Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler

Article metrics

Abstract

The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is renowned for its bioconversion of organic waste into a sustainable source of animal feed. We report a high-quality genome of 1.1 Gb and a consensus set of 16,770 gene models for this beneficial species. Compared to those of other dipteran species, the BSF genome has undergone a substantial expansion in functional modules related to septic adaptation, including immune system factors, olfactory receptors, and cytochrome P450s. We further profiled midgut transcriptomes and associated microbiomes of BSF larvae fed with representative types of organic waste. We find that the pathways related to digestive system and fighting infection are commonly enriched and that Firmicutes bacteria dominate the microbial community in BSF across all diets. To extend its potential practical applications, we further developed an efficient CRISPR/Cas9-based gene editing approach and implemented this to yield flightless and enhanced feeding capacity phenotypes, both of which could expand BSF production capabilities. Our study provides valuable genomic and technical resources for optimizing BSF lines for industrialization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    St-Hilaire, S. et al. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquacult. Soc. 38, 59–67 (2007).

  2. 2.

    Bondari, K. & Sheppard, D. Soldier fly larvae as feed in commercial fish production. Aquaculture 24, 103–109 (1981).

  3. 3.

    Bondari, K. & Sheppard, D. Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquac. Res. 18, 209–220 (1987).

  4. 4.

    Hale, O. M. Dried Hermetia illucens larvae (Diptera: Stratiomyidae) as a feed additive for poultry. Ga. Entomol. Soc. J. 8, 16–20 (1973).

  5. 5.

    Li, Q. et al. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag. 31, 1316–1320 (2011).

  6. 6.

    Surendra, K., Olivier, R., Tomberlin, J. K., Jha, R. & Khanal, S. K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 98, 197–202 (2016).

  7. 7.

    Choi, Y.-C. et al. Potential usage of food waste as a natural fertilizer after digestion by Hermetia illucens (Diptera: Stratiomyidae). Int. J. Indust. Entomol. 19, 171–174 (2009).

  8. 8.

    Beskin, K. V. et al. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions. Waste Manag. 74, 213–220 (2018).

  9. 9.

    Perednia, D. A., Anderson, J. & Rice, A. A comparison of the greenhouse gas production of black soldier fly larvae versus aerobic microbial decomposition of an organic feed material. Res. Rev. J. Ecol. Environ. Sci. 5, 10–16 (2017).

  10. 10.

    Erickson, M. C., Islam, M., Sheppard, C., Liao, J. & Doyle, M. P. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 67, 685–690 (2004).

  11. 11.

    Cai, M. et al. Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. Environ. Pollut. 242, 634–642 (2018).

  12. 12.

    Müller, A., Wolf, D. & Gutzeit, H. O. The black soldier fly, Hermetia illucens — a promising source for sustainable production of proteins, lipids and bioactive substances. Z. Naturforsch. C. Biosci. 72, 351–363 (2017).

  13. 13.

    Wang, Y.-S. & Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 6, 91 (2017).

  14. 14.

    Vogel, H., Müller, A., Heckel, D. G., Gutzeit, H. & Vilcinskas, A. Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev. Comp. Immunol. 78, 141–148 (2018).

  15. 15.

    Wiegmann, B. M. & Richards, S. Genomes of Diptera. Curr. Opin. Insect Sci. 25, 116–124 (2018).

  16. 16.

    Xu, J., Xu, X., Zhan, S. & Huang, Y. Genome editing in insects: current status and challenges. Natl. Sci. Rev. 6, 399–401 (2019).

  17. 17.

    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2017).

  18. 18.

    Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

  19. 19.

    Boulesteix, M., Weiss, M. & Biémont, C. Differences in genome size between closely related species: the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 23, 162–167 (2005).

  20. 20.

    Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

  21. 21.

    Scott, J. G. et al. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol. 15, 466 (2014).

  22. 22.

    Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

  23. 23.

    Nakajima, R. T., Cabral-de-Mello, D. C., Valente, G. T., Venere, P. C. & Martins, C. Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol. Biol. 12, 198 (2012).

  24. 24.

    Li, Z.-W. et al. On the origin of de novo genes in Arabidopsis thaliana populations. Genome Biol. Evol. 8, 2190–2202 (2016).

  25. 25.

