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Single-cell epigenome analysis reveals age-associated
decay of heterochromatin domains in excitatory
neurons in the mouse brain
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Loss of heterochromatin has been implicated as a cause of pre-mature aging and age-associated decline in organ functions in
mammals; however, the specific cell types and gene loci affected by this type of epigenetic change have remained unclear. To
address this knowledge gap, we probed chromatin accessibility at single-cell resolution in the brains, hearts, skeletal muscles, and
bone marrows from young, middle-aged, and old mice, and assessed age-associated changes at 353,126 candidate cis-regulatory
elements (cCREs) across 32 major cell types. Unexpectedly, we detected increased chromatin accessibility within specific
heterochromatin domains in old mouse excitatory neurons. The gain of chromatin accessibility at these genomic loci was
accompanied by the cell-type-specific loss of heterochromatin and activation of LINE1 elements. Immunostaining further confirmed
the loss of the heterochromatin mark H3K9me3 in the excitatory neurons but not in inhibitory neurons or glial cells. Our results
reveal the cell-type-specific changes in chromatin landscapes in old mice and shed light on the scope of heterochromatin loss in
mammalian aging.
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INTRODUCTION
Aging is a major risk factor for cardiovascular diseases, cancer,
neurodegenerative diseases, type II diabetes and a variety of
other common illnesses.1 Understanding the aging process at the
molecular and cellular level is necessary for developing
approaches to delay or prevent these late-onset age-related
diseases. Recent research has uncovered molecular hallmarks of
aging,2 including genomic instability,3 telomere attrition,4 loss of
proteostasis,5 mitochondrial dysfunction,6 and epigenetic altera-
tions.7 In particular, progressive changes to the epigenome, such
as loss of histone proteins,8,9 altered patterns of histone
modifications,10 DNA methylation,11,12 and expression of non-
coding RNAs,12,13 occur in the process of aging. Most strikingly,
the methylation levels of several hundred CpG sites across tissues
can predict biological age in humans, dogs and mice.14

Furthermore, functional studies in model organisms have linked
various epigenetic modifiers to the lifespan, specifically histone 3
lysine 4 tri-methylation (H3K4me3), H3K27me3 and histone
acetylations.8,15–17 These studies raised the possibility that
epigenetic mechanisms may contribute to aging in different
organisms.
Chromosomes in eukaryotic cells are generally partitioned

into transcriptionally active euchromatin and transcriptionally

repressed heterochromatin compartments.18 The heterochromatin
compartments are associated with hyper-methylation of lysine 9
on histone H3 (H3K9me2 and H3K9me3),19 and are generally
located at the nuclear periphery and associated with the nuclear
lamina.20 In one model of aging,21 erosion of heterochromatin
domains is proposed to lead to de-repression of endogenous
retrotransposons contained within those domains,22,23 leading to
dysregulated immune responses24–26 and decline in organ
functions. Supporting this model, global loss of heterochromatin
has been observed during natural aging in C. elegans,27

Drosophila,28 mouse,29 and human.30,31 In addition, loss of
heterochromatin has also been reported in pre-mature aging
models32–34 and with cellular senescence.22,35,36 However, the cell
types and genes subject to heterochromatin loss in the
mammalian aging process remain to be characterized.
Phenotypically, the rates and extent of aging vary considerably

depending on the cell types and tissue contexts. Therefore,
molecular characterization at the bulk level inevitably fails to
capture the heterogeneity of changes that aging inflicts in each
cell type. Instead, single-cell approaches are required for
molecular characterization of the distinct epigenomes in different
cell types across the lifespan. Single-cell transcriptomic profiling
studies have been performed on aging mammalian tissues,37–41
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finding age-related changes in cellular composition, accumulation
of senescent cells, increased transcriptional noise in aged cells,
aging signatures common across many cell types, as well as
features unique to each cell type.
To gain a deeper understanding of the transcriptional regula-

tion during aging, it is necessary to also profile the epigenomes
across the life span. In this study, we used the single-nucleus Assay
for Transposase-Accessible Chromatin with sequencing (snATAC-
seq) to study age-dependent changes of chromatin accessibility at
single cell resolution in mouse frontal cortex, hippocampus, heart,
bone marrow and skeletal muscles. Probing a total of 227,529 cells
from these tissues in 3-month-, 10-month- and 18-month-old male
mice, we determined alterations of the chromatin landscape in 32
major murine cell types during aging. We observed age-
dependent changes in 77,881 candidate cis-regulatory elements
(cCREs), most of which were found in the brain cell types. We
therefore analyzed gene expression and the heterochromatin
mark H3K9 tri-methylation (H3K9me3) in the mouse brain tissues
using both single nucleus RNA-seq and Paired-Tag, a single cell
multi-omics assay designed to profile both histone modification
and nuclear transcriptome from the same cells. Unexpectedly, we
discovered that many heterochromatin domains in the excitatory
neurons in the old mice gain chromatin accessibility and lose
H3K9 tri-methylation. This change is accompanied by increased
transcription of noncoding RNA species as well as reduced nuclear
staining of lamin B in these cells. Our results clarify genomic loci
and cell types affected by heterochromatin loss in mammalian
aging and suggest the potential effects of this epigenetic process
on excitatory neurons.

RESULTS
Single-nucleus ATAC-seq analysis of diverse tissues during
aging in the mouse
We collected the dorsal hippocampus, frontal cortex, heart, leg
muscles and bone marrow from male C57BL/6JN mice in three
age groups, namely 3-month, 10-month, and 18-month (Fig. 1a).
These tissues were selected because they represent a diverse set
of micro-environments with a mixture of post-mitotic (neurons,
cardiac muscle cells) and mitotic (glia, fibroblast, and blood) cell
types, that are associated with a broad spectrum of age-related
diseases in humans. We performed single-cell combinatorial
indexing (sci)-ATAC-seq42 with each tissue using two independent
biological replicates. A total of 227,529 nuclei passed quality
control measures, averaging ~15,000 nuclei per tissue-age and a
median number of 8341 fragments per nucleus (Fig. 1b;
Supplementary information, Fig. S1). We grouped them into 32
major cell types with the software package SnapATAC.43 The cell
classes include excitatory neurons (ExN, 43,571 nuclei), inhibitory
neurons (InN, 14,721 nuclei), glia (29,911 nuclei), muscle cells
(43,897 nuclei), lymphoid cells (17,911 nuclei) and myeloid cells
(50,286 nuclei), with the remaining 25,799 nuclei classified as
“Other” (Fig. 1c). We annotated these cell types based on
chromatin accessibility at the promoter and gene body of up to
three marker genes per known cell type (Supplementary
information, Fig. S2 and Table S1).
To systematically characterize the regulatory program of each

cell type and to understand their age-related changes, we first
determined the open chromatin regions of the candidate cis-
regulatory elements (cCREs) in each of the 32 major cell types. We
identified peaks using MACS2 software,44 generating a catalog of
353,126 open chromatin regions (7.0% of the mouse genome)
from all cell types after merging overlapping peaks. The cCREs
were highly enriched for active chromatin states or CTCF binding
sites previously mapped by bulk analysis from ENCODE (Supple-
mentary information, Fig. S2b). As expected, a majority of the
cCREs displays cell-type-specific accessibility (Fig. 1d). While the
chromatin landscape in most cell types were not drastically

altered during aging (Supplementary information, Fig. S2c), mild
to modest changes in chromatin accessibility at select gene loci in
specific cell types are observed. For example, chromatin
accessibility at the promoter and gene body of Igf1 (insulin-like
growth factor 1), a well-known regulator of the aging process,45 is
significantly reduced in skeletal and cardiac myocytes during
aging (Fig. 1e).

