Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches

Abstract

Estrogen receptor (ER)-positive luminal breast cancer is a subtype with generally lower risk of metastasis to most distant organs. However, bone recurrence occurs preferentially in luminal breast cancer. The mechanisms of this subtype-specific organotropism remain elusive. Here we show that an ER-regulated secretory protein SCUBE2 contributes to bone tropism of luminal breast cancer. Single-cell RNA sequencing analysis reveals osteoblastic enrichment by SCUBE2 in early bone-metastatic niches. SCUBE2 facilitates release of tumor membrane-anchored SHH to activate Hedgehog signaling in mesenchymal stem cells, thus promoting osteoblast differentiation. Osteoblasts deposit collagens to suppress NK cells via the inhibitory LAIR1 signaling and promote tumor colonization. SCUBE2 expression and secretion are associated with osteoblast differentiation and bone metastasis in human tumors. Targeting Hedgehog signaling with Sonidegib and targeting SCUBE2 with a neutralizing antibody both effectively suppress bone metastasis in multiple metastasis models. Overall, our findings provide a mechanistic explanation for bone preference in luminal breast cancer metastasis and new approaches for metastasis treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SCUBE2 correlates with bone metastasis and is regulated by ER signaling in luminal breast cancer.
Fig. 2: SCUBE2 promotes bone metastasis of breast cancer.
Fig. 3: scRNA-seq analysis identified osteoblast enrichment in bone niches of SCUBE2-expressing tumor cells.
Fig. 4: SCUBE2 promotes osteogenic niche formation by releasing tumoral SHH.
Fig. 5: SCUBE2 promotes bone metastasis by activating Hedgehog signaling in pre-osteoblasts.
Fig. 6: Osteoblasts promote tumor survival by immune suppression.
Fig. 7: The collagen-LAIR1 axis mediates osteoblast-induced immune suppression.
Fig. 8: Clinical relevance and therapeutic targeting of Hedgehog signaling and SCUBE2 in bone metastasis.

Similar content being viewed by others

Data availability

The sequence data of osteoblasts were deposited in the National Omics Data Encyclopedia (NODE) with the primary accession number OEP002689. Original data of all figures were deposited in Mendeley Data (https://data.mendeley.com/v1/datasets/jkpn67jwsd/draft?preview=1). Other data of this study are available from the corresponding author upon reasonable request.

References

  1. Zlotnik, A., Burkhardt, A. M. & Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 11, 597–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Roodman, G. D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Weilbaecher, K. N., Guise, T. A. & McCauley, L. K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411–425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coleman, R. E. et al. Bone metastases. Nat. Rev. Dis. Primers 6, 83 (2020).

    Article  PubMed  Google Scholar 

  5. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rouzier, R. et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11, 5678–5685 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Smid, M. et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 68, 3108–3114 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Savci-Heijink, C. D. et al. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res. Treat. 150, 547–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kunikullaya, S. U., Poddar, J., Sharma, A. D. & Patel, S. Pattern of distant metastasis in molecular subtypes of carcinoma breast: An institutional study. Indian J. Cancer 54, 327–332 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

    Article  PubMed  Google Scholar 

  13. Farach-Carson, M. C., Lin, S. H., Nalty, T. & Satcher, R. L. Sex differences and bone metastases of breast, lung, and prostate cancers: do bone homing cancers favor feminized bone marrow? Front. Oncol. 7, 163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee, S. J. et al. Implications of bone-only metastases in breast cancer: favorable preference with excellent outcomes of hormone receptor positive breast cancer. Cancer Res. Treat. 43, 89–95 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, J., Jarrett, J., Huang, C. C., Satcher, R. L. Jr. & Levenson, A. S. Identification of estrogen-responsive genes involved in breast cancer metastases to the bone. Clin. Exp. Metastasis 24, 411–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Wei, S., Li, Y., Siegal, G. P. & Hameed, O. Breast carcinomas with isolated bone metastases have different hormone receptor expression profiles than those with metastases to other sites or multiple organs. Ann. Diagn. Pathol. 15, 79–83 (2011).

    Article  PubMed  Google Scholar 

  17. Onishi, T., Hayashi, N., Theriault, R. L., Hortobagyi, G. N. & Ueno, N. T. Future directions of bone-targeted therapy for metastatic breast cancer. Nat. Rev. Clin. Oncol. 7, 641–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi, N. et al. Bone metastasis-related signaling pathways in breast cancers stratified by estrogen receptor status. J. Cancer 8, 1045–1052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mundy, G. R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Ell, B. & Kang, Y. SnapShot: bone metastasis. Cell 151, 690.e1 (2012).