    Park, S. I., Chang, B. S. & Yoe, S. M. Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomol. Res 44, 58–64 (2014).

  26. 26.

    Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615–626 (2013).

  27. 27.

    Early, A. M. et al. Survey of global genetic diversity within the Drosophila immune system. Genetics 205, 353–366 (2017).

  28. 28.

    McBride, C. S. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc. Natl Acad. Sci. USA 104, 4996–5001 (2007).

  29. 29.

    Stensmyr, M. C. et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151, 1345–1357 (2012).

  30. 30.

    Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

  31. 31.

    Song, E., de Bivort, B., Dan, C. & Kunes, S. Determinants of the Drosophila odorant receptor pattern. Dev. Cell 22, 363–376 (2012).

  32. 32.

    Ray, A., Van Naters, W. G. & Carlson, J. R. Molecular determinants of odorant receptor function in insects. J. Biosci. 39, 555–563 (2014).

  33. 33.

    Mao, W., Schuler, M. A. & Berenbaum, M. R. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). Proc. Natl Acad. Sci. USA 108, 12657–12662 (2011).

  34. 34.

    Feyereisen, R. INSECT P450 ENZYMES. Annu. Rev. Entomol. 44, 507–533 (1999).

  35. 35.

    Busvine, J. Mechanism of resistance to insecticide in houseflies. Nature 168, 193–195 (1951).

  36. 36.

    Tomberlin, J. K., Sheppard, D. C. & Joyce, J. A. Susceptibility of black soldier fly (Diptera: Stratiomyidae) larvae and adults to four insecticides. J. Econ. Entomol. 95, 598–602 (2002).

  37. 37.

    Daborn, P. J. & Le Goff, G. The genetics and genomics of insecticide resistance. Trends Genet. 20, 163–170 (2004).

  38. 38.

    Liu, N., Li, M., Gong, Y., Liu, F. & Li, T. Cytochrome P450s — their expression, regulation, and role in insecticide resistance. Pestic. Biochem. Physiol. 120, 77–81 (2015).

  39. 39.

    Myers, H. M., Tomberlin, J. K., Lambert, B. D. & Kattes, D. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 37, 11–15 (2008).

  40. 40.

    Nguyen, T. T. X., Tomberlin, J. K. & Vanlaerhoven, S. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 44, 406–410 (2015).

  41. 41.

    Lehane, M. Peritrophic matrix structure and function. Annu. Rev. Entomol. 42, 525–550 (1997).

  42. 42.

    Chen, S. et al. Value-added chemicals from animal manure. No. PNNL-14495. (Pacific Northwest National Lab., Environmental Molecular Sciences Laboratory, Richland, WA (US), 2003).

  43. 43.

    Engel, P. & Moran, N. A. The gut microbiota of insects — diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

  44. 44.

    Jeon, H. et al. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr. Microbiol. 62, 1390–1399 (2011).

  45. 45.

    Bruno, D. et al. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. Appl. Environ. Microbiol. 85, e01864–18 (2019).

  46. 46.

    Wynants, E. et al. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale. Microb. Ecol. 77, 913–930 (2019).

  47. 47.

    Liu, Q., Tomberlin, J. K., Brady, J. A., Sanford, M. R. & Yu, Z. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ. Entomol. 37, 1525–1530 (2008).

  48. 48.

    Yu, G. et al. Inoculating poultry manure with companion bacteria influences growth and development of black soldier fly (Diptera: Stratiomyidae) larvae. Environ. Entomol. 40, 30–35 (2011).

  49. 49.

    Zheng, L. et al. A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing. J. Med. Entomol. 50, 647–658 (2013).

  50. 50.

    Sun, L., Pope, P. B., Eijsink, V. G. & Schnürer, A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb. Biotechnol. 8, 815–827 (2015).

  51. 51.

    Zhang, L. et al. Enhanced growth and activities of the dominant functional microbiota of chicken manure composts in the presence of maize straw. Front. Microbiol. 9, 1131 (2018).

  52. 52.

    Rizzatti, G., Lopetuso, L., Gibiino, G., Binda, C. & Gasbarrini, A. Proteobacteria: a common factor in human diseases. Biomed. Res. Int. 2017, 9351507 (2017).

  53. 53.

    Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M. & Michel, G. Environmental and gut bacteroidetes: the food connection. Front. Microbiol. 2, 93 (2011).