Age- and tissue-associated changes of chromatin accessibility
in different cell types
We next performed tissue-level clustering (Supplementary infor-
mation, Figs. S3, S4 and Table S1) and queried if there was any
change in the relative fraction of cell types (Fig. 2a). Although
some changes in cell type fractions are observed (Supplementary
information, Fig. S5), such as an increased fraction of Naïve B cells
and T cells in aging bone marrow, more biological replicates are
needed to ascertain the statistical significance of such changes.
On the other hand, for each cell type, we identified differentially
accessible cCREs between different age groups (Fig. 2b; Supple-
mentary information, Fig. S4d). To ensure the robustness of the
results, we tested three computational approaches: 1) comparing
3-month and 18-month samples with edgeR;46 2) comparing all
three age groups with edgeR; and 3) using a linear regression
model MAST47 and treating age as a numerical variable. All of
these approaches showed comparable results (Supplementary
information, Fig. S6), except that edgeR comparing all age groups
identified some cCREs unique to 10-month mice (Supplementary
information, Fig. S7). Here we report the edgeR differential testing
results between 3-month and 18-month samples as it generated
the most consistent results (see Materials and Methods). A total of
77,881 cCREs were found to be differentially accessible between 3-
month-old and 18-month-old mice in at least one cell type
(Fig. 2b). Of these, 39,285 and 26,382 cCREs show age-dependent
accessibility in the brain and bone marrow, respectively, whereas
only 7,216 and 11,745 cCREs show changes in chromatin
accessibility in heart and leg muscle, respectively. These cCREs
generally display continuous and reproducible gain or loss of
accessibility during aging (Fig. 2c). Because the power to detect
differential cCREs depend on the number of cells and sequencing
depth of each cell type, to ensure a fair comparison of age-
associated changes among different cell types, we down-sampled
snATAC-seq data of each cell type in each sample to 1 million
reads (cell types with less than 1 million reads per sample were
removed and 32 out of 75 subtypes were analyzed after down-
sampling) and performed differential testing (Supplementary
information, Fig. S8). Cell types in the heart (cardiomyocytes and
endothelial cells) display the smallest number of age-dependent
cCREs, and there was no significant difference in the number of
age-dependent cCREs between mitotic and post-mitotic cells
(Supplementary information, Fig. S8).
Overall, 73% of the age-dependent changes in chromatin

accessibility at cCREs was cell-type specific, but closely related cell
types tend to share common age-dependent changes (Supple-
mentary information, Fig. S9). Motif and gene set enrichment
analysis on these dynamic cCREs revealed putative transcription
factors (TF) and biological pathways that may be dysregulated
during aging in these cell types (Fig. 2a; Supplementary
information, Tables. S2, S3). For instance, DNA recognition motifs
of the Jun/Fos/AP-1 family of TFs were enriched in the cCREs with
increased chromatin accessibility in many neuronal cell lineages in
the old mice (Supplementary information, Table S2) such as the
dentate gyrus (DG) neurons (Fig. 2d), and the genes near these
cCREs are enriched for those involved in peptidyl-serine modifica-
tion (Fig. 2d). Interestingly, chronic AP-1 activation during aging
was recently shown to promote human tau pathology and
degeneration.48 On the other hand, DNA binding motifs of
downstream effectors of the JAK/STAT pathway49 are highly
enriched in cCREs showing reduced accessibility in skeletal muscle
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cell types in the old mice (Fig. 2d), and genes near these cCREs
were enriched for those involved in myoblast proliferation (Fig. 2d).
In neutrophils, DNA binding motifs of the ATF family of TFs were
enriched in cCREs with increased chromatin accessibility during
aging (Fig. 2d), and the genes near these cCREs were enriched for
immune response related pathways. The ATF family of transcrip-
tion factors respond to extracellular signals and maintain home-
ostasis, and several of its members, such as ATF3 and ATF7, have
been implicated in immune responses.50,51

We also observed that age-associated chromatin changes in
some cell types can be tissue-dependent. For example, the overlap
of age-dependent cCREs between endothelial cells from different
tissues is very low (< 1% overlap between cell types; Fig. 3a–c),
suggesting that a substantial number of age-dependent changes
of chromatin state at cCREs might be driven by the local
microenvironment (Fig. 3d). For instance, the promoter of Nhp2
is more accessible in the endothelial cells in the heart of the old
mice, whereas no change is observed in other tissues, except for a
slight decrease in dorsal hippocampus (Fig. 3d). Nhp2 encodes a
protein subunit for the H/ACA ribonucleoprotein complex
required for ribosome biogenesis and telomere maintenance.
Mutations in this gene can cause the premature aging syndrome
dyskeratosis congenita.52 Taken together, our data identify cell-
type-specific and tissue environment dependent changes in
chromatin landscape during mouse aging.

Transcriptional changes in cortical and hippocampal cell types
during aging
Because much of the age-dependent changes in chromatin state
among the tissues examined in the current study occurred in the
dorsal hippocampus and the frontal cortex, which play central
roles in behavioral and cognitive functions, we focused the

subsequent analyses on these two brain regions. We first
examined whether the age-associated changes in chromatin
accessibility are accompanied by transcriptional alterations. We
obtained snRNA-seq data from all three age groups (Supplemen-
tary information, Fig. S10). We first identified clusters with snRNA-
seq data, and performed joint clustering with the snATAC-seq data
from frontal cortex and hippocampus from the same age groups,
using Seurat’s anchor-based method53 (Supplementary informa-
tion, Fig. S10b, f). For each joint cluster, we aggregated the ATAC-
seq and RNA-seq signals, and calculated a weighted Pearson
correlation coefficient (WPCC) between the cCRE accessibility
(count per million DNA fragments) and transcription levels of gene
(count per million transcripts) within 500kbp of the cCRE (Fig. 4a).
cCRE-gene pairs reaching a significant correlation (adjusted P-
value less than 0.05) were used to predict potential target genes
for age-differential cCREs in each cell type (Fig. 4a). As expected,
predicted target genes of cCREs that gained chromatin accessi-
bility in old animals tended to show increased transcription levels
during aging, whereas predicted target genes of cCREs losing
chromatin accessibility tended to show decreased transcription
(Wilcoxon rank sum test, P-value = 7.7E-10) (Fig. 4b). Altogether,
we identified 474 cCRE-gene pairs showing cell-type-specific and
concordant changes in accessibility and gene expression during
aging. For instance, in DG neurons, we observed reduced
accessibility in a putative enhancer and an alternative promoter
which could explain the decrease of Robo1’s activity during aging
(Fig. 4c, d, upper row). Robo1 plays an important role in midline
axonal guidance.54 In oligodendrocytes, we observed increased
accessibility at putative enhancers and the promoter of Itgb5,
accompanied by an increase of Itgb5 RNA expression during aging
(Fig. 4c, d, mid row). Itgb5 encodes a beta subunit of integrin,
which mediates cell-to-cell and cell-to-extracellular matrix

ExN

InN

Glia

Muscle

Myeloid

Lymphoid

Fig. 1 Overview of the snATAC-seq analysis of aging in the mouse. a Workflow of the tissue collection and snATAC-seq experiments.
b Barplots showing the number of nuclei analyzed per tissue, colored by age groups. c Uniform Manifold Approximation and Projection
(UMAP) plot of snATAC-seq data from all the nuclei profiled in the five tissues. d Heatmap showing the K-means (K= 34) clustering on the
logarithm transformed (base 10) counts per million (CPM) signals of cCREs identified in the current study. e Genome browser view showing
the chromatin accessibility at the Igf1 locus for different cell types. Skm skeletal muscle, CM cardiomyocytes, L2/3 ExN layer-2/3 cortical
excitatory neurons.
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interactions. Integrins have been implicated in cellular senescence
and aging.55,56 More interestingly, at the Nrg1 gene locus (an
important neurotrophic growth factor and potentially associated
with rodent longevity57), we identified cCREs that display
increased accessibility in DG neurons and a different set of cCREs
that lose accessibility in CA1 neurons during aging, which may
contribute to its opposite expression change in corresponding cell
types (Fig. 4c, d, bottom row). Bi-directional aging signatures that
show opposite directions of change in different cell types have
been described in a single-cell brain transcriptomic study.39 Here,
by dissecting the cell-type-resolved DNA accessibility maps, we
further revealed the molecular mechanisms that underlie tran-
scriptional alterations, including such bi-directional changes.

