Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Myosin 1D and the branched actin network control the condensation of p62 bodies

Abstract

Biomolecular condensation driven by liquid–liquid phase separation (LLPS) is key to assembly of membraneless organelles in numerous crucial pathways. It is largely unknown how cellular structures or components spatiotemporally regulate LLPS and condensate formation. Here we reveal that cytoskeletal dynamics can control the condensation of p62 bodies comprising the autophagic adaptor p62/SQSTM1 and poly-ubiquitinated cargos. Branched actin networks are associated with p62 bodies and are required for their condensation. Myosin 1D, a branched actin-associated motor protein, drives coalescence of small nanoscale p62 bodies into large micron-scale condensates along the branched actin network. Impairment of actin cytoskeletal networks compromises the condensation of p62 bodies and retards substrate degradation by autophagy in both cellular models and Myosin 1D knockout mice. Coupling of LLPS scaffold to cytoskeleton systems may represent a general mechanism by which cells exert spatiotemporal control over phase condensation processes.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The Arp2/3-derived branched actin network is required for the formation of p62 bodies.
Fig. 2: The Arp2/3 complex is essential for the formation of p62 bodies.
Fig. 3: Myosin 1D coalesces with p62 bodies.
Fig. 4: Myo1D promotes the formation of p62 bodies.
Fig. 5: The branched actin network regulates autophagy by harnessing p62 phase condensation.

References

  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  Article  Google Scholar 

  2. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS  Article  Google Scholar 

  3. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    CAS  Article  Google Scholar 

  4. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  Article  Google Scholar 

  5. Wu, X., Cai, Q., Feng, Z. & Zhang, M. Liquid-liquid phase separation in neuronal development and synaptic signaling. Dev. Cell 55, 18–29 (2020).

    CAS  Article  Google Scholar 

  6. Wu, X. et al. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell 73, 971–984.e975 (2019).

    CAS  Article  Google Scholar 

  7. Zeng, M. et al. Phase separation-mediated TARP/MAGUK complex condensation and AMPA receptor synaptic transmission. Neuron 104, 529–543.e526 (2019).

    CAS  Article  Google Scholar 

  8. Liu, Z. et al. Par complex cluster formation mediated by phase separation. Nat. Commun. 11, 2266 (2020).

    CAS  Article  Google Scholar 

  9. Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097 (2019).

    CAS  Article  Google Scholar 

  10. Shimobayashi, S. F., Ronceray, P., Sanders, D. W., Haataja, M. P. & Brangwynne, C. P. Nucleation landscape of biomolecular condensates. Nature 599, 503–506 (2021).

    CAS  Article  Google Scholar 

  11. Minton, A. P. Holobiochemistry: The effect of local environment upon the equilibria and rates of biochemical reactions. Int. J. Biochem. 22, 1063–1067 (1990).

    CAS  Article  Google Scholar 

  12. Jalihal, A. P. et al. Hyperosmotic phase separation: Condensates beyond inclusions, granules and organelles. J. Biol. Chem. 296, 100044 (2021).

    CAS  Article  Google Scholar 

  13. Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077.e1010 (2017).

    CAS  Article  Google Scholar 

  14. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  Article  Google Scholar 

  15. Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163, 108–122 (2015).

    CAS  Article  Google Scholar 

  16. Hernandez-Vega, A. et al. Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep. 20, 2304–2312 (2017).

    CAS  Article  Google Scholar 

  17. Wiegand, T. & Hyman, A. A. Drops and fibers — how biomolecular condensates and cytoskeletal filaments influence each other. Emerg. Top. Life Sci. 4, 247–261 (2020).

    CAS  Article  Google Scholar 

  18. Ditlev, J. A. et al. A composition-dependent molecular clutch between T cell signaling condensates and actin. Elife 8, e42695 (2019).

    Article  Google Scholar 

  19. Mi, N. et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 17, 1112–1123 (2015).

    CAS  Article  Google Scholar 

  20. Kast, D. J., Zajac, A. L., Holzbaur, E. L., Ostap, E. M. & Dominguez, R. WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 25, 1791–1797 (2015).