  54. 54.

    Truman, J. W. Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology. Vitam. Horm. 73, 1–30 (2005).

  55. 55.

    Fellner, S. K., Rybczynski, R. & Gilbert, L. I. Ca2+ signaling in prothoracicotropic hormone-stimulated prothoracic gland cells of Manduca sexta: evidence for mobilization and entry mechanisms. Insect Biochem. Mol. Biol. 35, 263–275 (2005).

  56. 56.

    McBrayer, Z. et al. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev. Cell 13, 857–871 (2007).

  57. 57.

    Williams, J. A., Bell, J. B. & Carroll, S. B. Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev. 5, 2481–2495 (1991).

  58. 58.

    Zecca, M. & Struhl, G. Control of Drosophila wing growth by the vestigial quadrant enhancer. Development 134, 3011–3020 (2007).

  59. 59.

    Müller, A., Wiedmer, S. & Kurth, M. Risk evaluation of passive transmission of animal parasites by feeding of black soldier fly (Hermetia illucens) larvae and prepupae. J. Food Prot. 82, 948–954 (2019).

  60. 60.

    Wu, N. et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat. Ecol. Evol. 3, 105 (2019).

  61. 61.

    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

  62. 62.

    Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

  63. 63.

    Pryszcz, L. P. & Gabaldón, T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).

  64. 64.

    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2010).

  65. 65.

    Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

  66. 66.

    Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

  67. 67.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

  68. 68.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511 (2010).

  69. 69.

    Elsik, C. G. et al. Creating a honey bee consensus gene set. Genome Biol. 8, R13 (2007).

  70. 70.

    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

  71. 71.

    Holt, R. A. et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129–149 (2002).

  72. 72.

    Initiative, I.G.G. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science 344, 380–386 (2014).

  73. 73.

    The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2016).

  74. 74.

    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

  75. 75.

    Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).

  76. 76.

    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

  77. 77.

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

  78. 78.

    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Meth. 14, 417–419 (2017).

  79. 79.

    Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

  80. 80.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  81. 81.

    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

  82. 82.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  83. 83.

    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

  84. 84.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

  85. 85.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Meth. 7, 335 (2010).

  86. 86.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

  87. 87.

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

  88. 88.

    Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).

  89. 89.

    Wang, Y. et al. The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res. 23, 1414–1416 (2013).

Download references

Acknowledgements

This study was supported by the Chinese Academy of Sciences (XDB11010600, KFZD-SW-219, QYZDB-SSW-SMC029 and XDB27040205) and the National Key Technology R&D Program of China (2018YFD0500203).

Author information

Y.H. conceived and supervised the project. Y.H., S.Z. and J.Z. designed the study. J.Z., Z.Y., L.Z. and M.C. provided samples and performed treatments. Y.C., L.B., M.C., Z.K., JuX., Y.J., X.L., JiX. and X.X. performed experiments. S.Z., G.F. and Y.Z. analyzed the data. S.Z., Y.H., J.K.T., J.Z., JuX., L.Z., Z.Y., H.Y., Z.Z. and S.W. interpreted the data. S.Z., H.Y. and J.K.T. wrote the manuscript. Affiliations 1 and 3 contributed equally to this study.

Correspondence to Shuai Zhan or Jeffery K. Tomberlin or Jibin Zhang or Yongping Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information, Table S1

Supplementary information, Table S2

Supplementary information, Table S3

Supplementary information, Table S4

Supplementary information, Table S5

Supplementary information, Table S6

Supplementary information, Table S7

Supplementary information, Table S8

Supplementary information, Table S9

Supplementary information, Table S10

Supplementary information, Table S11

Supplementary information, Table S12

Supplementary information, Table S13

Supplementary information, Table S14

Supplementary information, Table S15

Supplementary information, Table S16

Supplementary information, Table S17

Supplementary information, Figure S1

Supplementary information, Figure S2

Supplementary informaiton, Figure S3

Supplementary information, Figure S4

Supplementary information, Figure S5

Supplementary information, Figure S6

Supplementary information, Figure S7

Supplementary information, Figure S8

Supplementary information, Figure S9

Supplementary information, Figure S10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhan, S., Fang, G., Cai, M. et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res (2019) doi:10.1038/s41422-019-0252-6

Download citation