Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Famsin, a novel gut-secreted hormone, contributes to metabolic adaptations to fasting via binding to its receptor OLFR796

Abstract

The intestine is responsible for nutrient absorption and orchestrates metabolism in different organs during feeding, a process which is partly controlled by intestine-derived hormones. However, it is unclear whether the intestine plays an important role in metabolism during fasting. Here we have identified a novel hormone, famsin, which is secreted from the intestine and promotes metabolic adaptations to fasting. Mechanistically, famsin is shed from a single-pass transmembrane protein, Gm11437, during fasting and then binds OLFR796, an olfactory receptor, to activate intracellular calcium mobilization. This famsin-OLFR796 signaling axis promotes gluconeogenesis and ketogenesis for energy mobilization, and torpor for energy conservation during fasting. In addition, neutralization of famsin by an antibody improves blood glucose profiles in diabetic models, which identifies famsin as a potential therapeutic target for treating diabetes. Therefore, our results demonstrate that communication between the intestine and other organs by a famsin-OLFR796 signaling axis is critical for metabolic adaptations to fasting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Famsin is secreted after cleavage from Gm11437 by furin.
Fig. 2: Famsin is secreted from the intestine and promotes fasting-induced metabolism.
Fig. 3: Famsin promotes torpor and starvation resistance.
Fig. 4: OLFR796 is a receptor of famsin.
Fig. 5: Famsin activates OLFR796-coupled calcium signaling.
Fig. 6: Olfr796 knockout attenuates metabolic adaptations to fasting.
Fig. 7: Neutralization of famsin reduces blood glucose levels in mice.

Similar content being viewed by others

References

  1. Cahill, G. F. Jr Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Jensen, T. L., Kiersgaard, M. K., Sorensen, D. B. & Mikkelsen, L. F. Fasting of mice: a review. Lab. Anim. 47, 225–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Gluck, E. F., Stephens, N. & Swoap, S. J. Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1303–R1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Swoap, S. J. The pharmacology and molecular mechanisms underlying temperature regulation and torpor. Biochem. Pharmacol. 76, 817–824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Mani, B. K. & Zigman, J. M. Ghrelin as a survival hormone. Trends Endocrinol. Metab. 28, 843–854 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Potthoff, M. J., Kliewer, S. A. & Mangelsdorf, D. J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 26, 312–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Holst, J. J., Gribble, F., Horowitz, M. & Rayner, C. K. Roles of the gut in glucose homeostasis. Diabetes Care 39, 884–892 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Article  PubMed  Google Scholar 

  13. Small, C. J. & Bloom, S. R. Gut hormones and the control of appetite. Trends Endocrinol. Metab. 15, 259–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bugge, K., Lindorff-Larsen, K. & Kragelund, B. B. Understanding single-pass transmembrane receptor signaling from a structural viewpoint-what are we missing? FEBS J. 283, 4424–4451 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Pahl, M. C et al. Signalling via single-pass transmembrane proteins. In eLS (John Wiley & Sons Ltd: Chichester, UK, 2013).

  18. Lichtenthaler S. F., Lemberg M. K., Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J. 37, e99456 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12, 141–151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9–19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Challet, E. The circadian regulation of food intake. Nat. Rev. Endocrinol. 15, 393–405 (2019).

    Article  PubMed  Google Scholar 

  24. Zhang, J., Kaasik, K., Blackburn, M. R. & Lee, C. C. Constant darkness is a circadian metabolic signal in mammals. Nature 439, 340–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Gavrilova, O. et al. Torpor in mice is induced by both leptin-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 96, 14623–14628 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Pilpel, Y. & Lancet, D. The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Sci. 8, 969–977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128–132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozcan, L. et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 15, 739–751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perry, R. J. et al. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 579, 279–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones, D. T. & Reed, R. R. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244, 790–795 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Belluscio, L., Gold, G. H., Nemes, A. & Axel, R. Mice deficient in G(olf) are anosmic. Neuron 20, 69–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Z. et al. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat. Commun. 11, 6378 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi, T. M. et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature 583, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Heller, H. C. & Ruby, N. F. Sleep and circadian rhythms in mammalian torpor. Annu. Rev. Physiol. 66, 275–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ruby, N. F. & Zucker, I. Daily torpor in the absence of the suprachiasmatic nucleus in Siberian hamsters. Am. J. Physiol. 263, R353–R362 (1992).

