Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding

Abstract

Male sterility enables hybrid crop breeding to increase yields and has been extensively studied. But thermo-sensitive female sterility, which is an ideal property that may enable full mechanization in hybrid rice breeding, has rarely been investigated due to the absence of such germplasm. Here we identify the spontaneous thermo-sensitive female sterility 1 (tfs1) mutation that confers complete sterility under regular/high temperature and partial fertility under low temperature as a point mutation in ARGONAUTE7 (AGO7). AGO7 associates with miR390 to form an RNA-Induced Silencing Complex (RISC), which triggers the biogenesis of small interfering RNAs (siRNAs) from TRANS-ACTING3 (TAS3) loci by recruiting SUPPRESSOR OF GENE SILENCING (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) to TAS3 transcripts. These siRNAs are known as tasiR-ARFs as they act in trans to repress auxin response factor genes. The mutant TFS1 (mTFS1) protein is compromised in its ability to load the miR390/miR390* duplex and eject miR390* during RISC formation. Furthermore, tasiR-ARF levels are reduced in tfs1 due to the deficiency in RDR6 but not SGS3 recruitment by mTFS1 RISC under regular/high temperature, while low temperature partially restores mTFS1 function in RDR6 recruitment and tasiR-ARF biogenesis. A miR390 mutant also exhibits female sterility, suggesting that female fertility is controlled by the miR390-AGO7 module. Notably, the tfs1 allele introduced into various elite rice cultivars endows thermo-sensitive female sterility. Moreover, field trials confirm the utility of tfs1 as a restorer line in fully mechanized hybrid rice breeding.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Phenotypes of the tfs1 mutant and 4266.
Fig. 2: TFS1 is AGO7.
Fig. 3: Defective recruitment of RDR6 by mTFS1.
Fig. 4: The function of mTFS1 is partially recovered by low temperature.
Fig. 5: The utility of tfs1 as a restorer line in fully mechanized hybrid rice breeding.
Fig. 6: Field trials of hybrid seed production under regular/high temperature.
Fig. 7: A proposed model of the molecular defects of mTFS1, which confer thermo-sensitive female sterility in rice.

Data availability

All DNA sequencing and sRNA sequencing data from this study have been deposited in the National Center for Biotechnology Information (NCBI) with the accession number PRJNA827282. Source data for all graphs have been provided. All other data are available from the corresponding authors upon reasonable request.

References

  1. Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Yuan, L. P. Hybrid rice technology for food security in the world. Crop Res. 18, 185–186 (2004).

    CAS  Google Scholar 

  3. Fei, Q., Xia, R. & Meyers, B. C. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25, 2400–2415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 25, 21 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Montgomery, T. A. et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L. & Poethig, R. S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iwakawa, H. et al. Ribosome stalling caused by the Argonaute-microRNA-SGS3 complex regulates the production of secondary siRNAs in plants. Cell Rep. 35, 109300 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Sakurai, Y. et al. Cell-free reconstitution reveals the molecular mechanisms for the initiation of secondary siRNA biogenesis in plants. Proc. Natl. Acad. Sci. USA 118, 2102889118 (2021).

    Article  Google Scholar 

  11. Adenot, X. et al. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 16, 927–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Garcia, D., Collier, S. A., Byrne, M. E. & Martienssen, R. A. Specification of leaf polarity in Arabidopsis via the trans-Acting siRNA pathway. Curr. Biol. 16, 933–938 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, L. et al. Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis. Plant Cell Physiol. 47, 853–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Fahlgren, N. et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16, 939–944 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshikawa, M., Peragine, A., Park, M. Y. & Poethig, R. S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19, 2164–2175 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marin, E. et al. mir390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22, 1104–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon, E. K. et al. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res. 38, 1382–1391 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hobecker, K. V. et al. The microRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth. Plant Physiol. 174, 2469–2486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, R., Xu, J. & Meyers, B. C. The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29, 1232–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunter, C., Sun, H. & Poethig, R. S. The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr. Biol. 13, 1734–1739 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Yifhar, T. et al. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24, 3575–3589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brooks, C., Nekrasov, V., Lipppman, Z. B. & van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292–1297 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Douglas, R. N. et al. ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22, 1441–1451 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Itoh, J.-I., Kitano, H., Matsuoka, M. & Nagato, Y. Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12, 2161–2174 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagasaki, H. et al. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc. Natl. Acad. Sci. USA 104, 14867–14871 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, S. et al. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat. Commun. 4, 2793 (2013).

    Article  PubMed  Google Scholar 

  27. Zhang, T. et al. LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc. Natl. Acad. Sci. USA 114, 9984–9989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abe, A. et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 30, 174 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Song, X. et al. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J. 71, 378–389 (2012).