Increased chromatin accessibility in selective heterochromatin
domains in excitatory neurons during aging
By comparing the age-dependent cCREs to the previous profiles of
histone modifications and CTCF binding of the same mouse
tissues58 (Fig. 5a), we found enrichment of cCREs gaining

chromatin accessibility in excitatory neurons in old animals in
the constitutive heterochromatin domains (H3K9me3) identified in
fetal and perinatal mouse brains (Fig. 5b). These cCREs appear in
clusters that overlap with inactive chromatin compartments which
are demarcated by topologically associating domain bound-
aries59–61 (Fig. 5c; Supplementary information, Fig. S11). To
comprehensively characterize such cCRE clusters genome-wide,
we calculated a Gaussian density score of the age-up (accessibility
increases with age) and age-down (accessibility decreases with
age) cCREs in each cell type in the dorsal hippocampus and frontal
cortex (Fig. 5a). We identified 15 cCRE clusters (mean size of 1.22 M
base pairs) that show age-dependent chromatin accessibility
change, with eleven gaining accessibility and four losing accessi-
bility (Fig. 5d). Ten of the eleven age-up cCRE clusters were found
in excitatory neurons, and nine of them overlap with H3K9me3
domains (Fig. 5d). While 3% of the genome is covered by H3K9me3
domains in mouse forebrain, about 12% of these domains overlap
with age-up cCRE clusters, a percentage that is more than 21-fold
higher than would be expected by chance (0.6%).
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Reduced H3K9me3 heterochromatin in excitatory neurons
during mouse aging
The gain of chromatin accessibility in heterochromatin domains in
the excitatory neurons raised the possibility that heterochromatin
may be lost in these cells during aging. To directly test this
hypothesis, we performed Paired-tag62 experiments with the frontal
cortex and dorsal hippocampus from 3-month- and 18-month-old
mice, to profile jointly gene expression and H3K9me3 at single-cell
resolution in the two brain regions. After filtering, we obtained joint
profiles of H3K9me3 (median: 2,517 unique fragments per nucleus)
and RNA profiles (median: 1,785 unique molecular identifier per
nucleus, median 323 genes) from 19,827 nuclei (Fig. 6a). We
clustered the cells based on their transcriptomes and assigned cell
type labels based on the marker genes as previously defined62

(Fig. 6a, b). Then we aggregated signals from cells of the same

cluster to assess the genomic distribution of H3K9me3 in each cell
type and age group (Fig. 6a, c). Supporting the above hypothesis,
we observed reduced H3K9me3 levels in excitatory neurons within
heterochromatin domains overlapping cCRE clusters that gained
accessibility during aging (Fig. 6c). We further found elevated
transcription levels of RNA species in these regions in the excitatory
neurons. The derepressed RNA species were primarily unannotated,
and appeared to have derived from transcripts made from the
repetitive elements (Fig. 6c), or pseudogenes (e.g. Gm16505 in
Supplementary information, Fig. S12a).
Furthermore, genome-wide analysis of all 642 H3K9me3

domains revealed reduced H3K9me3 levels, gain of DNA
accessibility, and increased transcription during aging in a subset
of the domains. Strikingly, these changes predominantly occurred
in excitatory neurons (Fig. 6d). We compared the domains with

Fig. 3 Age-dependent changes of chromatin accessibility at cCREs from endothelial cells. a UMAP plot showing cells from all tissues with
endothelial cells highlighted. b UMAP plot showing the sub-clustering results of endothelial cells, colored by tissue origin. Endocardial cell is a
special type of endothelial cell present in heart. c Heatmap showing the pairwise Jaccard Index between age-differential cCREs from different
endothelial cell subtypes. d Genome browser view showing the change in chromatin accessibility at a few loci for all subtypes of endothelial
cells. Blue shades mark age-down cCREs and red shades mark age-up cCREs.
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reduced H3K9me3 to domains with no change during aging.
Interestingly, the domains with reduced H3K9me3 signals show a
higher level of H3K9me3 signals than the stable domains in the
young mice. However, in 18-month-old mice, this difference
between these two types of heterochromatin domains becomes
negligible (Supplementary information, Fig. S13a). Some transpo-
sable elements (TEs) and gene sets are enriched in the domains
losing H3K9me3 in old mice, such as “antibacterial humoral
response” that comprise of defensin beta gene cluster and “cell
adhesin” which contains the protocadherin gene cluster (Supple-
mentary information, Fig. S13b, c and Table S4). To determine if
the reduction of H3K9me3 is occurring in all cells or in a subset of
cells as they go through an age-related process such as cellular
senescence, we calculated the fraction of reads within the reduced
H3K9me3 domains during aging in layer-2/3 cortical neurons. We
observed a uniform decrease of H3K9me3 signals in the 18-month

mice, suggesting that H3K9me3 at these domains is likely reduced
across all layer-2/3 excitatory neurons at the same pace (Fig. 6e).
We also examined the expression of 60 marker genes associated
with senescence or senescence-associated secretory phenotype
(Supplementary information, Table. S5), but did not observe
significant up-regulation of senescence marker genes in aged
excitatory neurons (Supplementary information, Fig. S14).
We further investigated the sequence features of the cCREs

gaining accessibility that reside within the H3K9me3 domains. It
revealed a significant enrichment of sub-families of LINE-1 and ERV
elements (Fig. 6f). In line with this, enrichment of two Krüppel-
associated box domain-containing zinc finger protein (KZFP) motifs
was observed in these age-up cCREs. KZFPs are the largest family of
transcription factors in tetrapod vertebrates, a majority of whose
function is to silence retrotransposons.63 Interestingly, the most
enriched LINE-1 element, L1MA5A, is already accessible in the

Fig. 5 Age-up cCREs in excitatory neurons are enriched in heterochromatin domains. a Schematic workflow showing how to detect overlap
and enrichment of age-differential cCREs with histonemarks and how to detect large clusters of age-differential cCREs. b Bubble plot showing the
enrichment of the overlap between age-up or age-down cCREs with each type of histonemodifications and CTCF. c Genome browser view of the
ATAC-seq signals of a few cell types in the brain, H3K9me3 signals from post-natal forebrain and compartment (first principal component from Hi-
C) and Hi-C matrix frommouse embryonic stem cells.94 Blue and green rectangles indicate locations of age-up cCREs in corresponding cell types.
d Genomic view of cell-type-specific gaussian density score of age-up or age-down cCREs from all brain cell types, along with H3K9me3 domains
from post-natal forebrain. Red and blue triangles indicate age-up or age-down cCRE cluster, respectively.
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excitatory neurons of the 3-month-old mice, and the accessibility
further increases during aging (Fig. 6g). This observation is
consistent with the previous reports that LINE-1 elements are active
in neurons,64,65 and transposable elements are re-activated during
aging.66,67 Analysis of the snRNA-seq data confirmed that repetitive
elements are more active in neurons than in glial cells (Supplemen-
tary information, Fig. S15). However, we did not observe significant
transcriptional up-regulation in L1MA5A or other LINE1 elements in
18-month-old mice (Supplementary information, Fig. S16a, b). This
might be due to the sensitivity of detection by current snRNA-seq
techniques. Transcription and chromatin accessibility of some LTR
elements are up-regulated in aged mice, however, they are not
accompanied by reduction of H3K9me3-associated heterochromatin
(Supplementary information, Fig. S16).

