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A pan-cancer blueprint of the heterogeneous tumor
microenvironment revealed by single-cell profiling
Junbin Qian 1,2, Siel Olbrecht1,2,3, Bram Boeckx1,2, Hanne Vos4, Damya Laoui5,6, Emre Etlioglu 7, Els Wauters8,9, Valentina Pomella7,
Sara Verbandt7, Pieter Busschaert3, Ayse Bassez1,2, Amelie Franken1,2, Marlies Vanden Bempt1,2, Jieyi Xiong1,2, Birgit Weynand10,
Yannick van Herck11, Asier Antoranz10, Francesca Maria Bosisio10, Bernard Thienpont 12, Giuseppe Floris10, Ignace Vergote3,
Ann Smeets4, Sabine Tejpar7 and Diether Lambrechts 1,2

The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating
cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar
between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and
breast cancer (n= 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and
protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are
unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic
activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while
tumor-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumors treated
with checkpoint immunotherapy and identifying a naïve CD4+ T-cell phenotype predictive of response to checkpoint
immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data. In conclusion, by providing a comprehensive
blueprint through an interactive web server, we generate the first panoramic view on the shared complexity of stromal cells in
different cancers.
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INTRODUCTION
In recent years, single-cell RNA sequencing (scRNA-seq) studies
have provided an unprecedented view on how stromal cells
consist of heterogeneous and phenotypically diverse populations
of cells. Indeed, by now, the tumor microenvironment (TME) of
several cancer types has been profiled, including melanoma,1 lung
cancer,2 head and neck cancer,3 hepatocellular carcinoma,4

glioma,5 medulloblastoma,6 pancreatic cancer,7 etc. However,
while there is still an unmet need to chart TME heterogeneity in
additional tumors and cancer types, the higher-level question
relates to the similarities between these microenvironments.
Indeed, it remains unexplored whether the same stromal cell

phenotypes are present in different cancer types. Also, it is not clear
to what extent these phenotypes are reminiscent of the normal
tissue from which they originate and are thus characterised by
tissue-specific expression. Such knowledge is highly desirable,
because it not only facilitates comparison between different
scRNA-seq studies, but also contributes to our insights in cancer
type-specific gene expression patterns and treatment vulnerabilities.

Furthermore, this knowledge would allow us to assess at single-
cell level the underlying mechanisms of action of novel cancer
therapies. Indeed, most innovative cancer therapies are given to
cancer patients with advanced disease, in which tissue biopsies
often can only be collected from metastasized organs. It is difficult,
however, to systematically identify stromal phenotypes in biopsies
taken from different organs, as their expression is determined by
the metastasized tissue. Another challenge is that rare stromal cell
phenotypes often cluster together with other more common
phenotypes, and can therefore only be detected when several
10,000s of cells derived from multiple patient biopsies are profiled
together. Many of these rare phenotypes are critical in determin-
ing response to cancer treatment and therefore need to be
assessed as a separate population of cells. For instance, scRNA-seq
of melanoma T-cells exposed to anti-PD1 identified TCF7+ CD8+

memory-precursor T-cells as the population underlying treatment
response. These cells are rare, as they represent only ∼15% of
CD8+ T-cells, which by themselves represent only ∼2.5% of cells in
these tumors.8 In order not to miss these rare phenotypes, a
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blueprint of the different cell populations present in each cancer
type would be of considerable benefit.
We therefore generated a comprehensive blueprint of stromal

cell heterogeneity across cancer types and provide a detailed view
on the shared complexity and heterogeneity of stromal cells in
these cancers. We illustrate how this blueprint can serve as a guide
to interpret scRNA-seq data at individual patient level, even when
comparing tumors collected from different tissues or profiled
using different scRNA-seq technologies. Our single-cell blueprint
can be visualised, analysed and downloaded from an interactive
web server (http://blueprint.lambrechtslab.org).

RESULTS
scRNA-seq and cell typing of tumor and normal tissue
First, we performed scRNA-seq on tumors from 3 different organs
(or cancer types): colorectal cancer (CRC, n= 7), lung cancer (LC,
n= 8) and ovarian cancer (OvC, n= 5). Whenever possible, we
retrieved both malignant (tumor) and matched non-malignant
(normal) tissue during surgical resection with curative intent. All
tumors were treatment-naïve and reflected different disease
stages (e.g., stage I–IV CRC) or histopathologies (e.g., adenocarci-
noma versus squamous LC), and whenever possible tissues were
collected from different anatomic sites (e.g., primary tumor from
the ovary and omentum in OvC, or from core versus border
regions in CRC). Overall, 50 tumor tissues and 17 normal tissues
were profiled (Fig. 1a). Clinical and tumor mutation data are
summarised in Supplementary information, Tables S1–3.
Following resection, tissues were rapidly digested to a single-

cell suspension and unbiasedly subjected to 3′-scRNA-seq. After
quality filtering (Materials and methods), we obtained ~1 billion
unique transcripts from 183,373 cells with > 200 genes detected.
Of these, 71.7% of cells originated from malignant tissue. Principle
component analysis (PCA) using variably expressed genes was
used to generate t-SNEs at different resolutions (Supplementary
information, Fig. S1a, b). Marker genes were used to identify cell
types (Supplementary information, Fig. S1c). At low resolution,
cells clustered based on cancer type, whereas at high resolution
they clustered based on patient identity (Supplementary informa-
tion, Fig. S1d). Also, when assessing how cell types previously
identified in LC now clustered,2 obvious differences were noted,
with similar phenotypic cells now belonging to distinct clusters.

Sub-phenotyping of cell types
We therefore used a different strategy. First, we clustered cells for
each cancer type separately and assigned cell type identities to
each cell (Fig. 1a). The result revealed that cells mostly clustered
based on cell type (Fig. 1b; Supplementary information, Fig. S1e),
allowing us to assess the relative contribution of tumor versus
normal tissue or individual patients to each cell type (Fig. 1c–e;
Supplementary information, Fig. S1f). We observed that dendritic
cells were transcriptionally most active, while T-cells were the
most frequent cell type across cancer types (Fig. 1e, f), especially in
LC (as observed in other datasets; Supplementary information,
Fig. S1g). We also identified cell types specific for one cancer type,
including lung alveolar, epithelial and enteric glial cells.
Next, we pooled cells from different cancer types based on cell

type identity and performed PCA-based unaligned clustering,
generating t-SNEs displaying the phenotypic heterogeneity for
each cell type (Fig. 1a). For alveolar, epithelial and enteric glial cells
this generated 15 tissue-specific subclusters (LC: 5 alveolar clusters
and 1 epithelial cluster; CRC: 8 epithelial clusters and 1 enteric glial
cluster), most of which have been described previously9,10

(Supplementary information, Fig. S1h–p). Additionally, 7 tissue-
specific subclusters were identified amongst the fibroblasts and
macrophages (see below). Separately, we performed canonical
correlation analysis (CCA) for each cancer type followed by graph-
based clustering to generate a t-SNE per cell type11 (Fig. 1a). To

avoid that CCA would erroneously assign cells unique for a cancer
type, we did not include any of the 22 tissue-specific subclusters.
Thus, while unaligned clustering revealed patient or cancer type-
specific clusters, CCA aligned common sources of variation
between cancer types. Two measures to calculate sample bias
(i.e., “Shannon index” and “mixing metrics”, see “Materials and
methods”) confirmed that after CCA bias decreased in all clusters
(Supplementary information, Fig. S1q, r).
Overall, we identified 68 stromal subclusters or phenotypes, of

which 46 were shared across cancer types. The number of
phenotypes varied between cell types, ranging between 5 to 11
for dendritic cells and fibroblasts, respectively. Our approach was
less successful for cancer cells, which due to underlying genetic
heterogeneity continued to cluster patient-specifically (Supple-
mentary information, Fig. S1s–u). The number of cancer cells
varied substantially between tumors, while also T-cells, myeloid
cells and B-cells varied considerably (Supplementary information,
Fig. S1v–w).
Below, we describe each stromal phenotype in more detail,

highlighting the number of cells, read counts and transcripts
across all cancer types and for each cancer type separately, both in
tumor versus normal tissue (Supplementary information, Table S4).
Additionally, marker genes and functional characteristics of each
phenotype are highlighted (Supplementary information, Table S5).
The enrichment or depletion of these phenotypes in a cancer type
(LC, CRC and OvC) or tissue (tumor versus normal) are evaluated
(Supplementary information, Table S6), while gene set enrichment
analysis for biological and disease pathways (REACTOME and
Gene Ontology) is also performed (see http://blueprint.
lambrechtslab.org).

