Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sequential progenitor states mark the generation of pancreatic endocrine lineages in mice and humans

Abstract

The pancreatic islet contains multiple hormone+ endocrine lineages (α, β, δ, PP and ε cells), but the developmental processes that underlie endocrinogenesis are poorly understood. Here, we generated novel mouse lines and combined them with various genetic tools to enrich all types of hormone+ cells for well-based deep single-cell RNA sequencing (scRNA-seq), and gene coexpression networks were extracted from the generated data for the optimization of high-throughput droplet-based scRNA-seq analyses. These analyses defined an entire endocrinogenesis pathway in which different states of endocrine progenitor (EP) cells sequentially differentiate into specific endocrine lineages in mice. Subpopulations of the EP cells at the final stage (EP4early and EP4late) show different potentials for distinct endocrine lineages. ε cells and an intermediate cell population were identified as distinct progenitors that independently generate both α and PP cells. Single-cell analyses were also performed to delineate the human pancreatic endocrinogenesis process. Although the developmental trajectory of pancreatic lineages is generally conserved between humans and mice, clear interspecies differences, including differences in the proportions of cell types and the regulatory networks associated with the differentiation of specific lineages, have been detected. Our findings support a model in which sequential transient progenitor cell states determine the differentiation of multiple cell lineages and provide a blueprint for directing the generation of pancreatic islets in vitro.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of cell types present during mouse endocrinogenesis by Smart-seq2 scRNA-seq analysis.
Fig. 2: Identification of allocation pathways for mouse endocrine lineages by scRNA-seq analyses.
Fig. 3: Genetic tracing to verify the temporal order of the mouse endocrinogenesis pathways.
Fig. 4: Differentiation pathways of EP3 cells in mice.
Fig. 5: Stage-dependent differentiation pathways of EP4 cells in mice.
Fig. 6: Distinct pathways generate α and PP cells in mice.
Fig. 7: Identification of cell types and allocation pathways of human endocrinogenesis.
Fig. 8: Differentiation pathways of endocrine lineages in the human fetal pancreas.
Fig. 9: GCN comparison between human and mouse fetal pancreases.

Data availability

The mouse RNA-seq data from this publication have been deposited to the Gene Expression Omnibus (GEO) and assigned the identifier GSE139627. The human RNA-seq expression matrix data from this publication have been deposited to the OMix (https://bigd.big.ac.cn/omix/) and assigned the identifier OMIX236.

References

  1. 1.

    Zhou, Q. & Melton, D. A. Pancreas regeneration. Nature 557, 351–358 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Aguayo-Mazzucato, C. & Bonner-Weir, S. Pancreatic beta cell regeneration as a possible therapy for diabetes. Cell Metab. 27, 57–67 (2018).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Shih, H. P., Wang, A. & Sander, M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu. Rev. Cell Dev. Biol. 29, 81–105 (2013).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611 (2000).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  6. 6.