    CAS  PubMed  Google Scholar 

  38. van der Vinne, V., Bingaman, M. J., Weaver, D. R. & Swoap, S. J. Clocks and meals keep mice from being cool. J. Exp. Biol. 221, jeb179812 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang, A. J., Ortega, F. E., Riegler, J., Madison, D. V. & Krasnow, M. A. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 527, 240–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Griffin, C. A., Kafadar, K. A. & Pavlath, G. K. MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev. Cell 17, 649–661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shepard, B. D. et al. A renal olfactory receptor aids in kidney glucose handling. Sci. Rep. 6, 35215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, E. et al. OLFR734 mediates glucose metabolism as a receptor of asprosin. Cell Metab. 30, 319–328.e318 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Orecchioni, M. et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science 375, 214–221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, J. et al. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism. Cell Metab. 34, 240–255.e210 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, C. et al. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats. J. Clin. Invest. 127, 4118–4123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee, S. J., Depoortere, I. & Hatt, H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. Drug Discov. 18, 116–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Abizaid, A. & Hougland, J. L. Ghrelin signaling: GOAT and GHS-R1a take a LEAP in complexity. Trends Endocrinol. Metab. 31, 107–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Goldstein, J. L. et al. Surviving starvation: essential role of the ghrelin-growth hormone axis. Cold Spring Harb. Symp. Quant. Biol. 76, 121–127 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Sinclair, P., Brennan, D. J. & le Roux, C. W. Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat. Rev. Gastroenterol. Hepatol. 15, 606–624 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Dimitriadis, G. K., Randeva, M. S. & Miras, A. D. Potential hormone mechanisms of bariatric surgery. Curr. Obes. Rep. 6, 253–265 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rubino, F., Schauer, P. R., Kaplan, L. M. & Cummings, D. E. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu. Rev. Med. 61, 393–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Fernandez, C. et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J. Intern. Med. 284, 377–387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Odegaard, J. I. et al. Perinatal licensing of thermogenesis by IL-33 and ST2. Cell 166, 841–854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao, B. et al. The non-muscle-myosin-II heavy chain Myh9 mediates colitis-induced epithelium injury by restricting Lgr5+ stem cells. Nat. Commun. 6, 7166 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han, J. et al. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 524, 243–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Le Gall, S. M., Auger, R., Dreux, C. & Mauduit, P. Regulated cell surface pro-EGF ectodomain shedding is a zinc metalloprotease-dependent process. J. Biol. Chem. 278, 45255–45268 (2003).

    Article  PubMed  Google Scholar 

  60. Ge, L., Melville, D., Zhang, M. & Schekman, R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2, e00947 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang, Y. et al. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc. Natl. Acad. Sci. USA 107, 3087–3092 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Haiteng Deng, Zhongchen Xie, Ye-Guang Chen, Tong-Jin Zhao, Shengcai Lin, Liangyou Rui, Y. Eugene Chen, Cheng Zhan, Jay D. Horton, Wei Shen and all lab members for discussion and technical help. We thank Dr. Isabel Hanson for editing. This work was supported by grants from the National Natural Science Foundation of China (91957206 and 82088102), Tsinghua University Initiative Scientific Research Program (2021Z11JCQ016) and the Ministry of Science and Technology of the People’s Republic of China (2021YFA0804801).

Author information

Authors and Affiliations

Authors

Contributions

A.L., Y.L., X.F., L.J. and Z.L. performed the experiments. J.H., S.W., C.C. and P.H. collected the basic parameters from human blood samples. Y.W. conceived, designed and supervised this study, and wrote the manuscript. All authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Ping Huang or Yiguo Wang.

Ethics declarations

Competing interests

Y.W., A.L. and Y.L. have one pending patent application. All other authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, A., Liu, Y., Fang, X. et al. Famsin, a novel gut-secreted hormone, contributes to metabolic adaptations to fasting via binding to its receptor OLFR796. Cell Res 33, 273–287 (2023). https://doi.org/10.1038/s41422-023-00782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00782-7

Search

Quick links