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Dear Editor,
The Qinghai-Tibet Plateau (QTP) is the highest and largest

plateau in the world; its altitude exceeds 4500m on average,
posing great physiological challenges such as severe hypoxia for
endemic wild mammals on the plateau.1 To cope with such a
harsh environment, the phylogenetically distant QTP endemic
mammals have independently evolved similar morphological and
physiological traits. For example, compared with the lowland
mammals, the QTP mammals have a larger ratio of heart mass to
body mass (HM/BM)2,3 and prominently lower pulmonary artery
pressure (PAP),1,4 leading to a high efficiency of oxygen transport
under chronically hypoxic environment. Although species-specific
genetic adaptations have been described in several QTP endemic
mammals,5,6 little is known about the extent to which common
molecular bases contribute to the evolution of the convergent
traits across phylogenetically distant mammalian lineages on
the QTP.
To address this question, we de novo sequenced and

assembled two draft genomes of the plateau pika (Ochotona
curzoniae; Lagomorpha) and the plateau zokor (Myospalax baileyi;
Rodentia) (Supplementary information, Tables S1–S6). Together
with yak5 and Tibetan antelope,6 the four species span the major
phylogenetic lineages of QTP endemic mammals that indepen-
dently evolved similar phenotypic traits (i.e., higher HM/BM and
lower PAP) as a response to highland environment over millions of
years. To examine the genome-wide convergent/parallel evolution
among these QTP mammals, we chose their respective known
closest lowland, living-in-normoxia relatives with genomic
sequences available, including cow (Bos taurus), sheep (Ovis aries),
mouse (Mus musculus), and rabbit (Oryctolagus cuniculus), as well
as five outgroup mammal species as controls (Fig. 1a), which could
ensure the reliability of inferring ancestral sequences and
detecting the molecular convergences or parallels. Across these
13 mammal species, we finally obtained a total of 6643 high-
confidence one-to-one orthologous protein-coding genes. Follow-
ing the evolutionary analyses of our previous study,7 we
discovered 16 and 11 genes under parallel evolution among at
least three of four QTP species (Supplementary information,
Table S7) and among three of four lowland relatives (Supplemen-
tary information, Table S8), respectively, but found no convergent
genes in both groups. The genes under parallel evolution are
expected to contribute to the molecular basis of the convergent
phenotypes among the highland mammals. To test this predic-
tion, we performed the functional enrichment analyses and found
that these genes from the QTP mammals are enriched in the
functional categories related to heart development compared
with those from their lowland counterparts (P= 6.2e−5, two-
tailed Student’s t-test; Supplementary information, Tables S9, S10).
This result is to some extent coincident with the observation that
the QTP mammals have a higher HM/BM value and a more
powerful cardiovascular system.2,3

Among the 16 parallel genes in the QTP mammals, only the
retinol saturase gene (RETSAT) contains a single parallel amino

acid change from glutamine (Q) to arginine (R) at position 247 in
all four QTP mammals (Fig. 1b). Previous studies showed that
RETSAT saturates the 13–14 double bond of all-trans-retinol to
produce all-trans-13,14-dihydroretinol,8 and is involved in vitamin
A metabolism,9 lipid metabolism, and production of reactive
oxygen species.10 However, this gene has never been implicated
in hypoxia adaptation in QTP mammals. We thus performed
in vitro and in vivo experiments to test whether this QTP-specific
parallel substitution of RETSAT is functionally significant in the
evolution of convergent phenotypes of the QTP mammals. We
incubated the retinoid substrates with the HEK293T cells expres-
sing RETSAT. The HPLC analyses of cell lysates showed that RETSAT
with the highland substitution (247R) has a higher enzymatic
activity than that with the wild-type (WT) 247Q (Fig. 1c;
Supplementary information, Fig. S1), indicating that this substitu-
tion (Q247R) causes a biochemical functional change of RETSAT.
Next, we created a line of genetically engineered mice by
mutating glutamine to arginine at position 247 of RETSAT
(Supplementary information, Fig. S2). The mice carrying the
homozygous Q247R mutation (RETSATR/R; transgenic (TG)) have
significantly higher HM than the WT mice (P= 1.1e−4, two-tailed
Student’s t-test) (Fig. 1d; Supplementary information, Fig. S3a, b)
without significant difference in BM (Supplementary information,
Fig. S3c). Consequently, the HM/BM values of the TG mice are
significantly larger than those of the WT mice (P= 4.5e−4, two-
tailed Student’s t-test; Fig. 1e). Further, our echocardiographic
analyses showed that compared with the WT mice, the TG mice
exhibit a larger pulmonary artery diameter (Fig. 1f), higher
pulmonary stroke volume (Fig. 1g), larger pulmonary cardiac
output (Supplementary information, Fig. S4a), and lower right
ventricular systolic pressure (RVSP) (Fig. 1h; Supplementary
information, Fig. S4b). In addition, the TG mice transport oxygen
to the liver more efficiently than the WT mice (P= 1.1e−5, two-
tailed Student’s t-test; Supplementary information, Fig. S5). Taken
together, the TG mice display multiple similar phenotypes
required for adapting to the highland environment for the QTP
endemic mammalian lineages,1–4 suggesting that a single parallel
amino acid substitution can lead to convergent phenotypes.
Based on the observation that TG mice have similar phenotypes