Endothelial cells, tissue-specificity confined to normal tissue
Clustering the transcriptomes of 8223 endothelial cells (ECs) using
unaligned and CCA-aligned approaches identified, respectively, 13
and 9 clusters, each with corresponding marker genes (Fig. 2a–c;
Supplementary information, Fig. S2a–c). Five CCA-aligned clusters
were shared between cancer types (Fig. 2d, e), including, based on
marker gene expression, C1_ESM1 tip cells (ESM1, NID2),
C2_ACKR1 high endothelial venules (HEVs) and venous ECs
(ACKR1, SELP), C3_CA4 capillary (CA4, CD36), C4_FBLN5 arterial
(FBLN5, GJA5) and C5_PROX1 lymphatic (PROX1, PDPN) ECs. Three
other clusters displayed T-cell (C6_CD3D), pericyte (C7_RGS5) and
myeloid-specific (C8_AIF1) marker genes and consisted of doublet
cells, while one cluster consisted of low-quality ECs (C9;
Supplementary information, Fig. S2d, e). Tip ECs only resided in
malignant tissue and were most prevalent in CRC, while also HEVs
were enriched in tumors. In contrast, capillary ECs (cECs) were
enriched in normal tissue (Fig. 2d–f; Supplementary information,
Fig. S2f). We identified several genes differentially expressed
between tumor and normal tissue (Supplementary information,
Fig. S2g and Table S7). For instance, the pro-angiogenic factor
perlecan (or HSPG2) was highly expressed in tumor versus normal
cECs.
There were 5 unaligned cEC clusters, which clustered together

(in C3_CA4) after CCA. Among these, 4 were derived from normal
tissue (NEC1–4; Fig. 2g). Moreover, NEC1–3s were all from lung,
suggesting that most cEC heterogeneity is ascribable to normal
lung. C3_NEC1s represented alveolar cECs based on the absence
of VWF, while C3_NEC2s and C3_NEC3s represented extra-alveolar
cECs12,13 (Fig. 2g–i). C3_NEC1s expressed EDNRB, an oxygen-
sensitive regulator mediating vasodilation,14 but also IL33-
receptor IL1RL1 (ST2). This is surprising as major IL-33 effector
cell types are thus far only immune cells, including basophils and
innate lymphocytes.10 Both extra-alveolar cNEC clusters expressed
EDN1, which is a potent vasoconstrictor. C3_NEC3s additionally
expressed cytokines, chemotactic and immune cell homing
molecules (e.g., IL6, CCL2, ICAM1) (Supplementary information,
Fig. S2h). In contrast, C3_NEC4s were exclusively composed of
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ovary and colon-derived cells, suggesting similarities between
NECs from both tissues. A polarized distribution of ovary and
colon-derived ECs within the C3_NEC4 cluster (Fig. 2g) suggests,
however, that there are also differences between both tissues. In
contrast, tumor cECs (C3_TECs) were derived from all 3 cancer
types and lacked tissue specificity on the t-SNE. Indeed, C3_TECs
were all characterised by tumor EC markers PLVAP and IGFBP715–17

(Supplementary information, Fig. S2h and Table S5), and only few
genes were differentially expressed between cancer types in TECs
(Supplementary information, Fig. S2i).
SCENIC18 identified different transcription factors (TFs) under-

lying each EC phenotype (Fig. 2j, k; Supplementary information,
Table S8). For instance, activation of NF-κB (NFKB1) and HOXB
pathways was confined to C3_NEC3s and C3_TECs, respectively.

Fig. 1 Experimental design and cell typing. a Analysis workflow of tumor and matched normal samples from 3 cancer types. b–d t-SNE
representation for LC (n= 93,576 cells), CRC (n= 44,685) and OvC (45,115). Colour-coded for cell type (b), sample origin (c) and patient (d).
e Bar plots representing per cell type from left to right: the fraction of cells per tissue and per origin, the number of cells, the total number of
transcripts. Dendritic cells were transcriptionally most active (P < 1.6 × 10−10). f Fraction of cells for major cell types per cancer type. T-cells
were most frequent in LC (P < 0.0047).
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Metabolic pathway analysis revealed distinct metabolic signatures
among EC phenotypes (Fig. 2l, m): glycolysis and oxidative
phosphorylation, which promote vessel sprouting,19 were upre-
gulated in tip cells, while fatty acid oxidation, essential for
lymphangiogenesis was increased in lymphatic ECs.19 Metabolic
activities within cECs also differed: carbonic acid metabolism was
most active in C3_NEC1, confirming these are alveolar cECs, which
actively convert carbonic acid into CO2 during respiration.
However, carbonic acid metabolism was reduced in C3_TECs,
which instead deployed glycolysis and oxidative phosphorylation
(Supplementary information, Fig. S2j). Similar characteristics were
observed when assessing activation of cancer hallmark pathways
(Supplementary information, Fig. S2k, l).

Fibroblasts show the highest cancer type specificity
Fibroblasts are highly versatile cell types endowed with extensive
heterogeneity.20 Indeed, unaligned clustering of 24,622 fibroblasts
resulted in 17 clusters (Fig. 3a, b), which were often tissue-specific
(Supplementary information, Fig. S3a–d). Particularly, C1–C3
represented colon-specific clusters derived from normal tissue,
while C4–C6 represented stroma (C4, C5) and mesothelium-
derived cells (C6) specific for the ovary. C1–C6 fibroblasts were
excluded from CCA, because they have a tissue-specific identity,
localization and function that are unlikely to have counterparts in
other tissues (see below). All other fibroblasts clustered into 5
clusters shared across cancer types and patients (C7–C11; Fig. 3c–e;
Supplementary information, Fig. S3e). Three other CCA clusters

Fig. 2 Clustering 8223 ECs. a t-SNEs colour-coded for annotated ECs by unaligned and CCA-aligned clustering. b t-SNEs with EC marker gene
expression for CCA clusters. c Marker gene expression per EC cluster. d Fraction of cells in each cancer type per EC cluster. e Fraction of EC
clusters per cancer type (left) and sample origin (right). f Normal/tumor ratio of relative percentage of EC clusters, < 1 indicates tumor
enrichment. Tip ECs (FDR= 1.4 × 10−141) and HEVs (FDR= 2.3 × 10−60) were enriched in tumor. g t-SNEs of cEC clusters by unaligned
clustering, colour-coded by cluster, sample origin and cancer type, including a zoom-in of the NEC4 cluster (right). h t-SNE of marker gene
expression in cEC clusters. i-k Heatmap of differentially expressed genes in cEC clusters (i), of TF activity by SCENIC for EC (j) or cEC clusters (k).
l, m Heatmap showing metabolic activity for EC (l) or cEC clusters (m).
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represented a low-quality (C12) or doublet cluster (C13_CD3D,
C14_AIF1) (Supplementary information, Fig. S3f, g). Fibroblasts
therefore consist of 11 cellular phenotypes: tissue-specific clusters
C1–C6 identified by unaligned clustering and shared clusters
C7–C11 identified by CCA (Fig. 3f, g for marker genes and
functional gene sets).
Colon-specific C1–C3s mostly resided in normal tissue (Fig. 3e).

C1_KCNN3 fibroblasts co-expressed KCNN3 and P2RY1 (Fig. 3f), a

potassium calcium-activated channel (SK3-type) and purine
receptor (P2Y1), respectively. Their co-expression defines a novel
excitable cell that co-localizes with motor neurons in the
gastrointestinal tract and regulates their purinergic inhibitory
response to smooth muscle function in the colon.21,22 C1_KCNN3s
also expressed LY6H, a neuron-specific regulator of nicotine-
induced glutamatergic signalling,23 suggesting these cells to
regulate multiple neuromuscular transmission processes.

Fig. 3 Characterization of 24,622 fibroblasts. a t-SNE colour-coded for annotated fibroblasts by unaligned clustering. b t-SNEs with marker
gene expression in unaligned clusters. c t-SNE colour-coded for annotated fibroblasts by CCA. d t-SNE with marker gene expression in CCA
clusters. e Fraction of fibroblast clusters per cancer type (left) and sample origin (right). C7–C11s are shared by CRC, LC and OvC. f, g Heatmap
of marker gene expression (f) and functional gene sets (g). h Normal/tumor ratio of relative percentage of fibroblast clusters, < 1 indicates
tumor enrichment. Pericytes were enriched in tumor (FDR= 7.8 × 10−10). i, j Heatmap of TF activity (i) or metabolic activity (j) in fibroblast
clusters.
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C2_ADAMDEC1s represented mesenchymal cells of the colon
lamina propria,24 characterised by ADAMDEC1 and APOE.
C3_SOX6s were marked by SOX6 expression, as well as BMP4,
BMP5, WNT5A and FRZB expression (Fig. 3f). They located in close
proximity to the epithelial stem cell niche and promote stem cell
maintenance in the colon.24 C4–C5 ovarian stroma cells were
marked by STAR and FOXL2,25,26 which promote folliculogenesis.27