    CAS  Article  Google Scholar 

  21. Saydmohammed, M. et al. Vertebrate myosin 1d regulates left-right organizer morphogenesis and laterality. Nat. Commun. 9, 3381 (2018).

    Article  Google Scholar 

  22. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    CAS  Article  Google Scholar 

  23. Agudo-Canalejo, J. et al. Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature 591, 142–146 (2021).

    CAS  Article  Google Scholar 

  24. Turco, E. et al. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell 74, 330–346.e11 (2019).

    CAS  Article  Google Scholar 

  25. Lystad, A. H. & Simonsen, A. Assays to monitor aggrephagy. Methods 75, 112–119 (2015).

    CAS  Article  Google Scholar 

  26. Nolen, B. J. et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034 (2009).

    CAS  Article  Google Scholar 

  27. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    CAS  Article  Google Scholar 

  28. Hung, V. et al. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456–475 (2016).

    CAS  Article  Google Scholar 

  29. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    CAS  Article  Google Scholar 

  30. Michelot, A. & Drubin, D. G. Building distinct actin filament networks in a common cytoplasm. Curr. Biol. 21, R560–R569 (2011).

    CAS  Article  Google Scholar 

  31. McIntosh, B. B. & Ostap, E. M. Myosin-I molecular motors at a glance. J. Cell Sci. 129, 2689–2695 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Benesh, A. E. et al. Differential localization and dynamics of class I myosins in the enterocyte microvillus. Mol. Biol. Cell 21, 970–978 (2010).

    CAS  Article  Google Scholar 

  33. Brandstaetter, H., Kendrick-Jones, J. & Buss, F. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion. J. Cell Sci. 125, 1991–2003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Campellone, K. G., Webb, N. J., Znameroski, E. A. & Welch, M. D. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161 (2008).

    CAS  Article  Google Scholar 

  35. Zhao, Y. G. & Zhang, H. Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates. Dev. Cell 55, 30–44 (2020).

    CAS  Article  Google Scholar 

  36. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  Google Scholar 

  37. Chen, X. D., Wu, X. D., Wu, H. W. & Zhang, M. J. Phase separation at the synapse. Nat. Neurosci. 23, 301–310 (2020).

    CAS  Article  Google Scholar 

  38. Huang, W. Y. C. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 363, 1098–1103 (2019).

    CAS  Article  Google Scholar 

  39. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    CAS  Article  Google Scholar 

  40. Huang, Y. et al. Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat. Cell Biol. 21, 991–1002 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the groups of L.Y., P.L., S.H. and N.M. for helpful discussions. We thank the group of Dr. Hongwei Wang (Tsinghua University, Beijing) for assistance with actin polymerization. We thank the State Key Laboratory of Membrane Biology for confocal microscopy imaging and facility support. We would also like to acknowledge the Center of Biomedical Analysis, Tsinghua University, for assistance with Andor high-speed confocal Dragonfly microscopy and Imaris analysis. This work was supported by the Ministry of Science and Technology of China (2017YFA0506300 to N.M.; 2019YFA0508403 to P.L.), and the National Natural Science Foundation of China (31771536 and 31860316).

Author information

Authors and Affiliations

Authors

Contributions

N.M. conceived the study; N.M. and P.L. wrote the manuscript and supervised the project; X. Feng, W.D., M.D. and X.X. performed most of the experiments. M.M., X.L., D.S., Q.X., Y.A. and Q.C. contributed to parts of the experiments. Y.L. helped with the electron microscopy. L.Y. provided insightful suggestions. W.Z. and W.W. helped with Imaris analysis. Y.Z., J.S., S.H. and X. Fu helped with actin polymerization. All the authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Pilong Li or Na Mi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Du, W., Ding, M. et al. Myosin 1D and the branched actin network control the condensation of p62 bodies. Cell Res 32, 659–669 (2022). https://doi.org/10.1038/s41422-022-00662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-022-00662-6

Further reading

Search

Quick links