    Heller, R. S. et al. Genetic determinants of pancreatic epsilon-cell development. Dev. Biol. 286, 217–224 (2005).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Desgraz, R. & Herrera, P. L. Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136, 3567–3574 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Byrnes, L. E. et al. Lineage dynamics of murine pancreatic development at single-cell resolution. Nat. Commun. 9, 3922 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Scavuzzo, M. A. et al. Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat. Commun. 9, 3356 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Yu, X. X. et al. Defining multistep cell fate decision pathways during pancreatic development at single-cell resolution. EMBO J. 38, e100164 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    van Gurp, L. et al. A transcriptomic roadmap to alpha- and beta-cell differentiation in the embryonic pancreas. Development 146, dev173716 (2019).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Bastidas-Ponce, A. et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development 146, dev173849 (2019).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Jennings, R. E., Berry, A. A., Strutt, J. P., Gerrard, D. T. & Hanley, N. A. Human pancreas development. Development 142, 3126–3137 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Baeyens, L. et al. (Re)generating human beta cells: status, pitfalls, and perspectives. Physiol. Rev. 98, 1143–1167 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Petersen, M. B. K., Goncalves, C. A. C., Kim, Y. H. & Grapin-Botton, A. Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr. Top. Dev. Biol. 129, 143–190 (2018).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Jeon, J., Correa-Medina, M., Ricordi, C., Edlund, H. & Diez, J. A. Endocrine cell clustering during human pancreas development. J. Histochem. Cytochem. 57, 811–824 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Piper, K. et al. Beta cell differentiation during early human pancreas development. J. Endocrinol. 181, 11–23 (2004).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Liu, J. et al. Neurog3-independent methylation is the earliest detectable mark distinguishing pancreatic progenitor identity. Dev. Cell 48, 49–63 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Sharon, N. et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell 176, 790–804 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Krentz, N. A. J. et al. Single-cell transcriptome profiling of mouse and hESC-derived pancreatic progenitors. Stem Cell Rep. 11, 1551–1564 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Yu, X. X. & Xu, C. R. Understanding generation and regeneration of pancreatic beta cells from a single-cell perspective. Development 147, dev179051 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Dong, J. et al. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biol. 19, 31 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    van Dam, S., Vosa, U., van der Graaf, A., Franke, L. & de Magalhaes, J. P. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 19, 575–592 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Iacono, G., Massoni-Badosa, R. & Heyn, H. Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol. 20, 110 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Wierup, N., Yang, S., McEvilly, R. J., Mulder, H. & Sundler, F. Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J. Histochem. Cytochem. 52, 301–310 (2004).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Wierup, N., Svensson, H., Mulder, H. & Sundler, F. The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul. Pept. 107, 63–69 (2002).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Yu, X. X. et al. Dynamics of chromatin marks and the role of JMJD3 during pancreatic endocrine cell fate commitment. Development 145, dev163162 (2018).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Pan, F. C. & Wright, C. Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 240, 530–565 (2011).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Wang, X. et al. Quantitative analysis of pancreatic polypeptide cell distribution in the human pancreas. PLoS One 8, e55501 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Herrera, P. L. et al. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development 113, 1257–1265 (1991).

    CAS  PubMed  Google Scholar 

  35. 35.

    Collombat, P. et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 17, 2591–2603 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Zhang, J., McKenna, L. B., Bogue, C. W. & Kaestner, K. H. The diabetes gene Hhex maintains delta-cell differentiation and islet function. Genes Dev. 28, 829–834 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Pan, F. C., Brissova, M., Powers, A. C., Pfaff, S. & Wright, C. V. Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing beta-cells to a delta-like fate and reveals a facultative proliferative capacity in aged beta-cells. Development 142, 3637–3648 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Li, J. et al. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep. 17, 178–187 (2016).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Artner, I. et al. MafB is required for islet beta cell maturation. Proc. Natl. Acad. Sci. USA 104, 3853–3858 (2007).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Nishimura, W. et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev. Biol. 293, 526–539 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Henseleit, K. D. et al. NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development 132, 3139–3149 (2005).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Nelson, S. B., Schaffer, A. E. & Sander, M. The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting beta-cell fate specification in Pdx1+ pancreatic progenitor cells. Development 134, 2491–2500 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Sussel, L. et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development 125, 2213–2221 (1998).

    CAS  PubMed  Google Scholar 

  46. 46.