Both clusters also expressed DLK1, which is typical for embryonic
fibroblasts. C4_STARs were derived from normal tissue, while
C5_STARs were exclusive to tumor tissue, suggesting that
C4_STARs give rise to C5_STARs.25 Based on calretinin (CALB2)
and mesothelin (MSLN) expression, C6_CALB2s were likely to
represent mesothelium-derived cells.28 These cells were especially
enriched in omentum (Supplementary information, Fig. S3h),
known to contain numerous mesothelial cells.
C7_MYH11 corresponded to myofibroblasts and were charac-

terised by high expression of smooth muscle-related contractile
genes, including MYH11, PLN and ACTG2 (Fig. 3f). C8_RGS5
represented pericytes (RGS5, PDGFRB), which similar as myofibro-
blasts expressed contractile genes, but also showed pronounced
expression of RAS superfamily members (RRAS, RASL12). Addition-
ally, pericytes expressed a distinct subset of collagens (COL4A1,
COL4A2, COL18A1), genes involved in angiogenesis (EGFL6,
ANGPT2; Fig. 3g) and vessel maturation (NID1, LAMA4, NOTCH3;
Supplementary information, Fig. S3i). Pericytes were enriched in
malignant tissue (Fig. 3e, h; Supplementary information, Fig. S3j).
When comparing pericytes from malignant versus normal tissue,
the former exhibited increased expression of collagens and
angiogenic factors (PDGFA, VEGFA; Supplementary information,
Fig. S3k), but reduced expression of the vascular stabilization
factor TIMP3.29 These differences may contribute to a leaky tumor
vasculature. C9_CFDs expressed adipocyte markers adipsin (CFD)
and apolipoprotein D (APOD), suggesting these are adipogenic
fibroblasts. They are positively associated with aging in the
dermis,30 but their role in malignancy has not been established.
Notably, in the unaligned clusters, C9s separated into 3 tissue-
specific clusters and a single cancer-associated fibroblasts (CAF)
cluster (Fig. 3a), suggesting that C9 fibroblasts (similar as cECs)
lose tissue-specificity in the TME.
C10–C11 represented CAFs showing strong activation of cancer

hallmark pathways, including glycolysis, hypoxia, and epithelial-to-
mesenchymal transition (Supplementary information, Fig. S3l).
C10_COMPs typically expressed metalloproteinases (MMPs), TGFβ-
signalling molecules and extracellular matrix (ECM) genes,
including collagens (Fig. 3g). They also expressed the TGF-β co-
activator COMP, which is activated during chondrocyte differentia-
tion, and activin (INHBA), which synergizes with TGF-β
signalling.31,32 Accordingly, chondrocyte-specific TGF-β targets
(COL10A1, COL11A1) were strongly upregulated. C11_SERPINE1s
exhibited increased expression of SERPINE1, IGF1, WT1 and CLDN1,
which all promote cell migration and/or wound healing via various
mechanisms.33–36 They also expressed collagens, albeit to a lesser
extent as C10_COMPs. Additionally, high expression of the pro-
angiogenic EGFL6 suggests these cells to exert paracrine
functions.37,38 Interestingly, the number of C10–C11 CAFs
positively correlated with the presence of cancer cells (Supple-
mentary information, Fig. S3m), confirming the role of CAFs in
promoting tumor growth.20

Using SCENIC, we identified TFs unique to each fibroblast
cluster (Fig. 3i). For instance, MYC and EGR3 underpinned
C11_CAFs, while pericytes were characterised by EPAS1, TBX2
and NR2F2 activity. Interestingly, MYC activation of CAFs promotes
aggressive features in cancer cells through upregulation of
unshielded RNA in exosomes.39 At the metabolic level, we
observed that creatine and cyclic nucleotide metabolism, which
are essential for smooth muscle function, were upregulated in
myofibroblasts (C7), while glycolysis was most prominent in
C10–C11 CAFs (Fig. 3j). Indeed, highly proliferative CAFs rely on

aerobic glycolysis and their glycolytic adaptation promotes a
reciprocal metabolic symbiosis between CAFs and cancer cells.20

Dendritic cells, novel markers of cDC maturation revealed
Clustering the transcriptomes of 2722 DCs identified 5 different
DC phenotypes using unaligned and CCA-aligned approaches
(Fig. 4a). 92% of cells clustered similarly with both approaches,
suggesting DCs in line with their non-resident nature to have
limited cancer type specificity. C1_CLEC9As corresponded to
conventional DCs type 1 (cDC1; CLEC9A, XCR1),40,41 C2_CLEC10As
to cDCs type 2 (cDC2; CD1C, CLEC10A, SIRPA), while C3_CCR7s
represented migratory cDCs (CCR7, CCL17, CCL19; Fig. 4b, c;
Supplementary information, Fig. S4a, b). Further, C4_LILRA4s
represented plasmacytoid DCs (pDCs; LILRA4, CXCR3, IRF7), while
C5_CD207s were related to cDC2s based on CD1C expression.
C5_CD207s additionally expressed Langerhans cell-specific mar-
kers: CD207 (langerin) and CD1A, but not the epithelial markers
CDH1 and EPCAM, typically expressed in Langerhans cells.42 These
cells therefore likely represented a subset of cDC2s with a similar
expression as Langerhans cells. Notably, Langerhans-like and
migratory DCs were not previously characterised by scRNA-seq,
possibly because these studies focused on blood-derived DCs.40

Overall, C2_CLEC10As were most abundant, while the number
of other DCs varied per cancer type. For instance, C3 was rare in
OvC, and C5 enriched in malignant tissue (Fig. 4d, e; Supplemen-
tary information, Fig. S4c, d). SCENIC confirmed known TFs to
underlie each DC phenotype, including BATF3 for cDC1s, CEBPB for
cDC2s, NFKB2 for migratory cDCs and TCF4 for pDCs (Fig. 4f, g). We
also identified novel TFs (Supplementary information, Table S8).
For instance, SPI1, a master regulator of Langerhans cell
differentiation,43 and RXRA, required for cell survival and antigen
presentation in Langerhans cells,44 were both expressed in C5.
Cancer hallmark pathway analysis revealed activation of
interferon-α and -γ signalling in migratory cDCs, while metabolic
pathway analysis confirmed a critical role for folate metabolism
(Supplementary information, Fig. S4e, f).45

By leveraging trajectory inference analyses (using 3 different
pipelines; see Materials and methods), we recapitulated the cDC
maturation process and observed that cDC2s are enriched in the
migrating branch (Fig. 4h, i), suggesting that migratory cDCs
originate from cDC2s but not cDC1s, at least in tumors. Consistent
herewith, some migratory cDC-related genes, i.e., CCL17 and
CCL22, were already upregulated in a subset of cDC2s (Supple-
mentary information, Fig. S4g), highlighting that cDC2s are in a
transitional state. In contrast, cDC maturation markers CCR7 and
LAMP3 were only upregulated at a later stage of the trajectory
(Fig. 4j; Supplementary information, Fig. S4h).46 Interestingly, in
OvC, cDC2s got stuck early in the differentiation lineage compared
to CRC and LC (Supplementary information, Fig. S4i). By modelling
expression along the branches, we retrieved 4 clusters with
distinct temporal expression (Fig. 4k), in which we identified 30
and 210 genes up- or down-regulated (Supplementary informa-
tion, Table S9). For example, CLEC10A was gradually lost during
cDC2 maturation, while BIRC3 was upregulated, suggesting they
represent novel markers of cDC maturation. Also, when investigat-
ing TF dynamics from cDC2s to migratory cDCs, we identified 22
up- and 23 down-regulated TFs, respectively (Fig. 4l; Supplemen-
tary information, Fig. S4j).

B-cells, comprehensive taxonomy and developmental trajectory
Amongst the 15,247 B-cells, we identified 8 clusters using
unaligned clustering (Fig. 5a). Three of these represented follicular
B-cells (MS4A1/CD20), which reside in lymphoid follicles of intra-
tumor tertiary lymphoid structures, while 4 clusters were antibody-
secreting plasma cells (MZB1 and SDC1/CD138) (Supplementary
information, Fig. S5a, b). We also retrieved a T-cell (C9_CD3D)
doublet cluster (Supplementary information, Fig. S5c). CCA
identified 2 additional clusters: one unaligned follicular B-cell
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cluster, which was split into 2 separate clusters (C2 and C3; Fig. 5a,
b), and one additional cancer cell (C10_KRT8) doublet cluster
(Supplementary information, S5c). Overall, this resulted in 8
relevant B-cell clusters, each of them characterised by functional
gene sets (Fig. 5c).
Follicular B-cells were composed of mature-naïve (CD27−, C1)

and memory (CD27+, C2–C4) B-cells (Fig. 5c). The former cells are
characterised by a unique CD27−/IGHD+(IgD)/IGHM+(IgM) signa-
ture and give rise to the latter by migrating through the germinal
centre (GC; referred to as GC-memory B-cells). This process

requires expression of migratory factors CCR7 (for GC entry) and
GPR183 (for GC exit; Supplementary information, Fig. S5d).47 In the
GC, IGHM undergoes class-switch recombination to form other
immunoglobulin isotypes. Indeed, GC-memory B-cells separated
into IGHM+ and IGHM− populations, i.e., C2 IGHM+ and C3 IGHM−

clusters (Fig. 5a–c). A rare population of memory B-cells is
generated independently of the GC.48 These GC-independent
memory B-cells corresponded to C4_CD27+/CD38+s, lacking GC
migratory factors GPR183 and CCR7, but expressing the anti-GC
migration factor RGS13, which may form the basis for their GC

Fig. 4 Clustering 2722 DCs. a t-SNEs colour-coded for annotated DCs by unaligned and CCA-aligned clustering. b t-SNEs with DC marker
gene expression in CCA aligned clusters. c Heatmap for differential gene expression in unaligned clusters. d Fraction of DC clusters per cancer
type (left) and sample origin (right). Migratory cDCs were depleted in OvC (FDR= 0.017). e Fraction of cells in each cancer type per cluster. f t-
SNEs with gene expression (upper) and corresponding TF activity (lower). g Heatmap showing TF activity in CCA-aligned clusters. h Trajectory
inference analysis of cDC-related subclusters. iMarker gene expression along the cDC trajectory. j, kMarker gene expression (j) and expression
dynamics (k) during cDC maturation. l TF activation dynamics of cDC2 to migratory cDC differentiation.
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exclusion49 (Fig. 5b; Supplementary information, Fig. S5d).
Although little is known about GC-independent B-cells, they
appear early during immune response and respond to a broader
range of antigens with less specificity as GC-memory B-cells.50