To confirm the loss of heterochromatin in cortical excitatory
neuron during aging, we performed immunostaining of H3K9me3
in the frontal cortex sections of young (3-month-old) and aged
(18-month-old) mice. We utilized the antibody against CaMKIIα to
label the excitatory neurons and DAPI staining to locate the nuclei.
Consistent with the results from the Paired-Tag experiments, we
observed a significant decrease of H3K9me3 immunoreactivity in
excitatory neurons in cortical layer-2/3 of frontal cortex of 18-
month-old mice compared to young mice (immunofluorescent
intensity median: 111 × 103 a.u. vs 86 × 103 a.u., linear mixed-effect
model (LME) using “age” for a fixed effect and “mouse group” for a
random effect, P= 0.014, Fig. 7a, b). We also observed an age-
dependent change in the nuclear staining pattern of H3K9me3
in excitatory neurons, evidenced by increased aggregates of

Fig. 6 Loss of heterochromatin domains in excitatory neurons. a Schematic diagram of the tissue collection, Paired-tag assays, and data
analysis strategies. b UMAP plot of the cells based on RNA component of the Paired-tag data. c Genome browser view showing the
H3K9me3 signal, age-dependent cCREs (from dorsal hippocampus and frontal cortex), and snRNA-seq signal (of layer-3 cortical neurons) at
three different loci for a few representative cell types. Close-up views of the snRNA-seq signal in two loci were shown at the bottom. d Volcano
scatter plot showing the negative logarithmic transformed adjusted P-value and logarithmic transformed fold change of H3K9me3, ATAC-seq
and RNA-seq signals between 18-month and 3-month for each H3K9me3 domain and each cell type. Each circle is one domain in one cell
type. e Violin plot showing the distribution of the fraction of reads in age-reduced H3K9me3 domain in 3-month and 18-month layer-2/3
cortical neurons. f Bar-plots showing the enrichment of transcription factor motifs and repetitive elements in the age-up cCREs that overlap
with age-reduced H3K9me3 domains. g Aggregated ATAC-seq signal over L1MA5A elements in all cell types from frontal cortex.
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H3K9me3 staining within the nuclei of excitatory neurons in aged
mice (Fig. 7a). By contrast, no significant difference in H3K9me3
immunoreactivity was observed in non-CaMKIIα cells (immuno-
fluorescent intensity median: 60 × 103 a.u. vs 57 × 103 a.u.,
P= 0.075, LME, Fig. 7b). This result is consistent with our
observation of H3K9me3 domain decay specifically in excitatory
neurons.
We next examined the level of Lamin B1 in young and aged mice.

There was a robust decrease in immunoreactivity of Lamin B1 in
excitatory neurons in frontal cortex of aged mice (immunofluor-
escent intensity median: 49 × 103 a.u. for cells in young mice vs
27 × 103 a.u. for cells in aged mice, P= 0.00029, LME, Fig. 7c, d). The
same trend for Lamin B1 can be observed in non-excitatory cells

(immunofluorescent intensity median: 46 × 103 a.u. for cells in young
mice vs 24 × 103 a.u. for cells in aged mice, P= 0.016, LME, Fig. 7d).
However, the age-dependent influence on H3K9me3 and Lamin B1
appears more pronounced in excitatory neurons. This decrease is
not likely due to decreased transcription levels of Lamin B1 or other
known regulators of H3K9me3, including Setdb1, Ehmt2 and
Suv39h1/2, as they were not significantly altered during aging
(Supplementary information, Fig. S17).
We also examined the expression of the LINE-1 encoded

protein, open reading frame 1 protein (LINE-1-ORF-1p) (Fig. 7e, f),
in the frontal cortex of young (3-month-old) and aged (18-month-
old) mice. We observed a significant increase of LINE-1-ORF-1p
immunoreactivity in both CaMKIIα excitatory neurons and

Fig. 7 Age-dependent changes in H3K9me3, Lamin B1 and LINE-1-ORF-1p immunostaining in cortical excitatory neurons. a Images
showing H3K9me3 immunoreactivity in layer-2/3 of frontal cortex of 3-month and 18-month-old mice. Scale bar, 20 μm. The cells
immunopositive for both H3K9me3 and CaMKIIα, or H3K9me3 only are indicated by the arrow or arrowhead respectively. b Left: The violin
plot graph and quantification of H3K9me3 staining intensity in CaMKIIα positive cells in the frontal cortex of 3-month- and 18-month-old mice.
The median, and 25th and 75th percentile values are plotted in the violin graph. *P= 0.014. Right: The violin plot graph and quantification of
H3K9me3 staining intensity in non-CaMKIIα cells in the frontal cortex of 3-month- and 18-month-old mice. n.s, P= 0.075. c Images showing
Lamin B1 immunoreactivity in layer-2/3 of frontal cortex of 3-month- and 18-month-old mice. The cells immunopositive for both Lamin B1 and
CaMKIIα or Lamin B1 only are indicated by the arrow or arrowhead respectively. Scale bar, 20 μm. d Left: The violin plot graph and
quantification of Lamin B1 staining intensity in CaMKIIα positive cells in the frontal cortex of 3-month- and 18-month-old mice. ***P= 0.00029.
Right: The violin plot graph and quantification of Lamin B1 staining intensity in non-CaMKIIα cells in the frontal cortex of 3-month- and 18-
month-old mice. *P= 0.016. e Images showing LINE-1-ORF-1p immunoreactivity in layer-2/3 of frontal cortex of 3-month- and 18-month-old
mice. Scale bar, 20 μm. The cells immunopositive for both LINE-1-ORF-1p and CaMKIIα or LINE-1-ORF-1p only are indicated by the arrow or
arrowhead respectively. f Left: The violin plot graph and quantification of LINE-1-ORF-1p staining intensity in CaMKIIα positive cells in the
frontal cortex of 3-month and 18-month-old mice. Right: The violin plot graph and quantification of LINE-1-ORF-1p staining intensity in non
CaMKIIα cells in the frontal cortex of 3-month- and 18-month-old mice. ***P < 0.00001.
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non-CaMKIIα cells in L2/3 of frontal cortex of aged mice compared
with young mice (immunofluorescent intensity meridian: 40 × 102

a.u. for CaMKIIα cells in young mice vs 364 × 102 a.u. in aged mice,
P= 9.3 × 10−71, LME; 34 × 102 a.u. for non-CaMKIIα cells in young
mice vs 250 × 102 a.u. in aged mice, P= 2.5 × 10−28, LME, Fig. 7f).
In addition, CaMKIIα+ cells have significantly higher level of LINE-
1-ORF-1p than non-CaMKIIα cells in either group (immunofluor-
escent intensity meridian: 40 × 102 a.u. for CaMKIIα+ cells vs
34 × 102 a.u. for non-CaMKIIα cells in young mice, P= 0.03;
364 × 102 a.u. for CaMKIIα+ cells vs 34 × 102 a.u. for non-CaMKIIα
cells in aged mice, P= 3.2 × 10−6, LME, Fig. 7f).