    CAS  PubMed  Google Scholar 

  30. Liu, B. et al. Oryza sativa Dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19, 2705–2718 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoshikawa, M. et al. 3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3. Proc. Natl. Acad. Sci. USA 110, 4117–4122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jouannet, V. et al. Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO J. 31, 1704–1713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang, P. et al. 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nat. Commun. 11, 5191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, J. et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science 370, eabc9546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, C. Y. et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science 370, eabc9359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X. et al. The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One 12, e0189788 (2017).

    Article  Google Scholar 

  37. Lang, P. L. M. et al. A role for the F-box protein HAWAIIAN SKIRT in plant microRNA function. Plant Physiol. 176, 730–741 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Yan, J. et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24, 415–427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kuhn, C.-D. & Joshua-Tor, L. Eukaryotic Argonautes come into focus. Trends Biochem. Sci 38, 263–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Meister, G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Parker, J. S. How to slice: snapshots of Argonaute in action. Silence 1, 3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Höck, J. & Meister, G. The Argonaute protein family. Genome Biol 9, 210 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl. Acad. Sci. USA 108, 10466–10471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gan, H. H. & Gunsalus, K. C. Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition. Nucleic Acids Res. 43, 9613–9625 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Elkayam, E. et al. The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyoshi, T., Ito, K., Murakami, R. & Uchiumi, T. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat. Commun. 7, 11846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, Y. et al. Study of rice pollen grains by multispectral imaging microscopy. Microsc. Res. Tech. 68, 335–346 (2005).

    Article  PubMed  Google Scholar 

  51. Zeng, Y. X., Hu, C. Y., Lu, Y. G., Li, J. Q. & Liu, X. D. Diversity of abnormal embryo sacs in indica/japonica hybrids in rice demonstrated by confocal microscopy of ovaries. Plant Breeding 126, 574–580 (2007).

    Article  Google Scholar 

  52. Fujii, S. & Toriyama, K. Molecular mapping of the fertility restorer gene for ms-CW-type cytoplasmic male sterility of rice. Theor. Appl. Genet. 111, 696–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Martin, F. W. Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 34, 125–128 (1959).

    Article  CAS  PubMed  Google Scholar 

  54. Patel, R. et al. Mutation scanning using MUT-MAP, a high-throughput, microfluidic chip-based, multi-analyte panel. PLoS One 7, e51153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, J. et al. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29, 697–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, X., Chen, L., He, J. & Yu, W. Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis. Plant Cell Rep. 36, 1533–1545 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Lyznik, L. A., Mitchell, J. C., Hirayama, L. & Hodges, T. K. Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res. 21, 969–975 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  60. ’t Hoen, P. A. C. et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res. 36, e141–e141 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tang, C., Xie, Y. & Yan, W. AASRA: an anchor alignment-based small RNA annotation pipeline. Biol. Reprod. 105, 267–277 (2017).

    Article  Google Scholar 

  62. Li, X. et al. Comparative small RNA analysis of pollen development in autotetraploid and diploid rice. Int. J. Mol. Sci. 17, 499 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Komoda, K., Naito, S. & Ishikawa, M. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts. Proc. Natl Acad. Sci. USA 101, 1863–1867 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Komoda, K., Mawatari, N., Hagiwara-Komoda, Y., Naito, S. & Ishikawa, M. Identification of a ribonucleoprotein intermediate of tomato mosaic virus RNA replication complex formation. J. Virol. 81, 2584–2591 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Iki, T. et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell 39, 282–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Iki, T., Ishikawa, M. & Yoshikawa, M. In vitro formation of plant RNA-induced silencing complexes using an extract of evacuolated tobacco protoplasts. Methods Mol. Biol. 1640, 39–53 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Biogle GeneTech for providing a gene-editing vector and transgenic plants. This work was funded by the National Natural Science Foundation of China (NSFC31971924), Hong Kong Research Grant Council (GRF14122415), and JSPS KAKENHI (18H02380).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. led and managed the project. J.Z., X.C., G.W., and N.Y. conceived the study. H.L. and G.W. performed the research. C.Y. analyzed the sequencing data. M.Y. performed the BYL in vitro experiments. H.G. performed the field planting. C.L. provided the mutant lines. J.C. instructed the RNA gel blotting. H.L., G.W., X.C., and X.Y. wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xuemei Chen, Nenghui Ye, Jianhua Zhang or Guanqun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., You, C., Yoshikawa, M. et al. A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding. Cell Res 32, 931–945 (2022). https://doi.org/10.1038/s41422-022-00711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-022-00711-0

This article is cited by

Search

Quick links