Interestingly, C4s exhibited an expression signature intermediate
to mature-naïve and GC-memory B-cells (Supplementary informa-
tion, Fig. S5e). Expression of IGHD and IGHM was low, while IGHG1
and IGHG3 were elevated (Supplementary information, Fig. S5f),
suggesting C4s to have completed class-switch recombination.
Indeed, AICDA expression, which induces mutations in class-switch
regions during recombination,50 was elevated in C4s (Fig. 5c). They
were also characterised by several uniquely expressed genes and
enriched for proliferative cells (Supplementary information,
Fig. S5g and Table S5). Next to follicular B-cells, we identified 4
clusters of plasma B-cells (C5–C8), which can be separated based
on expression of immunoglobulin heavy chains, i.e., IGHG1 (IgG)

versus IGHA1 (IgA). Both could be further stratified based on their
antibody-secreting capacity as determined by PRDM1 (Blimp-1)50:
low versus high for immature versus mature plasma cells, overall
resulting in 4 plasma B-cell clusters (Fig. 5c).
Importantly, B-cell clusters were enriched in all tumors, except

for IgA-expressing plasma cells, which mainly resided in mucosa-
rich normal colon (Fig. 5d, e; Supplementary information,
Fig. S5h–j). Additionally, GC-independent memory B-cells were
most prevalent in CRC. B-cells were also enriched in border versus
core fractions of LC tumors (Supplementary information, Fig. S5k).
Using SCENIC, each B-cell cluster was characterised by a unique
set of TFs (Fig. 5f). For instance, GC-independent memory B-cells
upregulated NF-κB (RELB) and STAT6, which is known to suppress
GPR183.51 Some TFs were upregulated in mature (PRDM1high)
plasma cells, irrespective of their heavy chain expression. These
included multiple immediate-early response TFs (FOS, JUND and

Fig. 5 B-cell taxonomy and developmental trajectory. a t-SNEs colour-coded for annotated B-cells using unaligned and CCA-aligned
clustering. b t-SNEs with marker gene expression in CCA clusters. c Heatmap of functional gene sets in CCA clusters. d Fraction of B-cell
clusters per cancer type (left) and sample origin (right). e Fraction of cells in each cancer type per cluster. f Heatmap with TF activity by SCENIC,
for follicular B-cell (left) or plasma cell clusters (right). g Developmental trajectory for GC-dependent memory B-cells, colour-coded by cell type
(left) and pseudotime (right). h Marker gene expression of the GC-memory B-cell trajectory as in g. i Trajectory of IgM− memory B to IgG+ or
IgA+ plasma cells, colour-coded by branch type (left) and pseudotime (right). j Marker gene expression dynamics during plasma cell
differentiation as in i.
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EGR1) and the interferon regulatory factor IRF1 (Supplementary
information, Fig. S5l), suggesting they are involved in plasma cell
maturation. C5_IgG_mature B-cells, relative to all other plasma B-
cells, exhibited strong activation of nearly all cancer hallmark
pathways, indicating an active role of C5s in the TME (Supple-
mentary information, Fig. S5m).
Trajectory inference analysis confirmed that mature-naïve B-

cells differentiate into either GC-memory IgM+ or IgM− branches.
As expected, IgM+ but not IgM− cells were located halfway the
trajectory (Fig. 5g; Supplementary information, Fig. S5n), confirm-
ing IgM+ cells to undergo class-switch recombination into IgM−

cells. Memory B-cells of the IgM+ and IgM− lineages were similarly
distributed in OvC and CRC, but in LC they were more
differentiated (Supplementary information, Fig. S5o). By overlaying
gene expression dynamics on the trajectory, we identified several
up- or down-regulated genes along the pseudotime, including
CD27 and TCL1A, respectively (Fig. 5h; Supplementary information,
Fig. S5p, q and Table S9). In line with CCR7 and GPR183
determining GC entry and exit, CCR7 was expressed in mature-
naïve B-cells (C1, before entry) but disappeared in IGHM− B-cells.
Vice versa, GPR183 was only expressed after GC entry (C2 and C3,
Supplementary information, Fig. S5d, q). Similarly, we assessed the
trajectory of class-switched GC-memory B-cells (C3) differentiating
into plasma cells. We confirmed that GC-memory B-cells
differentiate into either IgG+- or IgA+-expressing plasma cells
(Fig. 5i), and that both branches subsequently dichotomize into
mature or immature states based on PRDM1 expression (Fig. 5j).
Cells were similarly distributed along the trajectory regardless of
the cancer type, although in LC there was an enrichment towards
the beginning of the IgA lineage (Supplementary information,
Fig. S5r). Further, when assessing underlying expression dynamics
along the trajectory, we identified several genes staging the
differentiation process (Supplementary information, Fig. S5s and
Table S9). For example, we found TNFRSF17 (also known as B-cell
maturation antigen) to increase along the IgA+ plasma cell
trajectory.52

T-/NK-cells show cancer type-dependent prevalence
Altogether, 52,494 T- and natural killer (NK) cells clustered into 12
and 11 clusters using unaligned and CCA-aligned methods (Fig. 6a,
b). The additional cluster identified by unaligned clustering (C12)
was composed of cells from normal lung tissue (Supplementary
information, Fig. S6a, b). CCA did not affect clustering of T-/NK-
cells in tumors, indicating that T-cells have limited cancer type-
specific differences. Besides C12 and a low-quality cluster (C11,
Supplementary information, Fig. S6c, d), T-/NK-cells consisted of
10 phenotypes, including 4 CD8+ T-cell (C1–C4), 4 CD4+ T-cell
(C5–C8) and 2 NK-cell clusters (C9–C10).
The C1_CD8_HAVCR2 cluster consisted of exhausted CD8+

cytotoxic T-cells characterised by cytotoxic effectors (GZMB, GNLY,
IFNG) and inhibitory markers (HAVCR2, PDCD1, CTLA4, LAG3, TIGIT;
Fig. 6c). C2_CD8_GZMKs represented pre-effector cells as expres-
sion of GZMK was high, but expression of cytotoxic effectors low.
C3_CD8_ZNF683s constituted memory CD8+ T-cells based on
ZNF683 expression,53 while C4_CD8_CX3CR1s corresponded to
effector T-cells due to high cytotoxic marker expression.
Remarkably, C4s also expressed markers typically observed in
NK-cells (KLRD1, FGFBP2, CX3CR1), suggesting they are endowed
with NK T-cell (NKT) activity. Similarly, based on marker gene
expression, we assigned C5_CD4_CCR7s to naïve (CCR7, SELL,
LEF1), C6_CD4_GZMAs to CD4+ memory/effector (GZMA, ANXA1)
and C7_CD4_CXCL13s to exhausted CD4+ effector T-cells (CXCL13,
PDCD1, CTLA4, BTLA). Based on the expression of FOXP3,
C8_FOXP3s were assigned CD4+ regulatory T-cells (Tregs). Finally,
two clusters contained NK-cells based on NK- (NCR1, NCAM1) but
not T-cell (CD3D, CD4, CD8A; Fig. 6b, c) marker gene expression.
Particularly, C9_NK_FGFBP2s represented cytotoxic NK-cells due to
the expression of FGFBP2, FCGR3A and cytotoxic genes including

GZMB, NKG7 and PRF1, while C10_NK_XCL1s appeared to be less
cytotoxic, but positive for XCL1 and XCL2, two chemo-attractants
involved in DC recruitment enhancing immunosurveillance.54

Interestingly, T-cell clusters were highly similar to the T-cell
taxonomy derived from breast, liver and lung cancer, despite
underlying differences in sample preparation and single-cell
technology53,55,56 (Supplementary information, Fig. S6e). Indeed,
C8 cells could be re-clustered into CLTA4high and CLTA4low clusters
with corresponding marker genes53,56 (Supplementary informa-
tion, Fig. S6f, g), while also both NK clusters corresponded to
recently identified NK subclusters shared across organs and
species.57

Several T-cell phenotypes, especially those with inhibitory
markers, were enriched in tumor tissue (Fig. 6d, e; Supplementary
information, Fig. S6h). C9_NK_FGFBP2s were more prevalent in
normal tissue, suggesting these to represent tissue-patrolling
phenotypes of NK-cells. All T-cell clusters were more frequent in
LC, while cytotoxic T-cells were rare in CRC and regulatory T-cells
underrepresented in OvC (Fig. 6f). Expression of inhibitory markers
(HAVCR2, LAG3, PDCD1) was enhanced in exhausted/cytotoxic
C1_CD8_HAVCR2s residing in tumor versus normal tissue (Sup-
plementary information, Fig. S6i). We also observed expression of
KLRC1 (NKG2A), a novel checkpoint,58,59 exclusively in C10 NK-cells
(Fig. 6c). CD8+ T-cell trajectory analysis revealed that C2 pre-
effector T-cells also contained naïve CD8+ T-cells, which expressed
CCR7, TFC7 and SELL, and formed the root of the trajectory
(Supplementary information, Fig. S6j, k). Pre-effector T-cells then
differentiated into either exhausted (C1_CD8_HAVCR2) or effector
(C4_CD8_CX3CR1) T-cells (Fig. 6g). Dynamic expression of marker
genes along both trajectories confirmed high expression of IFNG,
inhibitory and cytotoxicity markers in the HAVCR2 trajectory
(Supplementary information, Fig. S6l). Interestingly, LC CD8+ T-
cells were more differentiated in this trajectory and thus more
exhausted compared to T-cells from CRC and OvC (Fig. 6h).
TFs underlying each T-/NK-cell phenotype were identified by