DISCUSSION
In this study, we investigated chromatin accessibility changes in
brain, heart, skeletal muscle and bone marrow in the mouse at
single-cell resolution. First, we showed that the cellular identity
and composition did not change radically in the tissues that we
analyzed, consistent with a previous report.39 We identified 77,881
age-dependent cCREs, and showed that the majority of them
display age-dependent changes in chromatin accessibility in a
cell-type restricted manner. By comparing age-dependent cCREs
in different cell types and the same cell type in different tissues,
we found that original epigenomic states of cells and tissue
environment may both contribute to their differential epigenetic
alterations during aging.
Through integrative analysis with published epigenetic maps

from the same tissues, we revealed a decay of heterochromatin
domains during aging in excitatory neurons, which we validated
using single-cell multi-omics assays and immunostaining experi-
ments. Previous microscopic studies revealed a global loss of
H3K9me3-associated heterochromatin in aged animals or primary
cells.27–31 However, a comprehensive survey of cell types and
genetic elements affected by the loss of heterochromatin was
lacking. Here we report that the loss of heterochromatin is
restricted to selective neuronal cell types and genomic regions, at
least for the time frame (from 3 months to 18 months) that we
examined. The loss of heterochromatin in excitatory neurons, but
not inhibitory neurons implies that a specific epigenetic program
or neuronal activity may render excitatory neurons more
susceptible to heterochromatin loss. As a result of the hetero-
chromatin loss, these regions become de-repressed evidenced by
an increase in chromatin accessibility. As heterochromatin regions
are enriched for retrotransposons such as L1 elements, not
surprisingly we found that some L1 elements become more
accessible during aging in excitatory neurons. Although transcrip-
tional changes were not observed at L1s in 18-month-old mice in
this study, we observed higher protein level of LINE-1-ORF-1p in
aged excitatory neurons and other cells in the mouse frontal
cortex, consistent with previous reports in the human brain68 and
senescent cells, mouse liver and muscle.66,67 Age-dependent up-
regulation of L1 elements may promote age-associated inflamma-
tion,66 and potentially neuro-degeneration. Previous studies have
suggested potential association of loss of heterochromatin and
neurodegenerative disease.69,70 Future studies are needed to
examine the relationship between the heterochromatin loss in the
excitatory neurons and cognitive declines.
Apart from the excitatory neurons, we were unable to detect

enrichment of age-dependent increase of chromatin accessibility
at heterochromatin regions in cell types from other tissues. This
could be due to our filtering strategy in the data processing step,
where we remove cCREs that overlap with high-signal repetitive
regions. This could filter out centromeric heterochromatin regions
that may undergo age-dependent changes. The second reason
could be that in our study, the oldest age was 18 months, which
may be characterized as late middle age. Changes in the
peripheral tissues such as bone marrow and muscle may become
detectable in older mice.

In summary, our study complements recent single-cell tran-
scriptomics studies by providing a resource for the study of the
epigenome at cell type resolution during aging in the mouse. We
revealed epigenetic alterations and heterochromatin loss, and
integrated these epigenome atlases with transcriptomic data to
understand the regulatory mechanisms responsible for the
transcriptional changes during aging.

MATERIALS AND METHODS
Mouse tissue dissection
Adult C57BL/6 J male mice were purchased from Jackson Laboratories
(strain #000664). Tissues were extracted from 3-month-old, 10-month-old
and 18-month-old mice. All dissections were performed consistently in
sterile conditions by the same laboratory member. Briefly, prefrontal cortex
and dorsal hippocampus were dissected in ice-cold ACSF (in mM: 126 NaCl,
2.5 KCl, 26 NaHCO3, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, and 10 glucose). Both
the prefrontal cortex and dorsal hippocampus were dissected out from
both hemispheres of each mouse, using a brain block and scalpel as
described before.71,72 Brain tissues were then immediately “flash frozen” in
liquid nitrogen for down-stream applications. In similar fashion the heart
and femoral bone and attached musculature were dissected from the
animal. The entire heart was dissected, and flash frozen in liquid nitrogen.
The quadriceps femoris muscle was dissected from the femur and flash
frozen in liquid nitrogen. The femur was then further processed for
obtaining bone marrow. Briefly, all tissue was removed from the femur.
The distal end was then cut and placed in an eppendorf tube to be
centrifuged at 4 °C. The bone marrow was then flash frozen in liquid
nitrogen (Please see https://www.jove.com/t/53936/murine-hind-limb-
long-bone-dissection-and-bone-marrow-isolation).

Tissue preparation and nuclei isolation for snATAC-seq and
snRNA-seq
Frontal cortex and dorsal hippocampus. For snATAC-seq on dorsal
hippocampus and frontal cortex, tissue was homogenized using mortar
and pestle on liquid nitrogen.42 ~20mg ground tissue was suspended in
1mL of nuclear permeabilization buffer: 5% BSA, 0.2% IGEPAL CA-630
(Sigma-Aldrich), 1 mM DTT, and 1× EDTA-free protease inhibitor (Roche or
Pierce) in PBS). Nuclei were rotated at 4 °C for 5 min before being pelleted
again with a swinging-bucket centrifuge (500× g, 5 min, 4 °C; 5920 R,
Eppendorf).
For snRNA-seq on hippocampus, ~20mg snap-frozen and ground

hippocampus was suspended in 500 µL of nuclei buffer: 0.1% Triton-X-100
(Sigma-Aldrich, T8787), 1× EDTA free protease inhibitor (Roche or Pierce),
1 mM DTT, and 0.2 U/µL RNase inhibitor (Promega, N211B), 2% BSA
(Sigma-Aldrich, SRE0036) in PBS. Sample was incubated on a rotator for
5 min at 4 °C and then pelleted with a swinging bucket centrifuge (500× g,
5 min, 4 °C; 5920 R, Eppendorf). For biological replicates of hippocampus,
snATAC-seq and snRNA-seq were performed on aliquots of the same
ground tissue. For the other biological replicate, starting tissue from
different mice was used for snATAC-seq and snRNA-seq respectively.
For snRNA-seq on frontal cortex, ~20mg snap-frozen and ground frontal

cortex (Biological Replicate 2, aliquot from the same powder used for
snATAC-seq) or a whole single snap-frozen frontal cortex were homo-
genized as described before with modifications.73 Tissue was transferred to
a glass dounce and submerged in 1 mL dounce buffer: 0.25 M Sucrose
(Sigma), 25 mM KCl, 5 mM MgCl2, Tris-HCl, pH 7.5, 1× EDTA-free protease
inhibitor (Roche or Pierce), 1 mM DTT, and 0.2 U/µL RNase inhibitor
(Promega, N211B), 2% BSA (Sigma-Aldrich, SRE0036) in PBS. Samples were
homogenized using a loose pestle for 5–10 strokes followed by a tight
pestle for 15–20 strokes. Suspension was transferred to a pre-chilled 1.5 mL
LoBind tube (Eppendorf) through a 30 μM CellTrics filter (Sysmex) and
pelleted with a swinging bucket centrifuge (100× g, 10 min, 4 °C; 5920 R,
Eppendorf).

Heart and leg muscle tissue. Nuclei were isolated from individual snap-
frozen whole heart and leg muscle tissue as described74 using gentleMACS
M tubes (Miltenyi) on a gentleMACS Octo dissociator (Miltenyi). Tissue was
submerged in magnetic-activated cell sorting (MACS) buffer: 5 mM CaCl2,
2 mM EDTA, 1× protease inhibitor EDTA-free (Roche or Pierce), 300mM
MgAc, 10 mM tris-HCl (pH 8.0), and 0.6 mM DTT (Sigma-Aldrich) and tissue
was homogenized using the “Protein_01_01” protocol. Nuclei were
pelleted with a swinging-bucket centrifuge (500 rcf, 5 min, 4 °C; 5920 R,
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Eppendorf) and resuspended in 1mL of nuclei permeabilization buffer: 5%
BSA, 0.2% IGEPAL CA-630 (Sigma-Aldrich), 1 mM DTT, and 1× EDTA-free
protease inhibitor (Roche or Pierce) in PBS. Nuclei were rotated at 4 °C for
5 min before being pelleted again with a swinging-bucket centrifuge (500×
g, 5 min, 4 °C; 5920 R, Eppendorf).

