Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity

Abstract

Hematopoietic stem and progenitor cells (HSPCs) are considered as a heterogeneous population, but precisely when, where and how HSPC heterogeneity arises remain largely unclear. Here, using a combination of single-cell multi-omics, lineage tracing and functional assays, we show that embryonic HSPCs originate from heterogeneous hemogenic endothelial cells (HECs) during zebrafish embryogenesis. Integrated single-cell transcriptome and chromatin accessibility analysis demonstrates transcriptional heterogeneity and regulatory programs that prime lymphoid/myeloid fates at the HEC level. Importantly, spi2+ HECs give rise to lymphoid/myeloid-primed HSPCs (L/M-HSPCs) and display a stress-responsive function under acute inflammation. Moreover, we uncover that Spi2 is required for the formation of L/M-HSPCs through tightly controlling the endothelial-to-hematopoietic transition program. Finally, single-cell transcriptional comparison of zebrafish and human HECs and human induced pluripotent stem cell-based hematopoietic differentiation results support the evolutionary conservation of L/M-HECs and a conserved role of SPI1 (spi2 homolog in mammals) in humans. These results unveil the lineage origin, biological function and molecular determinant of HSPC heterogeneity and lay the foundation for new strategies for induction of transplantable lineage-primed HSPCs in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell transcriptomic and epigenetic analysis of HEC/HSPC heterogeneity.
Fig. 2: Lineage tracing of spi2+ HECs.
Fig. 3: STRT-seq of spi2+ lineages and the stress-induced response of spi2+ HEC by LPS treatments.
Fig. 4: spi2 is required for the specification of L/M-HSPCs.
Fig. 5: Transcriptional activation of genes related to artery development and suppression of genes related to immune homeostasis in spi2-KD HECs.
Fig. 6: Spi2 regulates lymphoid/myeloid HSPC fates by directly activating the transcription of master hematopoietic TFs and repressing that of the master endothelial TFs in HECs.
Fig. 7: SPI1 inhibition impairs human L/M-HSPC generation.

Similar content being viewed by others

Data availability

The omics datasets generated in the present study are available at the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) under the accession number GSE186427.

References

  1. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haas, S., Trumpp, A. & Milsom, M. D. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell 22, 627–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Copley, M. R., Beer, P. A. & Eaves, C. J. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 10, 690–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Ganuza, M. et al. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nat. Cell Biol. 19, 1153–1163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Porcheri, C. et al. Notch ligand Dll4 impairs cell recruitment to aortic clusters and limits blood stem cell generation. EMBO J. 39, e104270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kasper, D. M. et al. The N-glycome regulates the endothelial-to-hematopoietic transition. Science 370, 1186–1191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel, S. H. et al. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 606, 747–753 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Yokomizo, T. et al. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 609, 779–784 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Tian, Y. et al. The first wave of T lymphopoiesis in zebrafish arises from aorta endothelium independent of hematopoietic stem cells. J. Exp. Med. 214, 3347–3360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dignum, T. et al. Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep. 36, 109675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, P. et al. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 25, 1093–1107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perlin, J. R., Robertson, A. L. & Zon, L. I. Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. J. Exp. Med. 214, 2817–2827 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, C. et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Ding, Y., Liu, Z. & Liu, F. Transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates. Dev. Biol. 475, 156–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. He, Q. et al. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood 125, 1098–1106 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thambyrajah, R. et al. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat. Cell Biol. 18, 21–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Duan, Z., Zarebski, A., Montoya-Durango, D., Grimes, H. L. & Horwitz, M. Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol. Cell. Biol. 25, 10338–10351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calvanese, V. et al. Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature 604, 534–540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Y. et al. Efficient generation of megakaryocytes from human induced pluripotent stem cells using food and drug administration-approved pharmacological reagents. Stem Cells Transl. Med. 4, 309–319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia, J. et al. A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc. Natl. Acad. Sci. USA 118, e2015748118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilson, N. K. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henninger, J. et al. Clonal fate mapping quantifies the number of haematopoietic stem cells that arise during development. Nat. Cell Biol. 19, 17–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Y., Gao, S., Xia, J. & Liu, F. Hematopoietic hierarchy - an updated roadmap. Trends Cell Biol. 28, 976–986 (2018).