SCENIC (Fig. 6i): for instance, FOXP3 was specific for C8s, as
expected, while IRF9, which induces PDCD1,60 was increased in
exhausted CD8+ T-cells (C1). C1_CD8_HAVCR2 T-cells exhibited
high interferon activation based on cancer hallmark analysis
(Supplementary information, Fig. S6m), while metabolic pathway
analysis revealed upregulation of glycolysis and nucleotide
metabolism in T-cell phenotypes enriched in tumors (C1, C7–C8;
Supplementary information, Fig. S6n). Finally, we noticed a
negative correlation between the prevalence of cancer and
immune cells, including several T-cell phenotypes (Supplementary
information, Fig. S3m). When scoring cancer cells for cancer
hallmark pathways and comparing these scores with stromal cell
phenotype abundance, some remarkable associations were
noticed. Specifically, C1_CD8_HAVCR2 T-cells were positively
correlated with augmented interferon signalling, inflammation
and IL6/JAK/STAT3 signalling in cancer cells (Supplementary
information, Fig. S6o).

Trajectory of monocyte-to-macrophage differentiation revealed
In the 32,721 myeloid cells, we identified 12 unaligned clusters,
including 2 monocyte (C1–C2), 7 macrophage (C3–C9) and 1
neutrophil (C10) clusters (Fig. 7a, b). A low-quality cluster (C11)
and myeloid/T-cell doublet cluster (C12_CD3D) were not dis-
cussed (Supplementary information, S7a, b). Only C8 macrophages
were tissue-specific, while remaining cells clustered similarly with
CCA as with unaligned clustering, expressing the same marker
genes and functional gene sets (Fig. 7c; Supplementary informa-
tion, Fig. S7c, d).
Monocytes clustered separately from macrophages based on

reduced macrophage marker expression (CD68, MSR1, MRC1) and a
phylogenetic reconstruction (Supplementary information, Fig. S7e,
f). C1_CD14 monocytes represented classical monocytes based on
high expression of CD14 and S100A8/9, and typically being
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recruited during inflammation. They expressed the monocyte
trafficking factors SELL (CD62L) —involved in EC adhesion— and
CCR2, a receptor for the pro-migratory cytokine CCL2. C2_CD16s
were less abundant and represented non-classical monocytes
based on low expression of CD14, but high expression of FCGR3A
(CD16) and other marker genes61 (CDKN1C, MTSS1; Supplementary
information, Fig. S7f). C2s constantly patrol the vasculature, express
CX3CR1 (Supplementary information, Fig. S7d, g) and migrate into
tissues in response to CX3CL1 derived from inflamed ECs.
Macrophages were classified based on origin (tissue-resident

versus recruited) or their pro- versus anti-inflammatory role (M1-
like versus M2-like, Fig. 7c). C3_CCR2s and C4_CCL2s represented

early-stage macrophages that were closely-related, not enriched
in tumors (Fig. 7d; Supplementary information, Fig. S7e) and
become replenished by classical monocytes. Specifically, C3
macrophages represented immature macrophages closely related
to C1 monocytes, as they also expressed CCR2 (Fig. 7b). They were
characterised by pronounced M1 marker gene expression (IL1B,
CXCL9, CXCL10, SOCS3; Fig. 7c). C4_CCL2s were characterised by
CCL2 expression, which is another M1 marker promoting immune
cell recruitment to inflammatory sites. Compared to C3s, C4
macrophages expressed less CCR2, but moderate levels of the M2
marker gene MRC1, suggesting an intermediate pro-inflammatory
phenotype.

Fig. 6 Profiling 52,494 T-/NK-cells. a t-SNEs colour-coded for annotated T-/NK-cell using unaligned and CCA aligned clustering. b t-SNEs with
marker gene expression in CCA clusters. c Heatmap of functional gene sets in CCA clusters. d Fraction of cells for T-/NK-cell clusters per cancer
type (left) and sample origin (right). e Normal/tumor ratio of relative percentage of T-/NK-cell clusters, < 1 indicates tumor enrichment. C1, C2,
C5, C7, C8 were enriched in tumor (FDR < 5.1 × 10−25), C9 was enriched in normal (FDR= 1.5 × 10−219). f Fraction of T-/NK-cells in each cancer
type per cluster. C4 and C8 were rare in CRC (FDR= 0.019) and OvC (FDR= 0.034), respectively. g Heatmap with TF activity of T-/NK-cell
clusters by SCENIC. h Differentiation trajectory for CD8+ T cell lineages, colour-coded by cell type (left) and pseudotime (right). i Density plots
for CRC, LC and OvC along the two CD8+ T-cell trajectories.
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Macrophages belonging to C5–C7 clusters were enriched in
malignant tissue and represented tumor-associated macrophages
(TAMs, Fig. 7d; Supplementary information, Fig. S7h). C5_CCL18s
represented ~72% of all TAMs and were characterised by M2
marker expression, including CCL18 and GPNMB (Fig. 7c). Addi-
tional heterogeneity separated C5 cells into intermediate and
more differentiated M2 macrophages, although differences were

graded, consistent with a continuous phenotypic spectrum
(Supplementary information, Fig. S7i). Indeed, there was more
pronounced M2 marker expression (e.g., SEPP1, STAB1, CCL13) in
34% of C5s.62 These also expressed key metabolic pathway
regulators, i.e., SLC40A1 (iron), FOLR2 (folate), FUCA1 (fucose) and
PDK4 (pyruvate), linking M2 differentiation with metabolic
reprogramming. C6_MMP9 macrophages expressed a unique

Fig. 7 Profiling of monocytes, macrophages and neutrophils. a t-SNE colour-coded for annotated myeloid cell using unaligned clustering.
b t-SNEs with marker gene expression in myeloid clusters. c Heatmap of functional gene sets in myeloid clusters. d Fraction of myeloid clusters
per cancer type (left) and sample origin (right). C9 was enriched in normal (FDR= 3.0 × 10−31) and C8 in normal lung (FDR � 0) tissue. C5–C7
and C10 (FDR < 3.3 × 10−31) were enriched in tumor. e Fraction of cells in each cancer type per cluster. f Monocyte-to-macrophage
differentiation trajectory, colour-coded by cluster (left) or pseudotime (right). g, h Gene expression dynamics during differentiation of C1
monocytes to C4 macrophages (g), or terminal differentiation of C5/C7 macrophages (h). i Heatmap showing TF activity by SCENIC. j TF
activation (left) or inactivation (right) during monocyte-to-macrophage differentiation, before branching into terminal differentiation.
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subset of M2 markers (CCL22, IL1RN, CHI3L1) and several MMPs,
suggesting a role in tumor tissue remodelling. Cancer hallmark
analysis revealed enrichment in EMT, hypoxia, glycolysis and many
other pathways (Supplementary information, Fig. S7j). C7_CX3CR1
macrophages expressed genes involved both in M1 and M2
polarization (CCL3, CCL4, TNF, AXL, respectively, Fig. 7c). Interest-
ingly, AXL is involved in apoptotic cell clearance,63 whereas other
M2 markers involved in pathogen clearance, i.e., MRC1 and CD163,
were absent, suggesting a unique phagocytic pattern of C7 cells.
They are also correlated with poor prognosis in OvC and CRC.64,65

Of note, C7 macrophages shared their CD16high/CX3CR1high

phenotype with C2 non-classical monocytes, suggesting both
clusters may be related (Supplementary information, Fig. S7g).
C8_PPARG macrophages corresponded to resident alveolar
macrophages due to expression of the resident alveolar macro-
phage marker PPARG. They were exclusive to normal lung tissue
(Fig. 7d), expressed established M2 markers (MSR1, CCL18, AXL)62,66

in addition to anti-inflammatory genes (FABP4, ALDH2).67,68

C9_LYVE1 macrophages also represented resident macrophages
with pronounced M2 marker expression and enrichment in normal
tissue. They often locate at the perivasculature of different tissues
where they contribute to both angiogenesis and vasculature
integrity.69–71 Indeed, C9 macrophages expressed the angiogenic
factor EGFL7, but also immunomodulators CD209, CH25H and
LILRB5, which are implicated in both innate and adaptive
immunity.62,72,73