Bone marrow. Nuclei were isolated from individual snap-frozen bone
marrow. 500 μL chilled OMNI buffer:75 10 mM Tris-HCl, pH 7.5, 10 mM NaCl,
3 mM MgCl2, 0.1% IGEPAL CA-630 (Sigma-Aldrich), 0.1% Tween-20, 0.01%
Digitonin (Promega) was added to the sample tube and a homogeneous
suspension was obtained by gentle pipetting on ice. Suspension was
transferred to a pre-chilled 1.5 mL LoBind tube (Eppendorf) through a
30 μM CellTrics filter (Sysmex). Sample tube was rinsed with another 500 μL
chilled OMNI buffer and the suspension was transferred to the same
LoBind tube through filter. The sample was kept on ice for 5 min and then
pelleted with a swinging bucket centrifuge (500 rcf, 5 min, 4 °C; 5920 R,
Eppendorf).

snATAC-seq experiments
Combinatorial barcoding snATAC-seq was performed as described
previously43,74,76,77 and the protocol for library preparation can be found
here: https://www.protocols.io/edit/snatac-seq-library-generation-using-
combinatorial-bpwcmpaw.
Pelleted and permeabilized nuclei were resuspended in 500 μL high

salt tagmentation buffer (36.3 mM Tris-acetate, pH = 7.8), 72.6 mM
potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a
hemocytometer. Concentration was adjusted to 2000 nuclei/9 μL, and
2000 nuclei were dispensed into each well of one 96-well plate. For
tagmentation, 1 μL barcoded Tn5 transposomes43 was added using a
BenchSmart™ 96 (Mettler Toledo), mixed five times and incubated for
60 min at 37 °C with shaking (500 rpm). To inhibit the Tn5 reaction, 10 µL
of 40 mM EDTA were added to each well with a BenchSmart™ 96
(Mettler Toledo) and the plate was incubated at 37 °C for 15 min with
shaking (500 rpm). Next, 20 µL 2× sorting buffer (2% BSA, 2 mM EDTA in
PBS) was added using a BenchSmart™ 96 (Mettler Toledo). All wells were
combined into a FACS tube and stained with 3 µM Draq7 (Cell
Signaling). Using a SH800 (Sony), 20 2n nuclei were sorted per well
into eight 96-well plates (total of 768 wells) containing 10.5 µL EB: 25
pmol primer i7, 25 pmol primer i5, 200 ng BSA (Sigma). Preparation of
sort-plates and all downstream pipetting steps were performed on a
Biomek i7 Automated Workstation (Beckman Coulter). After addition of
1 µL 0.2% SDS, samples were incubated at 55 °C for 7 min with shaking
(500 rpm). 1 µL 12.5% Triton-X was added to each well to quench the
SDS. Next, 12.5 µL NEBNext High-Fidelity 2× PCR Master Mix (NEB) were
added and samples were PCR-amplified using 72 °C 5 min, 98 °C 30 s,
(98 °C 10 s, 63 °C 30 s, 72 °C 60 s) × 11 (bone marrow) or 12 cycles, held at
12 °C. After PCR, all wells were combined. Libraries were purified
following the MinElute PCR Purification Kit manual (Qiagen) using a
vacuum manifold (QIAvac 24 plus, Qiagen). Size selection was
performed with SPRI Beads (Beckmann Coulter, 0.55× and 1.5×)
followed by another round of SPRI Bead clean-up (Beckmann Coulter,
1.5×). Libraries were quantified using a Qubit fluorimeter (Life
technologies) and the nucleosomal pattern was verified using a
Tapestation (High Sensitivity D1000, Agilent). The libraries were
sequenced on a HiSeq4000, NextSeq500 or NovaSeq6000 sequencer
(Illumina) using custom sequencing primers with following read lengths:
50+ 10+ 12+ 50 (Read1+ Index1+ Index2+ Read2).

snATAC-seq data alignment
Paired-end sequencing reads were demultiplexed allowing up to two
mismatched to all possible barcode combinations. Reads were aligned to
mm10 reference genome using bowtie278 with default parameters and cell
barcodes were added as a BX tag in the bam file. Only primary alignments
were kept. Then we removed duplicated read pairs with Picard.79 Only
proper read pairs with insert size less than 2000 were kept for further
analysis.

TSS enrichment calculation
Enrichment of ATAC-seq accessibility at Transcription Start Sites (TSSs) was
used to assess data quality. The method for calculating enrichment at TSS
was previously described here.80 Briefly, Tn5 corrected insertions (reads
aligned to the positive strand were shifted +4 bp and reads aligned to the
negative strand were shifted –5 bp) were aggregated ±2000 bp relative

(TSS strand-corrected) to each unique TSS genome-wide. TSS positions
were obtained from the GENCODE database vM16. Then this profile was
normalized to the mean accessibility ±1900–2000 bp from the TSS and
smoothed every 11 bp. The max of the smoothed profile was taken as the
TSS enrichment.

Clustering and cell type annotation
We used snapATAC package43 to perform read counting and cell clustering
for both all-tissue clustering and tissue-level clustering. First, we removed
nuclei with less than 500 fragments or TSS enrichment < 10 for all tissues
(except for heart and leg muscle we used TSS enrichment cut-off of 7 to
keep more usable cells). Second, we calculated a cell-by-bin matrix at 5000-
bp resolution for every sample independently, binarized the matrices and
subsequently merged them for each clustering task. Third, we filtered
out any bins overlapping with ENCODE blacklist (mm10, http://
mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/
mm10.blacklist.bed.gz). Fourth, we normalized the read coverage of all
bins with log10 (count +1) and Z-score transformation, and only removed
bins with absolute Z-scores higher than 2.
After these filtering steps, we calculated Jaccard Index and performed

dimensional reduction using the runDiffusionMaps function on similarity
matrices. The memory usage of the matrices scales quadratically with the
number of nuclei. Therefore, we sampled a subset of 40,000 “landmark”
nuclei to compute the matrices and then extended to the rest of the cells
when the total number of nuclei exceeded 40,000 (this occurs in the
clustering of all tissues, FC, LM and BM). After dimensional reduction, we
selected top 20 eigenvectors based on the variance explained by each
eigenvector. And then we computed 20 nearest neighbors for each
nucleus and applied Leiden algorithm81 to define clusters. Cell clusters
were annotated with 1–3 marker genes from previous publications.82–85

Unknown clusters dominated by low-quality cells (with low TSS enrich-
ment scores) or doublet cells (with two marker genes and high read
counts) were identified and removed.

Detection of age-differential cCREs
For each tissue, cCREs (or ATAC-seq peaks) were called using MACS244 with
default parameters. Peaks overlapping with high-signal repetitive regions
(specifically, _CCCTAA_n,_TTAGGG_n,GSAT-MM,SYNREP_MM from Repeat-
masker annotation) were discarded. Sequencing reads from the cells of the
same cell type, age and biological replicate were merged into pseudo-bulk
BAM files. Then reads were counted by featureCounts function86 on the
cCREs in the corresponding tissue. Age-differential cCREs of each cell type
were identified by edgeR46 between 18-month and 3-month datasets with
the tagwise dispersion estimator and likelihood ratio test with a P-value
cutoff of 0.01. Different P-value cut-off or Benjamini–Hochberg (BH)87

adjusted P-value cutoff were also explored and did not change the main
conclusions. cCREs with significant P-value and are more accessible in 18-
month sample were denoted as age-up cCREs, while cCREs with significant
P-value and are less accessible in 18-month sample were denoted as age-
down cCREs.
As a comparison, differential cCRE analysis was also performed with

edgeR on all 3 age groups, and MAST47 (1.20.0) using the top 20,000
regions found as differential in edgeR 3 mo vs 18 mo and 10,000 randomly
sampled regions. It was impossible to run MAST on all peaks due to time
and memory constraints. Age was used as a numerical variable in the linear
model generated by MAST with default parameters. The comparison of all
three methods is summarized in Supplementary information, Fig. S6.
To ensure fair comparison of the number of age-dependent cCREs for

each cell type, we down-sampled each sample from each cell type to 1
million reads. Samples with less than 1 million reads were removed. A total
of 32 cell types passed the 1 million reads threshold. Then we performed
the differential cCRE analysis as stated above for each cell type. The results
are summarized in Supplementary information, Fig. S8.

