Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish

Abstract

Vertebrate embryogenesis involves a conserved and fundamental process, called the maternal-to-zygotic transition (MZT), which marks the switch from a maternal factors-dominated state to a zygotic factors-driven state. Yet the precise mechanism underlying MZT remains largely unknown. Here we report that the RNA helicase Ddx3xb in zebrafish undergoes liquid–liquid phase separation (LLPS) via its N-terminal intrinsically disordered region (IDR), and an increase in ATP content promotes the condensation of Ddx3xb during MZT. Mutant form of Ddx3xb losing LLPS ability fails to rescue the developmental defect of Ddx3xb-deficient embryos. Interestingly, the IDR of either FUS or hnRNPA1 can functionally replace the N-terminal IDR in Ddx3xb. Phase separation of Ddx3xb facilitates the unwinding of 5’ UTR structures of maternal mRNAs to enhance their translation. Our study reveals an unprecedent mechanism whereby the Ddx3xb phase separation regulates MZT by promoting maternal mRNA translation.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Zebrafish Ddx3xb forms liquid–liquid phase separation via its N-terminal IDR.
Fig. 2: An increase in ATP concentration promotes both exogenous and endogenous phase separation of zebrafish Ddx3xb.
Fig. 3: Ddx3xb phase separation is essential for zebrafish early embryogenesis.
Fig. 4: Ddx3xb phase separation facilitates zebrafish MZT.
Fig. 5: Condensation of Ddx3xb regulates maternal mRNA translation via unwinding RNA structures.
Fig. 6: Ddx3xb regulates maternal mRNA translation in a condensation-dependent manner.
Fig. 7: Schematic model showing that Ddx3xb regulates maternal mRNA translation efficiency in a condensation-dependent manner.

Data availability

The RNA-seq, RIP, and ribosome profiling data supporting the conclusions of this article have been deposited in the Gene Expression Omnibus database (GEO: GSE169169), and also the Genome Sequence Archive (GSA: CRA003999 linked to the BioProject with accession Number PRJCA004602).

References

  1. Abrams, E. W. & Mullins, M. C. Early zebrafish development: it’s in the maternal genes. Curr. Opin. Genet. Dev. 19, 396–403 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Vastenhouw, N. L., Cao, W. X. & Lipshitz, H. D. The maternal-to-zygotic transition revisited. Development 146, 11 (2019).

    Article  CAS  Google Scholar 

  3. Lee, M. T., Bonneau, A. R. & Giraldez, A. J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30, 581–613 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Lee, M. T. et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503, 360–364 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Sun, J., Yan, L., Shen, W. & Meng, A. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 145, 19 (2018).

    Google Scholar 

  6. Yan, L. et al. Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates. Science 362, 6417 (2018).

    Article  CAS  Google Scholar 

  7. Yang, Y. et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol. Cell 75, 1188–1202 (2019).

    CAS  PubMed  Article  Google Scholar 

  8. Shi, B. et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 21, 120 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    CAS  PubMed  Article  Google Scholar 

  10. Mishima, Y. & Tomari, Y. Codon usage and 3’ UTR length determine maternal mRNA stability in Zebrafish. Mol. Cell 61, 874–885 (2016).

    CAS  PubMed  Article  Google Scholar 

  11. Zhao, B. S. et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Chang, H. et al. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol. Cell 70, 72–82.e7 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    CAS  PubMed  Article  Google Scholar 

  16. Li, C. H. et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 586, 440–444 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS  PubMed  Article  Google Scholar 

  18. Zeng, M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163–1175.e12 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Zhang, G., Wang, Z., Du, Z. & Zhang, H. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174, 1492–1506.e22 (2018).

    CAS  PubMed  Article  Google Scholar 

  21. Linder, P. & Jankowsky, E. From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516 (2011).

    CAS  Article  Google Scholar 

  22. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Hondele, M. et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148 (2019).

    CAS  PubMed  Article  Google Scholar 

  24. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Oh, S. et al. Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget 7, 28169–28182 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  26. Guenther, U. P. et al. The helicase Ded1p controls use of near-cognate translation initiation codons in 5’ UTRs. Nature 559, 130–134 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Iserman, C. et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818–831.e19 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Campbell, K. & Swann, K. Ca2+ oscillations stimulate an ATP increase during fertilization of mouse eggs. Dev. Biol. 298, 225–233 (2006).

    CAS  PubMed  Article  Google Scholar 

  29. Dutta, A. & Sinha, D. K. Zebrafish lipid droplets regulate embryonic ATP homeostasis to power early development. Open Biol. 7, 170063 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Murray, D. T. et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627.e16 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Yu, M. et al. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol. Cell 81, 1216–1230.e9 (2021).

    CAS  PubMed  Article  Google Scholar 

  33. Eckersley-Maslin, M. A., Alda-Catalinas, C. & Reik, W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat. Rev. Mol. Cell Biol. 19, 436–450 (2018).

    CAS  PubMed  Article  Google Scholar 

  34. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. USA 112, 7189–7194 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Ji, S. et al. LC domain-mediated coalescence is essential for otu enzymatic activity to extend drosophila lifespan. Mol. Cell 74, 363–377.e5 (2019).

    CAS  PubMed  Article  Google Scholar 

  36. Chang, N. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465–472 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Renaud, O., Herbomel, P. & Kissa, K. Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells. Nat. Protoc. 6, 1897–1904 (2011).

    CAS  PubMed  Article  Google Scholar 

  38. Heng, J. et al. Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol. 18, e3000696 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Murphey, R. D., Stern, H. M., Straub, C. T. & Zon, L. I. A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem. Biol. Drug Des. 68, 213–219 (2006).

    CAS  PubMed  Article  Google Scholar 

  40. Zhang, C. et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276 (2017).

    CAS  PubMed  Article  Google Scholar 

  41. Bol, G. M. et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol. Med. 7, 648–669 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Calviello, L. et al. Detecting actively translated open reading frames in ribosome profiling data. Nat. Methods 13, 165–170 (2016).

    CAS  PubMed  Article  Google Scholar 

  43. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10–12 (2011).

    Article  Google Scholar 

  44. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    PubMed  Article  CAS  Google Scholar 

  49. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    PubMed  Article  CAS  Google Scholar 

  50. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Duttke, S. H., Chang, M. W., Heinz, S. & Benner, C. Identification and dynamic quantification of regulatory elements using total RNA. Genome Res. 29, 1836–1846 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (32030058, 32121001, 31625016, 32030032), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (XDA16010207, XDA16010501, XDPB2004), the National Key R&D Program of China (2018YFA0800200, 2019YFA0110901), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2018133), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences (2019RU003).

Author information

Authors and Affiliations

Authors

Contributions

Y.-G.Y. and F.L. conceived this project, supervised the study; B.S., J.H. and Y.Y. performed the experiments; J.-Y.Z., B.S. and W.-Y.Z. performed bioinformatics analysis; Y.-G.Y., F.L., M.J.K., P.L., Y.-L.Z., Y.Y., J.-Y.Z., J.H. and B.S. discussed and integrated the data, wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Feng Liu or Yun-Gui Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Heng, J., Zhou, JY. et al. Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Res 32, 715–728 (2022). https://doi.org/10.1038/s41422-022-00655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-022-00655-5

Further reading

Search

Quick links