    Article  Google Scholar 

  22. Suva, L. J., Washam, C., Nicholas, R. W. & Griffin, R. J. Bone metastasis: mechanisms and therapeutic opportunities. Nat. Rev. Endocrinol. 7, 208–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhuang, X. et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat. Cell Biol. 19, 1274–1285 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Coleman, R. E. Zoledronic acid ameliorates the effects of endocrine therapy on bone health in women with early-stage breast cancer. Nat. Clin. Pract. Endocrinol. Metab. 5, 72–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Mackiewicz-Wysocka, M., Pankowska, M. & Wysocki, P. J. Progress in the treatment of bone metastases in cancer patients. Expert Opin. Investig. Drugs 21, 785–795 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Haider, M. T., Holen, I., Dear, T. N., Hunter, K. & Brown, H. K. Modifying the osteoblastic niche with zoledronic acid in vivo-Potential implications for breast cancer bone metastasis. Bone 66, 240–250 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Devignes, C. S. et al. HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proc. Natl. Acad. Sci. USA 115, E992–E1001 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bussard, K. M., Venzon, D. J. & Mastro, A. M. Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J. Cell. Biochem. 111, 1138–1148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, H. et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27, 193–210 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, H. et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell 34, 823–839.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, H. et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32, 731–747.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sethi, N., Dai, X., Winter, C. G. & Kang, Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19, 192–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kolb, A. D., Shupp, A. B., Mukhopadhyay, D., Marini, F. C. & Bussard, K. M. Osteoblasts are "educated" by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res. 21, 31 (2019).

  34. Grimmond, S. et al. Cloning, mapping, and expression analysis of a gene encoding a novel mammalian EGF-related protein (SCUBE1). Genomics 70, 74–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Kawakami, A. et al. The zebrafish-secreted matrix protein you/scube2 is implicated in long-range regulation of hedgehog signaling. Curr. Biol. 15, 480–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, J. L. et al. Scube activity is necessary for Hedgehog signal transduction in vivo. Dev. Biol. 368, 193–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Woods, I. G. & Talbot, W. S. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLoS Biol. 3, e66 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Creanga, A. et al. Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev. 26, 1312–1325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parchure, A., Vyas, N. & Mayor, S. Wnt and Hedgehog: secretion of lipid-modified morphogens. Trends Cell Biol. 28, 157–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Jakobs, P. et al. Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J. Cell Sci. 127, 1726–1737 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Wierbowski, B. M. et al. Hedgehog pathway activation requires coreceptor-catalyzed, lipid-dependent relay of the Sonic Hedgehog ligand. Dev. Cell 55, 450–467. e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tukachinsky, H., Kuzmickas, R. P., Jao, C. Y., Liu, J. & Salic, A. Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep. 2, 308–320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsai, M. T. et al. Isolation and characterization of a secreted, cell-surface glycoprotein SCUBE2 from humans. Biochem. J. 422, 119–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Petrov, K., Wierbowski, B. M., Liu, J. & Salic, A. Distinct cation gradients power cholesterol transport at different key points in the Hedgehog signaling pathway. Dev. Cell 55, 314–327.e317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smid, M. et al. Genes associated with breast cancer metastatic to bone. J. Clin. Oncol. 24, 2261–2267 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Minn, A. J. et al. Lung metastasis genes couple breast tumor size and metastatic spread. Proc. Natl. Acad. Sci. USA 104, 6740–6745 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  Google Scholar 