Motif and gene ontology enrichment analysis
Motif enrichment analysis was performed using HOMER88 for the age-
differential cCREs in each cell type, with non-differential cCREs as the
background. Enriched gene ontology biological pathways were performed
by DAVID89 for age-differential cCREs for each cell type as well.

snRNA-seq experiments
Droplet-based Chromium Single Cell 3′ solution90 (10× Genomics, v3
(hippocampus) and v3.1 chemistry (frontal cortex)) was used to generate
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snRNA-seq libraries as described.74,76 Isolated nuclei were pelleted at 500
rcf for 5 min (4 °C; R5920, Eppendorf; acceleration/deceleration 3/3).
Supernatant was removed and pellet was resuspended in 400 µL of
sorting buffer: 1 mM EDTA 0.2 U/µL RNase inhibitor (Promega, N211B), 2%
BSA (Sigma-Aldrich, SRE0036) in PBS and stained with DRAQ7 (1:100; Cell
Signaling, 7406). 75,000 nuclei were sorted using a SH800 sorter (Sony) into
50 µL of collection buffer consisting of 1 U/µL RNase inhibitor in 5% BSA.
Sorted nuclei were pelleted at 1000 rcf for 15min (4 °C; R5920, Eppendorf;
acceleration/deceleration 3/3). Nuclei were resuspended in 35 µL of
reaction buffer: 0.2 U/µL RNase inhibitor (Promega, N211B), 2% BSA
(Sigma-Aldrich, SRE0036) in PBS and counted on a hemocytometer. 12,000
(hippocampus) or 18,000 nuclei (frontal cortex) were loaded onto a
Chromium controller (10× Genomics). Libraries were generated using the
Chromium Single Cell 3′ Library Construction Kit v3 (10× Genomics;
hippocampus (v3.1): PN-1000268, PN-1000120, PN-1000215; frontal cortex
(v3): PN-1000075, PN-1000073, PN-120262) according to manufacturer
specifications. cDNA was amplified for 12 PCR cycles. SPRISelect reagent
(Beckman Coulter) was sued for size selection and clean-up steps. Library
quality control was performed using Qubit dsDNA HS Assay Kit (Thermo-
Fischer Scientific) and Tapestation High Sensitivity D1000 (Agilent).
Libraries were sequenced using NextSeq500, HiSeq4000 or NovaSeq6000
(Illumina) with these read lengths: 28+ 8+ 91 (Read1+ Index1+ Read2).

snRNA data processing
Cellranger90 version 3.0.2 was used to pre-process fastq files from 8 samples
(2 replicates for each of 3-month, 10-month, and 18-month). Seurat 3.1.553

was used for subsequent analysis. DoubletFinder 2.0.291 was used to identify
and remove doublets from each sample. Seurat’s anchor-based label transfer
was used to transfer cluster labels from snRNA to the DH snATAC-seq data.
Almost all cells had very high prediction scores, indicating high concordance.
Since snRNA-seq and snATAC-seq had different sensitivity for defining cell
clusters, we grouped cell clusters in one dataset when all of them were
matched to a single cell cluster in the other dataset, to obtain consistent cell
type labels for both datasets. Using the transferred labels, we defined 12
matched cell types between the RNA and ATAC data: Ogc, DG, CA1, InhN,
Sub_Ent, Asc, CA2/3, Mgc, Opc, Endo, Peri, SMC. These cell-type assignments
were subsequently used for gene-cCRE correlation analysis. A pseudo-bulk
count table was generated by summing sequencing reads from cells of the
same cell type/cluster, age and biological replicate for each gene. Age-
differential genes of each cell type/cluster were then identified by edgeR46

between 18-month and 3-month datasets using the likelihood ratio test with
an adjusted P-value cutoff of 0.1.

Identification of Gene-cCRE pairs
Cells from the same matched cell types and ages (both snATAC-seq and
snRNA-seq) were merged into pseudo bulks, resulting in 36 data points (12
cell type, 3 age groups) for dorsal hippocampus and 48 data points (16 cell
types, 3 age groups). For every gene, we computed the weighted Pearson
correlation coefficient (WPCC) between the gene transcription levels and
the accessibility of any cCRE within 500 kb of the gene TSSs. The number of
cells in each cell type is used as the weight, to counter the effect of outlier/
extreme values in less abundant cell types. For gene annotations we used
GENCODE vM 23 to be consistent with the Cellranger’s annotation. BH
adjusted P-value cutoff of 0.05 was used to determine significant gene-
cCRE pairs. Gene-cCRE pairs were then used to link age-differential cCREs
to age-differential genes.

Gaussian smoothing
We used the R package smoother to perform gaussian smoothing on the
number of differential peaks (P-value < 0.001) within each 100 kb region of
the genome (smoothing window length of 20). Regions of the genome
with a high concentration of differential peaks within a short distance from
each other were therefore assigned higher gaussian smoothing scores.

Overlap with histone marks and CTCF-binding sites
We used bedtools intersect -c to overlap all called peaks for each cell type
cluster with each of 7 histone ChIP-seq and CTCF ChIP-seq tracks from
ENCODE. Fisher’s exact test was used to calculate the enrichment of the
overlap of the ChIP-seq called regions with the top 1% of age-associated
changing peaks (ordered by P-values calculated using edgeR comparing
3-month and 18-month samples) vs all other (not age-associated) peaks.
ENCODE experiment IDs used for overlap analysis are shown in
Supplementary information, Table S6. For most experiments, the ENCODE

narrowPeak bed files were directly used for overlap analysis with the
snATAC-seq data. For LM and HT, histone mark ChIP-seq for 5 time points
(E11.5–E15.5) and 7 time points (E11.5–P0) respectively were merged to
call peaks. H3K9me3 data from the forebrain were re-aligned to mm10
genome using BWA92 without mapping quality filter (in order not to lose
any reads aligning to repetitive elements), and peaks were re-called using
SICER93 on both ChIP-seq and input libraries.