    Article  PubMed  Google Scholar 

  28. Ye, H. et al. Clonal analysis reveals remarkable functional heterogeneity during hematopoietic stem cell emergence. Cell Res. 27, 1065–1068 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. He, S. et al. In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy. Elife 9, e52024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ulloa, B. A. et al. Definitive hematopoietic stem cells minimally contribute to embryonic hematopoiesis. Cell Rep. 36, 109703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, S., Zhang, A., Zhu, H. & Wen, Z. The ETS transcription factor Spi2 regulates hematopoietic cell development in zebrafish. Development 149, dev200881 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Boettcher, S. & Manz, M. G. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 38, 345–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y. et al. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev. 28, 2597–2612 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mariani, S. A. et al. Pro-inflammatory aorta-associated macrophages are involved in embryonic development of hematopoietic stem cells. Immunity 50, 1439–1452.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Espin-Palazon, R. et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159, 1070–1085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sawamiphak, S., Kontarakis, Z. & Stainier, D. Y. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev. Cell 31, 640–653 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lefkopoulos, S. et al. Repetitive elements trigger RIG-I-like receptor signaling that regulates the emergence of hematopoietic stem and progenitor cells. Immunity 53, 934–951.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Weinreb, J. T. et al. Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production. Dev. Cell 56, 627–640.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frame, J. M. et al. Metabolic regulation of inflammasome activity controls embryonic hematopoietic stem and progenitor cell production. Dev. Cell 55, 133–149.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kastner, P. & Chan, S. PU.1: a crucial and versatile player in hematopoiesis and leukemia. Int. J. Biochem. Cell Biol. 40, 22–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Ciau-Uitz, A., Wang, L., Patient, R. & Liu, F. ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol. Dis. 51, 248–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Rosmarin, A. G., Yang, Z. & Resendes, K. K. Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp. Hematol. 33, 131–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C. & Maki, R. A. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61, 113–124 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Oikawa, T. et al. The role of Ets family transcription factor PU.1 in hematopoietic cell differentiation, proliferation and apoptosis. Cell Death Differ. 6, 599–608 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Singh, H., DeKoter, R. P. & Walsh, J. C. PU.1, a shared transcriptional regulator of lymphoid and myeloid cell fates. Cold Spring Harb. Symp. Quant. Biol. 64, 13–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Rhodes, J. et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev. Cell 8, 97–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Lancrin, C. et al. GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 120, 314–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Daniel, M. G., Pereira, C. F., Lemischka, I. R. & Moore, K. A. Making a hematopoietic stem cell. Trends Cell Biol. 26, 202–214 (2016).

    Article  PubMed  Google Scholar 

  49. Lis, R. et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature 545, 439–445 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sugimura, R. et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545, 432–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilkinson, A. C. et al. Single-cell analyses of regulatory network perturbations using enhancer-targeting TALEs suggest novel roles for PU.1 during haematopoietic specification. Development 141, 4018–4030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, H. F. et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106, 3803–3810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Traver, D. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat. Immunol. 4, 1238–1246 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Wei, W. et al. Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis. Cell Res. 18, 677–685 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zhen, F., Lan, Y., Yan, B., Zhang, W. & Wen, Z. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development 140, 3977–3985 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Distel, M., Wullimann, M. F. & Koster, R. W. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc. Natl. Acad. Sci. USA 106, 13365–13370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, J. et al. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res. 25, 634–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Agetsuma, M. et al. The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nat. Neurosci. 13, 1354–1356 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Chang, N. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465–472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, L. et al. Fev regulates hematopoietic stem cell development via ERK signaling. Blood 122, 367–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Jin, H. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI. Development 136, 647–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei, Y., Xu, J., Zhang, W., Wen, Z. & Liu, F. RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish. Development 143, 2103–2110 (2016).

    CAS  PubMed  Google Scholar 

  67. Wang, L. et al. Epigenetic regulation of left-right asymmetry by DNA methylation. EMBO J. 36, 2987–2997 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ellett, F. et al. Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLoS Pathog. 14, e1007063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ratnayake, D. et al. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 591, 281–287 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Covassin, L. et al. Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Dev. Biol. 299, 551–562 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Gao, S. et al. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat. Cell Biol. 20, 721–734 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Zhu, C. et al. Single-cell transcriptomics dissects hematopoietic cell destruction and T-cell engagement in aplastic anemia. Blood 138, 23–33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vandenbon, A. & Diez, D. A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data. Nat. Commun. 11, 4318 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank laboratory members for helpful discussions and critical reading of the paper. We would like to express our gratitude to Dr. Jiulin Du for sharing Tg(UAS:GFP), Tg(UAS:mCherry) and Tg(UAS:Kaede) lines. This work was supported by grants from the National Key R&D Program of China (2018YFA0800200 and 2018YFA0801000), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (XDA16010207), the National Natural Science Foundation of China (31830061 and 32030032) and the Open Research Program of State Key Laboratory of Membrane Biology (2021KF07).

Author information

Authors and Affiliations

Authors

Contributions

J.X. carried out the zebrafish experiments; M.L. preformed the bioinformatic analysis under the guidance of L.W.; C.Z. and L.A. performed STRT-seq analysis under the guidance of P.Z.; S.L. performed human iPSC hematopoietic cell differentiation assay; D.M. contributed to the editing of the manuscript; J.X. and F.L. conceived the project, analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lu Wang or Feng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Liu, M., Zhu, C. et al. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res 33, 448–463 (2023). https://doi.org/10.1038/s41422-023-00797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00797-0

This article is cited by

Search

Quick links