    Arnes, L., Hill, J. T., Gross, S., Magnuson, M. A. & Sussel, L. Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population. PLoS One 7, e52026 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Salisbury, R. J. et al. The window period of NEUROGENIN3 during human gestation. Islets 6, e954436 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Ramond, C. et al. Reconstructing human pancreatic differentiation by mapping specific cell populations during development. Elife 6, e27564 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Dolensek, J., Rupnik, M. S. & Stozer, A. Structural similarities and differences between the human and the mouse pancreas. Islets 7, e1024405 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Andralojc, K. M. et al. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52, 486–493 (2009).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Miyatsuka, T., Li, Z. & German, M. S. Chronology of islet differentiation revealed by temporal cell labeling. Diabetes 58, 1863–1868 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Johansson, K. A. et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev. Cell 12, 457–465 (2007).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Bankaitis, E. D., Bechard, M. E. & Wright, C. V. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche. Genes Dev. 29, 2203–2216 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Cozzitorto, C. et al. A specialized niche in the pancreatic microenvironment promotes endocrine differentiation. Dev. Cell 55, 150–162 (2020).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Stoffers, D. A., Zinkin, N. T., Stanojevic, V., Clarke, W. L. & Habener, J. F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15, 106–110 (1997).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Bonnefond, A. et al. Transcription factor gene MNX1 is a novel cause of permanent neonatal diabetes in a consanguineous family. Diabetes Metab. 39, 276–280 (2013).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Flanagan, S. E. et al. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab. 19, 146–154 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Rubio-Cabezas, O. et al. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59, 2326–2331 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Wang, D. et al. Long-term expansion of pancreatic islet organoids from resident Procr(+) progenitors. Cell 180, 1198–1211 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Jennings, R. E. et al. Development of the human pancreas from foregut to endocrine commitment. Diabetes 62, 3514–3522 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Schonhoff, S. E., Giel-Moloney, M. & Leiter, A. B. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev. Biol. 270, 443–454 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq — a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  Article  Google Scholar 

  65. 65.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Skinnider, M. A., Squair, J. W. & Foster, L. J. Evaluating measures of association for single-cell transcriptomics. Nat. Methods 16, 381–386 (2019).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  72. 72.

    Zhang, H. M. et al. AnimalTFDB: a comprehensive animal transcription factor database. Nucl. Acids Res. 40, D144–D149 (2012).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Andrews, T. S. & Hemberg, M. M3Drop: dropout-bas d feature selection for scRNASeq. Bioinformatics 35, 2865–2867 (2019).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258 (2007).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Chris Wright, Zemin Zhang, Ge Gao and members of the Xu laboratory for the advice and comments. We thank Nurse Jianrong Tian for the assistance with human embryo collection. We also thank the Peking-Tsinghua Center for Life Science High Performance Computing Platform, the Flow Cytometry Core at the National Center for Protein Sciences at Peking University, particularly Ms. Fei Wang, Ms. Yinghua Guo and Ms. Hongxia Lv for the technical help, and the Core Facilities at the School of Life Sciences of Peking University, particularly Ms. Siying Qin for the technical help and Mr. Ming Du for the assistance with imaging. This work was supported by the National Key R&D Program of China (2019YFA0801500 to C.-R.X.), the Ministry of Science and Technology of China (2015CB942800 to C.-R.X.), the National Natural Science Foundation of China (32030034, 91753138, and 31521004 to C.-R.X. and 32000566 to X.-X.Y.), funding from the Peking-Tsinghua Center for Life Sciences to C.-R. X, and the China Postdoctoral Science Foundation (BX20190009 to X.-X.Y. and 2020TQ0018 to W.-L.Q.).

Author information

Affiliations

Authors

Contributions

C.-R.X. conceived the project; C.-R.X., X.-X.Y. and W.-L.Q. designed the experiments; X.-X.Y., L.Y., Y.-C.W., M.-Y.H., D.W., Y.Z., L.-C.L., J.Z. and Y.W. performed the experiments; Y.-C.W., J.Z. and Y.W. collected the human fetal samples; W.-L.Q., X.-X.Y. and C.-R.X. analyzed the data; X.-X.Y., W.-L.Q. and C.-R.X. wrote the manuscript.

Corresponding author

Correspondence to Cheng-Ran Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, XX., Qiu, WL., Yang, L. et al. Sequential progenitor states mark the generation of pancreatic endocrine lineages in mice and humans. Cell Res (2021). https://doi.org/10.1038/s41422-021-00486-w

Download citation

Search

Quick links