to the QTP mammals, we hypothesized that these mice could
survive better under hypoxic conditions than the WT mice. In
survival experiments, we indeed found that the survival time of
the TG mice is significantly longer than that of the WT littermates
under an acute hypoxia condition (4% O2) (P= 0.00397, two-tailed
Student’s t-test; Fig. 1i). The result is highly consistent even when
considering the female and male animals, respectively (Supple-
mentary information, Fig. S6). Further, the TG mice also display
hypoxia resistance at cellular and tissue levels. After culturing
mouse embryonic fibroblast (MEF) cells under hypoxic conditions
(1% O2), the pimonidazole staining analyses showed that the
relative hypoxic area is significantly smaller in the TG mice than in
the WT mice (Fig. 1j; Supplementary information, Fig. S7a).
Similarly, significantly smaller hypoxia areas are observed in the
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vital organs including brain, heart, liver, kidney, and spleen of the
TG mice after hypoxic treatment (Fig. 1j; Supplementary informa-
tion, Fig. S7b–f). These experiments further demonstrate that the
TG mice can be more resistant to hypoxia stress than the WT
littermates.

Our study not only identifies parallel genetic changes among
multiple phylogenetically independent lineages of the QTP
mammals at the genomic scale, but also demonstrates that a
single amino acid substitution in RETSAT can qualitatively create
some of the convergent phenotypes of the QTP mammals.
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Notably, this parallel substitution was genomically screened out
and tested for adaptive selection among only 13 mammalian
species, which may bias our evolutionary and statistical analyses
due to the small sample size. To overcome this limitation, we
collected the RETSAT protein sequences from a total of 137
mammalian species (Supplementary information, Table S11) to
test the selection of this substitution11 and confirmed that natural
selection, rather than chance, underlies the occurrence of the
substitution (P < 10–4; Supplementary information, Table S12). In
addition, we observed that this parallel substitution occurs in
some non-hypoxia-tolerant mammals. Although this observation
is not surprising and does not overturn our conclusion because (i)
the pure patterns of molecular convergences or parallels rarely
exist when taxonomic sampling depth increases12 and (ii) the
occurrence of the parallel substitution in some background
species does not necessarily preclude a functional effect on the
protein13 as our experiments proved for the Q247R of RETSAT, we
proposed the following possibilities why the parallel substitution
occurs in non-hypoxia-tolerant mammals. One possibility is that
some non-hypoxia-tolerant species with the parallel substitution
own a large HM/BM value as we observed in the QTP mammals
such as degu14 and white-tailed deer.15 Another possibility is that
this parallel substitution may have pleiotropic effects on
phenotypes that are not related to the increase of HM/BM value,
which warrants further exploration. Our study represents a typical
empirical example for revealing a close relationship between
molecular convergences and convergent phenotypes in mam-
mals. The identification of a novel major effect gene sheds new
light on the genetic mechanisms underlying hypoxia adaptation
and provides new targets for the prevention and treatment of
common mountain diseases, such as pulmonary arterial hyperten-
sion and right ventricle hypertrophy.
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