Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity

Abstract

IL-15 is a promising cytokine to expand NK and CD8+ T cells for cancer immunotherapy, but its application is limited by dose-limiting, on-target off-tumor toxicity. Here, we have developed a next-generation IL-15 that is activated inside the tumor microenvironment (TME). This pro-IL-15 has the extracellular domain of IL-15Rβ fused to the N-terminus of sIL-15-Fc through a tumor-enriched Matrix Metalloproteinase (MMP) cleavable peptide linker to block its activity. Unlike sIL-15-Fc, pro-IL-15 does not activate the peripheral expansion of NK cells and T cells, thus reducing systemic toxicity, but it still preserves efficient anti-tumor abilities. In various mouse tumors, the anti-tumor effect of pro-IL-15 depends on intratumoral CD8+ T cells and IFN-γ. Pro-IL-15 increases the stem-like TCF1+Tim-3CD8+ T cells within tumor tissue and helps overcome immune checkpoint blockade (ICB) resistance. Moreover, pro-IL-15 synergizes with current tyrosine kinase inhibitor (TKI) targeted-therapy in a poorly inflamed TUBO tumor model, suggesting that pro-IL-15 helps overcome targeted-therapy resistance. Our results demonstrate a next-generation IL-15 cytokine that can stimulate potent anti-tumor activity without severe toxicity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Poor tumor control and severe toxicity after systemic delivery of sIL-15-Fc.
Fig. 2: Engineering a tumor-conditional pro-IL-15.
Fig. 3: Pro-IL-15 avoids peripheral NK expansion mediated toxicity.
Fig. 4: Pro-IL-15 preserves anti-tumor activity.
Fig. 5: Pro-IL-15 activates and expands pre-existing CD8+ T cells for tumor control.
Fig. 6: Pro-IL-15 overcomes the checkpoint blockade resistance to control advanced tumors.
Fig. 7: TKI therapy can synergize with pro-IL-15 therapy to control cold tumors.

References

  1. 1.

    Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Kolitz, J. E. et al. Recombinant interleukin-2 in patients aged younger than 60 years with acute myeloid leukemia in first complete remission: results from Cancer and Leukemia Group B 19808. Cancer 120, 1010–1017 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    Sim, G. C. et al. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J. Clin. Invest. 124, 99–110 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Fiore, P. F. et al. Interleukin-15 and cancer: some solved and many unsolved questions. J. Immunother. Cancer 8, e001428 (2020).

    Article  Google Scholar 

  5. 5.

    Waldmann, T. A., Dubois, S., Miljkovic, M. D. & Conlon, K. C. IL-15 in the combination immunotherapy of cancer. Front Immunol. 11, 868 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    Guo, Y. et al. IL-15 superagonist-mediated immunotoxicity: role of NK cells and IFN-gamma. J. Immunol. 195, 2353–2364 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Santana Carrero, R. M. et al. IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc. Natl. Acad. Sci. USA 116, 599–608 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Mlecnik, B. et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl. Med. 6, 228ra237 (2014).

    Article  Google Scholar 

  9. 9.

    Rhode, P. R. et al. Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol. Res. 4, 49–60 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Chertova, E. et al. Characterization and favorablein vivoproperties of heterodimeric soluble IL-15·IL-15Rα cytokine compared to IL-15 monomer. J. Biol. Chem. 288, 18093–18103 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Mortier, E. et al. Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action through IL-15Rβ/γ. J. Biol. Chem. 281, 1612–1619 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    McGowan, P. M. & Duffy, M. J. Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database. Ann. Oncol. 19, 1566–1572 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Turunen, S. P., Tatti-Bugaeva, O. & Lehti, K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Bioch. Biophys. Acta Mol. Cell Res. 1864, 1974–1988 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    He, R. et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–416 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Ohashi, K., Maruvka, Y. E., Michor, F. & Pao, W. Epidermal growth factor receptor tyrosine kinase inhibitor–resistant disease. J. Clin. Oncol. 31, 1070–1080 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Sun, Z. et al. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control. Nat. Commun. 10, 3874 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Liu, B. et al. Evaluation of the biological activities of the IL-15 superagonist complex, ALT-803, following intravenous versus subcutaneous administration in murine models. Cytokine 107, 105–112 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Guo, Y. et al. IL-15 superagonist–mediated immunotoxicity: role of NK cells and IFN-γ. J. Immunol. 195, 2353–2364 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Yang, X. et al. Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses. Cancer Cell 25, 37–48 (2014).

    Article  Google Scholar 

  22. 22.

    Liang, Y. et al. Targeting IFNα to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance. Nat. Commun. 9, 4586 (2018).

    Article  Google Scholar 

  23. 23.

    Weiss, T. et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci. Transl. Med. 12, eabb2311 (2020).

    CAS  Article  Google Scholar 

  24. 24.

    Tzeng, A., Kwan, B. H., Opel, C. F., Navaratna, T. & Wittrup, K. D. Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. Proc. Natl. Acad. Sci. USA 112, 3320–3325 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Pai, C. C. S. et al. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J. Clin. Invest. 129, 349–363 (2019).

    Article  Google Scholar 

  26. 26.

    Desnoyers, L. R. et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci. Transl. Med. 5, 207ra144 (2013).

    Article  Google Scholar 

  27. 27.

    Puskas, J. et al. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 133, 206–220 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    Jiang, W. et al. Expression of membrane type-1 matrix metalloproteinase, MT1-MMP in human breast cancer and its impact on invasiveness of breast cancer cells. Int. J. Mol. Med. 17, 583–590 (2006).

    PubMed  Google Scholar 

  30. 30.

    Wu, K.-P. et al. MT1-MMP is not a good prognosticator of cancer survival: evidence from 11 studies. Tumor Biol. 35, 12489–12495 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Isaacson, K. J., Jensen, M. M., Subrahmanyam, N. B. & Ghandehari, H. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J. Control Release 259, 62–75 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016).

    Article  Google Scholar 

  34. 34.

    Rovero, S. et al. DNA vaccination against rat Her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J. Immunol. 165, 5133–5142 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Yang Wang for her technical assistance and providing reagents. We thank Benjamin Moon for the excellent editing. We thank Hui Su and Sai Yang for technical assistance in IBP. This work was partly supported by the funding from the National Science Foundation of China (No. 81803086) to Y. Liang.

Author information

Affiliations

Authors

Contributions

J.G., Y.L., H.P., and Y.-X.F. conceptualized the project and designed experiments. J.G. and Y.L. performed experiments. J.G. and Y.L. analyzed data. J.G., Y.L., H.P., and Y.-X.F. contributed to manuscript preparation. D.X., J.S., Y.C., and J.Z. provided technical or material supports. Y.L., H.P., and Y.-X.F. supervised the project.

Corresponding authors

Correspondence to Yong Liang, Yang-Xin Fu or Hua Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Liang, Y., Xue, D. et al. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res (2021). https://doi.org/10.1038/s41422-021-00543-4

Download citation

Search

Quick links