Finally, the C10_FCGR3B cluster represented neutrophils expres-
sing the neutrophil-specific antigen CD16B (encoded by FCGR3B),
but not MPO, which is typically expressed in neutrophils during
inflammation and microbial infection. C10 cells expressed pro-
inflammatory factors (CXCL8, IL1B, CCL3, CCL4; Supplementary
information, Fig. S7g) and, in line with their pro-tumor activity,
also pro-angiogenic factors (VEGFA, PROK2).74 Notably, neutrophils
were strongly enriched in malignant tissue, but were characterised
by low transcriptional activity (689 detected genes/cell; Fig. 7d;
Supplementary information, Fig. S7b).
Interestingly, except for resident alveolar macrophages (C8), all

myeloid clusters were present in each cancer type, albeit with
some preferences (Fig. 7d, e). Similar to other scRNA-seq
studies,4,6,7,75 we failed to identify myeloid-derived suppressor
cells (MDSCs), which are known to be morphologically and
phenotypically similar to monocytes and neutrophils. Indeed, the
S100A8/9 markers expressed in MDSCs were also highly expressed
in C1 monocytes and C10 neutrophils76–78 (Supplementary
information, Fig. S7g). This highlights that scRNA-seq fails to fully
dissect the heterogeneity underlying myeloid cells and, if possible,
should be combined with mass cytometry to profile cell-surface
markers that characterize MDSCs.79 To delineate monocyte-to-
macrophage differentiation, we performed a trajectory inference
analysis. We excluded non-classical monocytes and related
macrophages (C2, C7), and resident macrophages (C8, C9). In
the trajectory, C1 monocytes were progenitor cells for C3
immature macrophages (Fig. 7f). Next on the time scale were C4
macrophages, which further separated into C5 and C6 macro-
phages, suggesting C4 macrophages to be endowed with high
plasticity prior to M2 differentiation. Interestingly, most of LC
macrophages differentiated into both lineages (Supplementary
information, Fig. S7k). Profiling of gene expression dynamics along
the trajectory (Fig. 7g, h) revealed a reduction of known monocyte
markers (CD14, S100A8, SELL) and increased expression of 230 other
genes (Supplementary information, Table S9), including several M2
markers. SCENIC identified several TFs underlying each myeloid
phenotype or the monocyte-to-macrophage differentiation trajec-
tory (Fig. 7i, j; Supplementary information, S7l, m). For example,
there was a gradual increase of MAFB and decrease of FOS, FOSB
and EGR1 along the trajectory, as reported.80,81 Interestingly,
terminally differentiated clusters (C5, C6) were characterised by

distinct TFs, but also shared TFs, including the hypoxia-induced HIF-
2α82 (EPAS1; Supplementary information, Fig. S7n).
Finally, we also identified 1962 mast cells. These cells represent

a rare stromal cell type that was not enriched for in tumors, and
that could be subclustered into 4 cellular phenotypes (Supple-
mentary information, Fig. S8a–h).

Mapping the blueprint in breast cancer
In 3 different cancers, we identified 68 stromal cell (sub)types, of
which 46 were shared. To confirm this heterogeneity in another
cancer type, we profiled 14 treatment-naïve breast cancers (BC)
using 5′-scRNA-seq and clustered the 44,024 cells with high
quality data (Materials and methods). After assigning cell types
(Fig. 8a; Supplementary information, Fig. S9a), we re-clustered cells
per cell type using unaligned clustering, or after pooling cell type
data from BC with those from other cancer types, while applying
CCA alignment for 5′ versus 3′-scRNA-seq. Both approaches
clustered the 14,413 T-cells from BC into their 10 cellular
phenotypes, each with similar expression signatures as described
for 3′-scRNA-seq (Fig. 8b; Supplementary information, Fig. S9b).
However, in other cell types unaligned clustering failed to identify
the cellular phenotypes, especially when they were less abundant.
In contrast, CCA recovered 43 out of the 46 shared phenotypes
(Fig. 8b, c; Supplementary information, Fig. S9c). Only for mast
cells, for which too few cells were detected (n= 360), CCA also
failed to identify the respective phenotypes. Notably, across
cancer types all cellular phenotypes were characterised by a
highly similar expression of marker genes and underlying TFs
(Fig. 8d, e; Supplementary information, Fig. S9d–h). These data
confirm that the stromal cell blueprint can also be assigned to
other cancer types.
When subsequently comparing stromal cell type distribution

between BC and all other cancers, we found more T-cells in BC
than CRC or OvC, but not LC (Supplementary information, Fig. S9i).
At the subcluster level, BC was enriched for pDCs (C4_LILRA4), but
had few lymphatic ECs (C5_PROX1; Supplementary information,
Fig. S9j). This is possibly because most patients (8/14) had a triple-
negative BC, which is more immunogenic, without lymph node
involvement.

The blueprint as a guide to interpret scRNA-seq studies
We also applied our blueprint to SMART-seq2 data from
melanomas treated with immune checkpoint inhibitors (ICIs). We
clustered our T-/NK-cells from the blueprint with the 12,681 T-/NK-
cells profiled by SMART-seq2,8 while performing CCA for
technology. This resulted in the 10 T-/NK-cell phenotypes of the
blueprint (Supplementary information, Fig. S10a–c). Cells profiled
by both technologies contributed to every phenotypic T-/NK-cell
cluster, each with similar expression signatures, suggesting
effective CCA alignment. Next, we confirmed findings of Sade-
Feldman et al.,8 showing that (i) presence of exhausted CD8+ T-
cells (C1) in melanoma tumors predicts resistance to ICI, while (ii)
increased expression of the naïve T-cell marker TCF7 across CD8+

T-cells predicts response to ICI (Supplementary information,
Fig. S10d). However, when assessing TCF7 in the context of the
blueprint, we found it was expressed in 2 out of 4 CD8+ T-cell
phenotypes (C2–C3), of which only pre-effector CD8+ T-cells (C2)
were significantly more prevalent in responders (Fig. 8f, g).
Additionally, TCF7 expression was high in naïve CD4+ T-cells (C5),
which were also enriched in responders (P= 0.0021). Receiver
operating characteristic (ROC) analysis to evaluate the predictive
effect of the C5 cluster revealed an AUC of 0.90 (P= 0.0021;
Fig. 8h). Albeit to a lesser extent, C1 and C2 clusters were also
enriched in non-responders and responders, respectively (Supple-
mentary information, Fig. S10e). Notably, CD4+ TCF7+ T-cells
resided outside of blood vessels, within the tumor at the
peritumoral front (Supplementary information, Fig. S10f).
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Next, we applied our blueprint to monitor changes in T-/NK-
cells during ICI. When comparing pre- versus on-treatment
biopsies (n= 4 with response versus n= 6 without response),
we observed an increase in exhausted CD8+ T-cells
(C1_CD8_HAVCR2) in on-treatment biopsies. Vice versa, there
was a relative decrease in naïve CD4+ (C5_CD4_CCR7) T-cells
(Supplementary information, Fig. S10g, h). Notably, these differ-
ences were only observed in responding patients, suggesting that
during response, phenotypic clusters that predict resistance in the
pre-treatment biopsy increase, while those predicting response
decrease in prevalence. Overall, these data illustrate that single-
cell data obtained with various technologies can be re-analysed in
the context of the blueprint.

Validation of the blueprint at protein level
With the availability of CITE-seq, we can now simultaneously
detect RNA and protein expression at single-cell level.83 To
confirm the cancer blueprint at protein level, a panel of 198
antibodies (Supplementary information, Table S10) compatible
with 3′-scRNA-seq was used. We processed 5 BCs, obtaining 6,194
cells with both transcriptome and proteome data. Independent
clustering of both datasets revealed how cell types could be
discerned based on either marker gene or protein expression
(Fig. 9a, b). Since antibodies were mainly directed against immune

cells, especially T-cells, we focused our subclustering efforts on
this cell type. We pooled 1310 T-/NK-cells with both RNA and
protein data together with T-/NK-cells from the blueprint.
Subsequent clustering based on scRNA-seq data accurately
assigned each T-/NK-cell to its phenotypic cluster (Fig. 9c, d).
Next, we selected marker genes amongst the 198 antibodies and
explored protein expression per cluster (Fig. 9e). A combination of
CD3, CD4, CD8 and NCR1 effectively discriminated CD4+, CD8+ T-
cells and NK-cells. The T-cell exhaustion marker PD-1 discriminated
exhausted CD4+ and CD8+ T-cell phenotypes (C1, C7), while IL2RA
(CD25) was specific for CD4+ Tregs (C8). CD8+ memory T-cells (C3)
were characterised by high ITGA1 but low PDCD1. Both the
cytotoxic T-/NK-cells (C4, C9) had high levels of KLRG1, while CD4+

naïve cells had high ITGA6 and SELL (C5). Unfortunately, there
were no antibodies specific for C2 and C6 cells. Despite this
limitation, a random forest model developed to predict major cell
types and T-cell phenotypes based on CITE-seq classified > 80% of
cells into the same cell (sub)type compared to scRNA-seq data.