  51. Richardson, A. L. et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9, 121–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Lelekakis, M. et al. A novel orthotopic model of breast cancer metastasis to bone. Clin. Exp. Metastasis 17, 163–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nikolic, T., Dingjan, G. M., Leenen, P. J. & Hendriks, R. W. A subfraction of B220(+) cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics. Eur. J. Immunol. 32, 686–692 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Giladi, A. et al. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20, 836–846 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Wiraja, C., Yeo, D. C., Chong, M. S. & Xu, C. Nanosensors for continuous and noninvasive monitoring of mesenchymal stem cell osteogenic differentiation. Small 12, 1342–1350 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Corada, M. et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97, 1679–1684 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Lin, Y. C. et al. Endothelial SCUBE2 interacts With VEGFR2 and regulates VEGF-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 37, 144–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, W., Yang, S., Shao, J. & Li, Y. P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front. Biosci. 12, 3068–3092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, W. K., Meliton, V., Bourquard, N., Hahn, T. J. & Parhami, F. Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J. Cell Biochem. 111, 1199–1209 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Li, L. et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int. J. Mol. Med. 35, 1641–1650 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, Q. et al. Identification of genes expressed with temporal-spatial restriction to developing cerebellar neuron precursors by a functional genomic approach. Proc. Natl. Acad. Sci. USA 99, 5704–5709 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell. Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Egeblad, M., Rasch, M. G. & Weaver, V. M. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell. Biol. 22, 697–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meyaard, L. et al. LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity 7, 283–290 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Meyaard, L. The inhibitory collagen receptor LAIR-1 (CD305). J. Leukoc. Biol. 83, 799–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Lebbink, R. J. et al. Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J. Exp. Med. 203, 1419–1425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peng, D. H. et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat. Commun. 11, 4520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rygiel, T. P., Stolte, E. H., de Ruiter, T., van de Weijer, M. L. & Meyaard, L. Tumor-expressed collagens can modulate immune cell function through the inhibitory collagen receptor LAIR-1. Mol. Immunol. 49, 402–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Boraschi-Diaz, I. et al. Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation. Bone 117, 23–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Theocharis, A. D., Skandalis, S. S., Gialeli, C. & Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Lebbink, R. J. et al. Mouse leukocyte-associated Ig-like receptor-1 (mLAIR-1) functions as an inhibitory collagen-binding receptor on immune cells. Int. Immunol. 19, 1011–1019 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Jansen, C. A. et al. Regulated expression of the inhibitory receptor LAIR-1 on human peripheral T cells during T cell activation and differentiation. Eur. J. Immunol. 37, 914–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Rubin, L. L. & de Sauvage, F. J. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov. 5, 1026–1033 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12, 445–464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sekulic, A. & Hoff, Von D. Hedgehog pathway inhibition. Cell 164, 831 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Cortes, J. E., Gutzmer, R., Kieran, M. W. & Solomon, J. A. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat. Rev. 76, 41–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Haley, H. R. et al. Enhanced bone metastases in skeletally immature mice. Tomography 4, 84–93 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Eckhardt, B. L. et al. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol. Cancer Res. 3, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Olechnowicz, S. W. & Edwards, C. M. Contributions of the host microenvironment to cancer-induced bone disease. Cancer Res. 74, 1625–1631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, R. S. et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One 7, e35569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, J. H. et al. Upregulated SCUBE2 expression in breast cancer stem cells enhances triple negative breast cancer aggression through modulation of notch signaling and epithelial-to-mesenchymal transition. Exp. Cell Res. 370, 444–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Lin, Y. C., Lee, Y. C., Li, L. H., Cheng, C. J. & Yang, R. B. Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition. J. Cell Sci. 127, 85–100 (2014).

    PubMed  Google Scholar 

  90. Cheng, C. J. et al. SCUBE2 suppresses breast tumor cell proliferation and confers a favorable prognosis in invasive breast cancer. Cancer Res. 69, 3634–3641 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Cong, M. et al. MTSS1 suppresses mammary tumor-initiating cells by enhancing RBCK1-mediated p65 ubiquitination. Nat. Cancer 1, 222–234 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gupta, S. & Maecker, H. Intracellular cytokine staining (ICS) on human lymphocytes or peripheral blood mononuclear cells (PBMCs). Bio. Protoc. 5, e1442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang, P. et al. SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat. Commun. 11, 2487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fleming, J. M., Miller, T. C., Meyer, M. J., Ginsburg, E. & Vonderhaar, B. K. Local regulation of human breast xenograft models. J. Cell. Physiol. 224, 795–806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Kai Wang, Shuyang Yan, Xiang Miao, Yiting Yuan, Jun Li, Zhonghui Weng, Yujia Zhai, Yifan Bu from Institutional Center for Shared Technologies and Facilities of SINH, CAS for technical assistance. The study was funded by the National Natural Science Foundation of China (82230096, 82003090), the National Key R&D Program of China (2020YFA0112300), the Science and Technology Commission of Shanghai Municipality (19JC1416100) and the Youth Innovation Promotion Association of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

G.H. supervised this work. Q.W. and G.H. drafted the manuscript. Q.W., P.T., D.H., Z.J., Y.H., W.L., X.L., Y.W., P.Z. and Y.L. performed the experiments. W.Z., P.S., J.Q., Y.-Z.J., Z.-M.S. and Q.Y. contributed to clinical sample collection and analyses. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qifeng Yang or Guohong Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Tian, P., He, D. et al. SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches. Cell Res 33, 464–478 (2023). https://doi.org/10.1038/s41422-023-00810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00810-6

This article is cited by

Search

Quick links