Hi-C data processing
To understand the three-dimensional structure of the heterochromatin
domains that were reduced during aging, we downloaded Hi-C data from
mouse embryonic stem cells.94 Reads were mapped to mm10 genome as
previously described95 (https://github.com/ren-lab/hic-pipeline), with a
mapping quality filter of 0, to allow interrogation of contacts of the
repetitive regions of the genome. First principal components (PC) were
computed for the Hi-C matrix. Positive and negative PCs correspond to
euchromatin and heterochromatin domains.96

Paired-tag experiments
Paired-tag experiments are carried out as previous described62 with slightly
modification. After nuclei isolation with nuclei isolation buffer: 0.2% IGEPAL
CA-630 (Sigma #63069), 5% BSA (Sigma #A1595) and 1mM DTT (Invitrogen
#P2325) in PBS (Invitrogen #AM9624), supplemented with 1× Proteinase
Inhibitor (Roche #4693132001), 0.5 U/µL SUPERaseIn (Invitrogen #AM2696),
and 0.5 U/µL RNase OUT (Invitrogen #10777019), each 300,000 of nuclei were
aliquot into the 12 1.5mL low-bind tubes. Nuclei were spin-down and
resuspended in 30 µL MED#1 buffer: 20mM HEPES (Gibco #15630080),
300mM NaCl (Invitrogen #AM9760G), 0.5mM Spermidine (Sigma #S2626), 1×
Proteinase Inhibitor, 0.5 U/µL SUPERase In, 0.5 U/µL RNase OUT, 0.01%
IGEPAL-CA630, 0.01% Digitonin (Millipore #300410), 2mM EDTA (Invitrogen
#15575020)) and keep on ice. 2 µg of H3K9me3 antibody (Abcam #ab8580)
were added into 12 of 200 µL tubes containing 20 µL MED#1 buffer, and pA-
Tn5 protein with 12 DNA barcodes were added and incubated at room
temperature with gently rotation for 1 h. The 12 tubes of antibody-pA-Tn5
mix were then mixed with each tube of nuclei, respectively and the
incubation was carried out in 4 °C with gently rotation overnight. The nuclei
were then spun-down and washed two times with MED#2 buffer (20mM
HEPES, 300mM NaCl, 0.5mM Spermidine, 1× Proteinase Inhibitor, 0.5 U/µL
SUPERase In, 0.5 U/µL RNase OUT, 0.01% IGEPAL-CA630, 0.01% Digitonin) and
resuspended in 50 µL MED#2 buffer. Tagmentation reaction were activated
out by adding 2 µL of 250mM MgCl2 (Sigma #63069), carried out in a
ThermoMixer set at 37 °C, 550 rpm for 60min and quenched by adding
16.5 µL of 40mM EDTA. Nuclei were then spin-down and reverse transcription
were carried out with Maxima H minus reverse transcriptase (Thermo
#EP0751). Nuclei were then barcoded by ligation-based combinatorial
barcoding with T4 DNA Ligase (NEB #M0202L), aliquoted into 2.5–3.5k nuclei
sub-libraries and lysed. Library preparation were then carried out as previous
described62 and sequenced with read cycles 100 (read1)+ 8 (index1)+ 8
(index2)+ 100 (read2) on a NovaSeq 6000 platform.

Paired-tag data processing
Preprocessing of Paired-tag were carried out with the scripts available from
GitHub (https://github.com/cxzhu/Paired-Tag). Briefly, cellular barcodes
were extracted from Read2 and assigned to each sample barcodes (12
initial tubes for tagmentation and reverse transcription) and combination
of ligated barcodes. Adaptors were trimmed from Read1 and then mapped
to the reference genome with bowtie278 (for DNA) and STAR97 (for RNA,
with annotation from GENCODE GRCm38.p6). Before generating cell-
counts matrices, DNA alignment files were further filtered by removing
high-pileup positions (cutoff= 10). Cells with less than 500 unique
H3K9me3 loci and 200 unique transcripts were removed from downstream
analysis. To remove potential doublets, cells were first clustered with
Seurat53 package based on scRNA-seq profiles with resolution= 5, cell
groups with both number of DNA and RNA reads per nuclei higher than
5-fold of average reads per nuclei were excluded from further analysis. The
remaining cells were again clustered with Seurat package based on scRNA-
seq profiles with resolution= 0.5 and annotated based on expression level
of marker genes.62

H3K9me3 associated domains (peaks) were called using SICER93 on
aggregated H3K9me3 signals from Paired-tag (without input). All default
parameters were used, except that window size parameter was set to 5000
and gap size was set to 10000 to detect large peaks. Peaks larger than
100Kb were kept for further downstream analysis (for instance, Fig. 6d).
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Quantifying transposable elements (TEs) expression
scTE98 version 1.0 was used to build a genome index for the alignment of
reads to genes (gencode vM21) and TEs (rmsk mm10) using scTE_build.
The scTE command was used to map reads from the unfiltered BAM files
generated by Cellranger to genes and transposable element families,
generating a cell by feature read count matrix. Cells with fewer than 100
genes expressed were excluded using “min_genes 100”. A pseudo-bulk
count table for both genes and TEs was generated by summing reads from
cells of the same cell type, age and biological replicate for each feature.
Age-differential genes and TEs for each cell type were then identified by
edgeR46 between 18-month and 3-month datasets using the likelihood
ratio test. The same strategy was applied on snATAC-seq and Paired-Tag
data to quantify the chromatin accessibility and H3K9me3 signal on TEs.

Immunofluorescence staining
Eight mice were used for immunostaining experiments; the 3-month-old
and 18-month-old groups included 2 male and 2 female mice each. Mice
were perfused intracardially with 4% paraformaldehyde in PBS. After an
overnight post-fixation in the same fixative at 4 °C, brain tissues were cut
into 50 μm sections with a microtome. Brain sections were blocked with
0.3% Triton X-100 and donkey serum in PBS for 1 h at room temperature
and then incubated with H3K9me3 (1:500, Abcam, ab 8898) or Lamin B1
(1:500, Abcam, Cat#229025) or L1-ORF-1p (1:200, Abcam, ab 216324) and
CaMKIIα (1:300, ThermoFisher Scientific, MA1–048) primary antibody
overnight at 4 °C. Next, brain sections were incubated with Alexa
Fluor546-conjugated goat anti-rabbit (Invitrogen, 1:500, A-11035) or Alexa
Fluor488-conjugated goat anti-mouse secondary antibodies (Invitrogen,
1:500, A-11029) for 1 h at room temperature, washed in PBS, and mounted
in Vectashield containing DAPI (Vector Labs Cat#H-1500).

Image data acquisition and quantitative fluorescence
intensity analysis
After immunostaining, the sections were examined, and low- and high-
power images were acquired by using a confocal microscope (FV3000,
Olympus Microscopy, Japan). The slides were imaged with a 10× or 60×
objective with identical settings for all matched images. Image maximum
projections, z-stacking of sections, and cell fluorescence intensity
measurements were performed by using the Fiji-ImageJ software analysis
tools. We measured ~200 excitatory cells and ~100 other cells from young
and aged frontal brain sections, respectively, for H3K9me3 staining. We
measured ~150 excitatory cells and ~100 other cells from young and aged
frontal brain sections, respectively, for Lamin B1 staining. We measured
~200 excitatory cells and ~150 other cells from young and aged frontal
brain sections, respectively, for L1-ORF-1p staining. The corrected total cell
fluorescence (CTCF) in an arbitrary unit (a.u.) was used for data reporting
and statistical analysis.
The Linear Mixed-Effect Model (LME) has been widely used to analyze

correlated data. The main idea of LME (“fitlme” in MATLAB) is to take the
inherent correlations in correlated data, such as the neurons from the same
mouse, into consideration when conducting statistical modeling and
hypothesis testing.99 The LME test includes paired t-test and repeated-
measures ANOVA as two special cases. The importance of LME and its
more generalized versions has been increasingly recognized in recent
studies involving large cell sample data collected from a relatively small
number of animals. In this study, we used LME for data analysis shown in
Fig. 7, in which measurements of staining intensity are presented based on
hundreds of cells from 8 mice. We fitted an LME by using age for a fixed
effect and mouse group for a random effect.

General data processing and plots
Most of the described data-processing steps (statistical tests, clustering,
plotting, and so on) were performed in Python 3.4.5 (www.python.org) and
the statistical computing environment R 3.4.3 (www.r-project.org). Box
plots were made with ggplot2 (https://cran.r-project.org/web/packages/
ggplot2). The elements of the box plots are: center line, median; box limits,
upper and lower quartiles; whiskers, 1.5× the interquartile range; points,
outliers.
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