DISCUSSION
Here, we performed scRNA-seq on 233,591 single cells from 36
patients with either lung, colon, ovarian or breast cancer. By
applying two different clustering approaches —one designed to

Fig. 8 Validation of the stromal blueprint. a t-SNE of BC cells colour-coded for cell types. b t-SNEs of T-/NK-cells by unaligned clustering or
CCA-aligned clustering with 3′-scRNA-seq data. c t-SNEs of CCA-aligned clusters colour-coded for annotated DCs (upper) and cancer type
(lower). d Heatmap of marker gene expression across DC clusters in different cancer types. e TF activity across DC subclusters in different
cancer types. f Fraction of T-/NK-cell clusters in pre-treatment biopsies from melanoma patients treated with ICI. g Violin plot showing TCF7
expression in T-/NK-cell clusters from pre-treatment melanoma patients. h ROC analysis to evaluate the predictive effect of naïve CD4+ T-cells
on response to checkpoint immunotherapy. The area under the ROC curve (AUC) was used to quantify response prediction.
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detect tissue-specific differences, the other to find shared
heterogeneity amongst stromal cell types— we constructed a
pan-cancer blueprint of stromal cell heterogeneity. Briefly, we
found that tissue-resident cell types, including ECs and fibroblasts,
were characterised by considerable patient and tissue specificity
in the normal tissue, but that part of this heterogeneity
disappeared within the TME. On the other hand, phenotypes
involving non-residential cell types, which encompass most of the
tumor-infiltrating immune cells, were often shared amongst all
patients and cancer types. Overall, we identified 68 stromal
phenotypes, of which 46 were shared between cancer types and
22 were cancer type-unique. Amongst the shared phenotypes,
several have not previously been described at single-cell level,
including tumor-associated pericytes and other fibroblast pheno-
types, mast cells, GC-independent B-cells, neutrophils, etc. Of note,
by applying a CITE-seq approach to simultaneously profile gene
and protein expression, we confirmed all major cell types and T-
cell phenotypes identified by scRNA-seq.
An important merit of our study is the public availability of the

scRNA-seq data and the stromal blueprint we describe, which can
all be interactively accessed via our blueprint server. This will allow
scientists to co-cluster their own scRNA-seq data together with
blueprint data and assign each of their individual cells to a cellular
phenotype. This can also be achieved by feeding our stromal
blueprint dataset to established machine learning pipelines, e.g.,
CellAssign,84 and assigning each new cell to the most likely proxy.

Such strategy would indeed be highly relevant, as several of our
cellular phenotypes are missed when a smaller number of cells is
analysed. Interestingly, as illustrated for melanoma, pooling
new with existing scRNA-seq data was even possible when a
different single-cell technology was used. Similarly, this blueprint
could serve as training matrix to estimate the prevalence from
specific cell (sub)types in bulk tissue transcriptomes using newly
developed deconvolution methods, i.e., CIBERSORTx.85 This is
important, as bulk RNA-seq data of tumor tissues are often
available for multiple large and homogeneous cohorts of cancer
patients.
We also built trajectories between relevant cell phenotypes,

highlighting how several of these do not represent separate
entities. Stratification of these trajectories for cancer type revealed
some intriguing differences. For instance, LC contained more
exhausted CD8+ cytotoxic T-cells in the C1_CD8_HAVCR2
trajectory. Moreover, LC appeared more inflammatory as it was
enriched for differentiated myeloid cells along both the CCL18
and MMP9 lineage. Also, memory B-cells were more differentiated
in LC, while cDC2s got stuck early in the trajectory in OvC. Most
probably, these differences are due to the fact that LC is an
immune-infiltrated cancer with a high tumor mutation burden
(TMB) and neoepitope load,86 while OvC and CRC are cold tumors
with a low TMB.
We believe our blueprint is also useful when monitoring

dynamic changes in the TME during cancer treatment. Indeed, by

Fig. 9 Validation of the stromal blueprint by CITE-seq. a t-SNEs of CITE-seq profiled BC cells clustered into cell types based on RNA (left) or
protein (right) data. b Marker gene or protein expression for each cell type. c t-SNE plots showing BC T-/NK-cells co-clustered with 3′-scRNA-
seq data from other cancer types (left), while highlighting only T-/NK-cells with BC origin (right). d Heatmap with marker gene expression of
T-/NK-cell clusters. e Expression by CITE-seq markers per T-/NK-cell cluster.
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performing scRNA-seq on individual biopsies obtained before and
during treatment, individual cells can be assigned to each
phenotypic cluster and changes can easily be interpreted in the
context of the blueprint. For instance, when re-analysing a set of
pre- versus on-treatment biopsies from melanomas exposed ICIs,
we observed that exhausted CD8+ T-cells became gradually more
common during treatment, while naïve CD4+ T-cells became less
common. Notably, these shifts were only observed in patients
responding to the treatment. Although findings that naïve CD4+

helper T-cells predict checkpoint immunotherapy are novel, these
findings are not unexpected. Firstly, CD4+ helper T-cells can also
express PD1, and are thus targeted by the treatment. Furthermore,
they can enhance CD8+ T-cell infiltration,87 improve antibody
penetration,88 T-cell memory formation, or have a direct cytolytic
capacity.89 Several other studies suggest the role of both naïve
CD4+ and CD8+ T-cells in priming anti-tumor activity.90 Overall,
we believe that our approach to monitor how blueprint
phenotypes change in response to cancer treatment and
gradually also contribute to therapeutic resistance, will allow
scientists to gain important insights into the mechanisms of action
of novel cancer drugs.

MATERIALS AND METHODS
Patients
This study was approved by the local ethics committee at the
University Hospital Leuven for each cancer type. Only patients
provided with informed consent were included in this study. The
clinical information of all patients was summarised in Supple-
mentary information, Table S1.

Preparation of single-cell suspensions
Following resection, samples from the tumor and adjacent non-
malignant tissue were rapidly processed for single-cell RNA-
sequencing. Samples were rinsed with PBS, minced on ice to
pieces of < 1mm3 and transferred to 10 mL digestion medium
containing collagenase P (2 mgmL−1, ThermoFisher Scientific) and
DNAse I (10U µL−1 Sigma) in DMEM (ThermoFisher Scientific).
Samples were incubated for 15min at 37 °C, with manual shaking
every 5 min. Samples were then vortexed for 10 s and pipetted up
and down for 1 min using pipettes of descending sizes (25, 10 and
5mL). Next, 30 mL ice-cold PBS containing 2% fetal bovine serum
was added and samples were filtered using a 40 µm nylon mesh
(ThermoFisher Scientific). Following centrifugation at 120× g and
4 °C for 5 min, the supernatant was decanted and discarded, and
the cell pellet was resuspended in red blood cell lysis buffer.
Following a 5-min incubation at room temperature, samples were
centrifuged (120× g, 4 °C, 5 min) and resuspended in 1mL PBS
containing 8 µL UltraPure BSA (50mg/mL−1; AM2616, Thermo-
Fisher Scientific) and filtered over Flowmi 40 µm cell strainers
(VWR) using wide-bore 1 mL low-retention filter tips (Mettler-
Toledo). Next, 10 µL of this cell suspension was counted using an
automated cell counter (Luna) to determine the concentration of
live cells. The entire procedure was completed in less than 1 h
(typically about 45 min).

Single cell RNA-seq data acquisition and pre-processing
Libraries for scRNA-seq were generated using the Chromium
Single Cell 3′ or 5′ library and Gel Bead & Multiplex Kit from 10x
Genomics (Supplementary information, Table S2). We aimed to
profile 5000 cells per library (if sufficient cells were retained during
dissociation). All libraries were sequenced on Illumina NextSeq,
HiSeq4000 or NovaSeq6000 until sufficient saturation was reached
(73.8% on average, Supplementary information, Table S2). After
quality control, raw sequencing reads were aligned to the human
reference genome GRCh38 and processed to a matrix represent-
ing the UMI’s per cell barcode per gene using CellRanger (10x
Genomics, v2.0).

Single-cell RNA analysis to determine major cell types and cell
phenotypes
Raw gene expression matrices generated per sample were
merged and analysed with the Seurat package (v2.3.4). Matrices
were filtered by removing cell barcodes with < 401 UMIs, < 201
expressed genes, > 6000 expressed genes or > 25% of reads
mapping to mitochondrial RNA. The remaining cells were
normalized and genes with a normalized expression between
0.125 and 3, and a quantile-normalized variance > 0.5 were
selected as variable genes. The number of variably-expressed
genes differs for each clustering step (Supplementary information,
Table S4). When clustering cell types, we regressed out
confounding factors: number of UMIs, percentage of mitochon-
drial RNA, patient ID and cell cycle (S and G2M phase scores
calculated by the CellCycleScoring function in Seurat). After
regression for confounding factors, all variably-expressed genes
were used to construct principal components (PCs) and PCs
covering the highest variance in the dataset were selected. The
selection of these PCs was based on elbow and Jackstraw plots.
Clusters were calculated by the FindClusters function with a
resolution between 0.2 and 2, and visualised using the t-SNE
dimensional reduction method. Differential gene-expression
analysis was performed for clusters generated at various resolu-
tions by both the Wilcoxon rank sum test and Model-based
Analysis of Single-cell Transcriptomics (MAST) using the FindMar-
kers function. A specific resolution was selected when known cell
types were identified as a cluster at a given resolution, but not at a
lower resolution (Supplementary information, Table S5), with the
minimal constraint that each cluster has at least 10 significantly
differentially expressed genes (FDR < 0.01 with both methods)
with at least a 2-fold difference in expression compared to all
other clusters. Annotation of the resulting clusters to cell types
was based on the expression of marker genes (Supplementary
information, Fig. S1c). All major cell types were identified in one
clustering step, except for DCs; pDCs co-clustered with B-cells,
while other DCs co-clustered with myeloid cells. Therefore, we first
separated DCs per cancer type based on established marker genes
(pDC: LILRA4 and CXCR3; cCDs: CLEC9A, XCR1, CD1C, CCR7, CCL17,
CCL19, Langerhans-like: CD1A, CD207)2,40 and then pooled these
DCs for subclustering.
Next, all cells assigned to a given cell type per cancer type were

