435–454 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sulston, J. E. & Horvitz, H. R. Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev. Biol. 82, 41–55 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, H. et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat. Genet. 42, 626–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsanov, K. M. et al. LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control of pluripotency. Nat. Cell Biol. 19, 60–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Yermalovich, A. V. et al. Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nat. Commun. 10, 168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Osborne, J. K. et al. Lin28 paralogs regulate lung branching morphogenesis. Cell Rep. 36, 109408–109408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kerepesi, C., Zhang, B., Lee, S.-G., Trapp, A. & Gladyshev, V. N. Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging. Sci. Adv. 7, eabg6082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shyh-Chang, N. et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778–792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Polesskaya, A. et al. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 21, 1125–1138 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. West, J. A. et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 460, 909–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keefe, A. C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun. 6, 7087 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Lepper, C., Partridge, T. A. & Fan, C. M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Der Vartanian, A. et al. PAX3 confers functional heterogeneity in skeletal muscle stem cell responses to environmental stress. Cell Stem Cell 24, 958–973.e9 (2019).

    Article  PubMed Central  Google Scholar 

  29. de Morree, A. et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science 366, 734–738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, L. et al. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat. Protoc. 10, 1612–1624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013).

    Article  Google Scholar 

  33. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Motohashi, N. & Asakura, A. Muscle satellite cell heterogeneity and self-renewal. Front. Cell Dev. Biol. 2, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jaafar, R. et al. Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling. Cell Commun. Signal. 11, 55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bober, E., Franz, T., Arnold, H. H., Gruss, P. & Tremblay, P. Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120, 603–612 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Yusuf, F. et al. Inhibitors of CXCR4 affect the migration and fate of CXCR4+ progenitors in the developing limb of chick embryos. Dev. Dyn. 235, 3007–3015 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Mercader, N. et al. Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes. Development 127, 3961–3970 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Capdevila, J., Tsukui, T., Esteban, C. R., Zappavigna, V. & Belmonte, J. C. I. Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin. Mol. Cell 4, 839–849 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Heanue, T. A. et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev. 13, 3231–3243 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borsani, G. et al. EYA4, a novel vertebrate gene related to Drosophila eyes absent. Hum. Mol. Genet. 8, 11–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Grifone, R. et al. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 132, 2235–2249 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Jun-Hao, E. T., Gupta, R. R. & Shyh-Chang, N. Lin28 and let-7 in the metabolic physiology of aging. Trends Endocrinol. Metab. 27, 132–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Relaix, F., Rocancourt, D., Mansouri, A. & Buckingham, M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 948–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Tremblay, P. et al. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev. Biol. 203, 49–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Ridgeway, A. G. & Skerjanc, I. S. Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J. Biol. Chem. 276, 19033–19039 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Grifone, R. et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol. 302, 602–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, D. H. & Moss, E. G. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr. Patterns 3, 719–726 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Yokoyama, S. et al. Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken. Gene Expr. Patterns 8, 155–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Goodell, M. A., Nguyen, H. & Shroyer, N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat. Rev. Mol. Cell Biol. 16, 299–309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muller-Sieburg, C. E., Sieburg, H. B., Bernitz, J. M. & Cattarossi, G. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood 119, 3900–3907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boehm, M. & Slack, F. A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954–1957 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. de Magalhães, J. P. Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J. 26, 4821–4826 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Darwin, C. The Variation of Animals and Plants Under Domestication, Vol. 1 (Cambridge University Press, 2010).

  57. Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aalami, O. O. et al. Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults. Plast. Reconstr. Surg. 114, 713–720 (2004).

    Article  PubMed  Google Scholar 

  59. Detwiler, S. R. Restitution of the brachial region of the cord following unilateral excision in the embryo. J. Exp. Zool. 104, 53–68 (1947).

    Article  CAS  PubMed  Google Scholar 

  60. Holtzer, H. Reconstitution of the urodele spinal cord following unilateral ablation. Part I. Chronology of neuron regulation. J. Exp. Zool. 117, 523–557 (1951).

    Article  Google Scholar 

  61. Davis, B. M., Duffy, M. T. & Simpson, S. B. Jr Bulbospinal and intraspinal connections in normal and regenerated salamander spinal cord. Exp. Neurol. 103, 41–51 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Wilson, A. A. et al. Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression in mouse lung macrophages. Mol. Ther. 21, 825–833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tasic, B. et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl. Acad. Sci. USA 108, 7902–7907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, T. M. et al. Ascorbate and iron are required for the specification and long-term self-renewal of human skeletal mesenchymal stromal cells. Stem Cell Reports 14, 210–225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the CAS (XDA16010109), the National Key R&D Program of China (2019YFA0801700), the National Natural Science Foundation of China (91957202), and the Key Research Program of the CAS (KJZD-SW-L04). N.S.-C. is also a Howard Hughes Medical Institute (HHMI) International Scholar.

Author information

Authors and Affiliations

Authors

Contributions

P.W. and X.L. designed and performed the experiments. P.W., X.L. and N.S.-C. wrote the manuscript. L. Guo helped with various experiments and mouse husbandry. J.-H.E.T., M.-W.J.C. and Y.-J.B.C. helped with HSKM and LTS cell experiments. L.L. helped with cryosection and immunofluorescence experiments. S.M. helped with Western blot experiments. W.C. helped with qRT-PCR experiments. W.M., N.A., Y.L. and L.J. helped with bioinformatics analysis. Z.Y., Y.C., K.L., L. Guang, Y.W., H.Z., R.R.W. and C.L. provided technical assistance. L.Z. and S.L. helped with mouse sampling. B.T.T., K.Y. and N.S.-C. designed and supervised the overall project.

Corresponding author

Correspondence to Ng Shyh-Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, X., Yao, Z. et al. Lin28a maintains a subset of adult muscle stem cells in an embryonic-like state. Cell Res 33, 712–726 (2023). https://doi.org/10.1038/s41422-023-00818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00818-y

Search

Quick links