merged and further subclustered into functional phenotypes
using the same strategy, which we refer to as the unaligned
clustering approach in the manuscript. However, the confounding
factors used for cell types were not sufficient to reduce patient-
specific effects when performing the subclustering. Instead of
directly applying an unsupervised batch correction algorithm, we
found that the interferon response (BROWNE_INTERFERON_RE-
SPONSIVE_GENES in the Molecular Signatures Database or
MSigDB v6.2) and the sample dissociation-induced gene signa-
tures91 represent common patient-specific confounders, which
were therefore regressed out. We additionally regressed out the
hypoxia signature92 for myeloid cells to avoid clusters driven by
hypoxia state instead of its origin or (anti-)inflammatory functions.
Since hemoglobin and immunoglobulin genes are common
contaminants from ambient RNA, hemoglobin genes were
excluded for PCA. This also applied to immunoglobulin genes,
except when subclustering B-cells. For T-cell subclustering,
variable genes of T-cell receptor (TRAVs, TRBVs, TRDVs, TRGVs)
were excluded to avoid somatic hypermutation associated
variances. Similarly, variable genes of B-cell receptor (IGLVs, IGKVs,
IGHVs) were all excluded when subclustering B-cells.
To reveal similarities between the subclusters across cancer

types, we performed canonical correlation analysis (CCA, RunMul-
tiCCA function) by aligning data from different cancer types into a
subspace with the maximal correlation.11 The selection of CCA
dimensions or canonical correction vectors (CCs) for subspace
alignment were guided by the CC bicor saturation plot
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(MetageneBicorPlot function). Resolution was determined simi-
lar to the PCA-based approach described above, followed by
marker gene-based cluster annotation. Since CCA is designed to
identify shared clusters, we performed CCA alignment without
cancer-type specific cells defined by PCA-based approach for
fibroblasts and myeloid cells. Low quality clusters were
identified based on the number of detected genes within
subclusters and the lack of marker genes. Doublet clusters
expressed marker genes from other cell lineages, and had a
higher than expected (3.9% according to the User Guide from
10x Genomics) doublets rate, as predicted by the artificial k-
nearest neighbours algorithm implemented in DoubletFinder
(v1.0).93 We also used Scrublet94 to identify doublet cells and
could predict the same clusters as predicted by DoubletFinder.
As an example, we evaluate for each of the B-cell clusters, (i) the
expression of marker genes from other cell types, (ii) the higher
number of detected genes, and (iii) the overlap of cells predicted
to be doublets by DoubletFinder and Scrublet (Supplementary
Information, Fig. S11a–d).
For a comprehensive statistical analysis, we used a single-cell

specific method based on mixed-effects modelling of associations
of single cells (MASC)95. The analysis systematically addressed two
major questions: which cell types are enriched or depleted in all
cancers or in a particular cancer type, and which cell types or
stromal phenotypes are enriched or depleted in tumors versus
normal tissues in all cancers or in a particular cancer type. Events
with FDR < 0.05 were considered significant as summarised in
Supplementary information, Table S6.

SCENIC analysis
Transcription factor (TF) activity was analysed using SCENIC
(v1.0.0.3) per cell type with raw count matrices as input. The
regulons and TF activity (AUC) for each cell were calculated with
the pySCENIC (v0.8.9) pipeline with motif collection version mc9nr.
The differentially activated TFs of each subcluster were identified
by the Wilcoxon rank sum test against all the other cells of
the same cell type. TFs with log-fold-change > 0.1 and an adjusted
P < 1e−5 were considered as significantly upregulated.

Trajectory inference analysis
We applied the Monocle (v2.8.0) algorithm to determine the
potential lineage between diverse stromal cell phenotypes.96

Seurat objects were imported to Monocle using importCDS
function. DDRTree-based dimension reduction was performed
with conserved and differentially expressed genes. These genes
were calculated for each subcluster across LC, CRC and OvC using
FindConservedMarkers function in Seurat using the metap (v1.0)
algorithm and Wilcoxon rank sum test (max_pval < 0.01,
minimum_p_val < 1e−5). PC selection was determined using the
PC variance plot (plot_pc_variance_explained function in Mono-
cle, 3−5 PCs). Genes with branch-dependent expression dynamics
were calculated using the BEAM test in Monocle. Genes with a q <
1e−10 were plotted in heatmaps. The dynamics of transcription
factor activity (or AUC) was calculated by SCENIC and plotted per
branch of trajectory along the pseudotime calculated by Monocle.
For each TF, the AUC and pseudotime, smoothed as a natural
spline using sm.ns function, were fitted in vector generalised
linear model (VGLM) using VGAM package v1.1. TF with q < 1e−50
were selected for plotting. Two other trajectory inference
pipelines, i.e., Slingshot and SCORPIUS,97,98 were also used. Since
SCORPIUS cannot handle branched trajectories, we analysed both
trajectories separately with the branching topology informed by
Monocle analysis. To assess consistency between these pipelines,
scaled pseudotime between Monocle, Slingshot and SCORPIUS
were compared and high correlations were consistently observed
between all lineages. Additionally, we compared expression of key
marker genes along the trajectories of all 3 tools (Supplementary
Information, Fig. S12a–k).

Metabolic and cancer hallmark pathways and geneset enrichment
analysis
Metabolic pathway activities were estimated with gene signatures
from a curated database.99 For robustness of the analysis, lowly
expressed genes (< 1% cells) or genes shared by multiple
pathways were trimmed. And pathways with less than 3 genes
were excluded. Cancer hallmark gene sets from Molecular
Signatures Database (MSigDB v6.1) were used. The activity of
individual cells for each gene set was estimated by AUCell
package (v1.2.4). The differentially activated pathways of each
subcluster were identified by running the Wilcoxon rank sum test
against other cells of the same cell type. Pathways with log-fold-
change > 0.05 and an adjusted P < 0.01 were considered as
significantly upregulated. GO and REACOTOME geneset enrich-
ment analyses were performed using hypeR package,100 geneset
over-representation was determined by hypergeometric test.

CITE-seq
We adopted the established CITE-seq protocol83 with some
modifications. Briefly, 100,000–500,000 single cells of breast
tumors were suspended in 100 μL staining buffer (2% BSA,
0.01% Tween in PBS) before adding 10 µL Fc-blocking reagent
(FcX, BioLegend). and incubating during 10min on ice. This was
followed by the addition of 25 µL TotalSeq-A (Biolegend)
antibody-oligo pool (1:1000 diluted in staining buffer) and another
30min incubation on ice. Cells were washed 3 times with staining
buffer and filtered through a 40 µm flowmi strainer before
processing with 3′-scRNA-seq library kits. ADT (Antibody-Derived
Tags) additive primers were added to increase the yield of the ADT
product. ADT-derived and mRNA-derived cDNAs were separated
by SPRI purification and amplified for library construction and
subsequent sequencing. For each cell barcode detected in the
corresponding RNA library, ADTs were counted in the raw
sequencing reads of CITE-seq experiments using CITE-seq-Count
version 1.4. In the resulting UMI per ADT matrix, the noise level
was calculated for each cell by taking the average signal increased
with 3× the standard deviation of 10 control probes. Signals below
this level were excluded. We divided the UMIs by the total UMI
count for each cell to account for differences in library size and a
centred log-ratio (CLR) normalization specific for each gene was
computed. Clustering of protein data was performed using the
Euclidean distance matrix between cells and t-SNE coordinates
were calculated using this distance matrix. The random forest
algorithm incorporated in Seurat was iteratively applied on a
training and test set, consisting of 67% and 33% of cells
respectively, to predict cell types and T-/NK-cell phenotypes.

Immunofluorescence assay and analysis
A 5-µm-section of a formalin-fixed, paraffin-embedded (FFPE)
microarray containing 14 melanoma metastasis from 9 patients
was stained with antibodies against SOX10 (SCBT; sc-365692), CD4
(abcam; ab133616), CD31 (LSBio; LS-C173974) and TCF7 (R&D
systems; AF5596) at a concentration of 1 µg/mL according to the
Multiple Iterative Labeling by Antibody Neodeposition (MILAN)
protocol, as described.101

Tumor mutation detection
Whole-exome sequencing was performed as described pre-
viously.102 The average sequencing depth was ×161 ± 67 cover-
age. Mutation of CRC samples were detected using Illumina
Trusight26 Tumour kit.

DATA AVAILABILITY
Raw sequencing reads of the single-cell RNA experiments have been deposited in the
ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession
number E-MTAB-8107, E-MTAB-6149 and E-MTAB-6653. Based on SCope package,103

Article

760

Cell Research (2020) 30:745 – 762

https://www.ebi.ac.uk/arrayexpress/


an interactive web server for scRNA-seq data visualisation, exploration and
downloading of the count matrix is available at http://blueprint.lambrechtslab.org.
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