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Cathepsin B inhibitors block multiple radiation-induced
side effects in C. elegans
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Dear Editor,
Radiotherapy (RT) is one of the major treatments for cancer

patients, but its application in cancer therapy has been limited
due to deleterious side effects caused by radiation,1 which include
dry mouth, fatigue, nausea, skin irritation, low blood cell counts,
and infertility. These side effects, also called radiation-induced
bystander effects (RIBE), are caused by factors released from
irradiated cells or tissues, which can act either short- or long-range
to impact nearby or distant unexposed cells and tissues to induce
genomic instability, stress response, and altered cell proliferation
or death.2 RIBE thus is a critical factor in determining the efficacy
and success of RT in cancer treatment and a major safety concern
to people with occupational exposure to radiation, such as aircrew
members, medical workers, and laboratory researchers.1,2 There is
no effective way to prevent adverse side effects caused by
radiation and RT. This has been a longstanding medical issue that
demands an urgent solution.1

Recently, we identified the first RIBE factor in nematodes, CPR-4,
which is a homologue of the human cysteine protease cathepsin B
(CTSB).3 Upon ultraviolet (UV) or ionizing gamma ray (IR)
irradiation, CPR-4 is secreted from irradiated animals and becomes
the major factor in the medium that can impinge on unirradiated
animals to elicit multiple side effects, which include increased
embryonic lethality, inhibition of germ cell death, and increased
germ cell proliferation.3 Moreover, in a C. elegans RIBE model that
mimics RT, localized UV irradiation (LUI) at the head of the animal
evokes similar CPR-4-dependent side effects at distant unirra-
diated sites of the same animal (Fig. 1a), leading to increased
lethality of unexposed embryos and elevated stress response in
the posterior unirradiated region,3 which can be detected by
the Phsp-4GFP stress response reporter. Therefore, CPR-4 is an
important mediator of both intra- and inter-animal RIBE.3 How
localized irradiation triggers multiple different, and often detri-
mental, side effects in distant unexposed cells or tissues is not
clear and is a major issue in radiation biology and safety.
To address these important questions, we investigated

the possibility that localized irradiation causes side effects in
unexposed cells through inducing chromosome instability,
especially in cells actively undergoing mitosis, such as C. elegans
germ cells. Radiation-induced genome instability in unirradiated
bystander cells has been documented in culture cells and tissue
models,2,4,5 but has not been examined rigorously in live animals.
The underlying mechanism is unknown, although RIBE-related
clastogenic factors, which can induce breakages of chromosomes
in unirradiated cells, have been proposed.2 To detect DNA
damage in C. elegans mitotic germ cells, we examined the
localization pattern of the DNA damage checkpoint protein, HUS-
1, a component of the conserved heterotrimeric Rad9, Hus1, and
Rad1 complex (also named the 9-1-1 complex), which is loaded
onto sites of DNA damage to coordinate checkpoint activation
and DNA repair.6,7 We inserted the coding sequence of the
NeonGreen fluorescent protein into the hus-1 locus to create a

hus-1::neongreen fusion knock-in (KI) using the CRISPR/Cas9 gene
editing method8 and examined if HUS-1::NeonGreen concentrated
at sites of DNA damage following whole-body or localized UV
irradiation. As expected, whole-body UV irradiation of hus-1::
neongreen KI animals (100 J/m2) induced the formation of bright
HUS-1::NeonGreen foci in nuclei of multiple mitotic germ cells,
which coalesced on chromosomal DNA stained by Hoechst 33342
(Fig. 1b, upper panel), indicating that direct UV irradiation causes
many DNA breaks in these germ cell nuclei. Interestingly, localized
UV irradiation (LUI) at the head of hus-1::neongreen KI animals also
induced the formation of distinct, bright HUS-1::NeonGreen
puncta in nuclei of unexposed mitotic germ cells (Fig. 1a, b,
lower panel), which share the cytoplasm in the gonad syncytium.
This result indicates that localized irradiation somehow triggers
DNA damage in distant unexposed germ cells, probably through
RIBE factors. Compared with whole-body UV irradiation, fewer
mitotic germ cells in LUI animals had HUS-1::NeonGreen foci
(Fig. 1d, e) and markedly less HUS-1::NeonGreen foci were seen in
affected mitotic germ cells (Fig. 1b), indicating that the damage to
the nuclear DNA of unexposed germ cells induced by RIBE is
less severe than that caused by direct UV irradiation. Importantly,
LUI-induced HUS-1::NeonGreen foci, but not those caused by
whole-body UV irradiation, were dependent on a functional cpr-4
gene, as inactivation of cpr-4 by a deletion mutation, tm3718,3

abolished LUI-induced HUS-1::NeonGreen foci (Fig. 1c–e), but did
not prevent DNA damage caused by whole-body UV irradiation
that directly caused DNA double-strand breaks in mitotic germ
cells. We confirmed this finding using another DNA damage
marker, the HSR-9 protein, which is a C. elegans homologue of the
human p53 binding protein 1 (53BP1) that plays a key role in DNA
damage response and repair in mammalian cells and localizes to
DNA double-strand breaks.9 HSR-9::GFP fusion expressed from the
endogenous hsr-9 locus with a gfp knock-in (hsr-9::gfp) generated
by the CRISPR/Cas9 method displayed nuclear staining in mitotic
germ cells, a large portion of which overlapped with nuclear
DNA staining by Hoechst 33342 (Supplementary information,
Fig. S1a).9 Following whole-body or localized UV irradiation,
HSR-9::GFP formed intense foci or patches on chromosomal DNA
(Supplementary information, Fig. S1a), with whole-body irradiation
producing more bright HSR-9::GFP foci in mitotic germ cells than
LUI. Again, the formation of HSR-9::GFP foci after LUI treatment,
but not that caused by whole-body irradiation, was dependent on
the cpr-4 gene (Supplementary information, Fig. S1b–d). Given the
observations that CPR-4 is required for LUI-induced DNA damage
in unexposed germ cells and the nature of CPR-4 as a secreted
RIBE factor, we tested if CPR-4 by itself could induce DNA damage
by incubating hus-1::neongreen KI and hsr-9::gfp KI animals with
the purified CPR-4 or CTSB protease. In both cases, recombinant
CPR-4 or CTSB proteins were sufficient to induce the formation of
HUS-1::NeonGreen and HSR-9::GFP foci in mitotic germ cells
(Fig. 1f, g). These results indicate that CPR-4 is necessary and
sufficient to induce DNA damage in unexposed bystander cells
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following radiation and is likely the elusive clastogenic factor that
evokes DNA damage during RIBE. Taken together, these are the
first experimental demonstrations that localized irradiation like
radiotherapy can elicit DNA damage in unexposed bystander cells,
with the RIBE factor CPR-4 acting as a clastogenic factor.
Given the crucial role of CPR-4 in RIBE and the adverse side

effects caused by radiotherapy, which lack a good treatment
option, we sought to identify compounds that inhibit the protease
activity of CPR-4 and CTSB using a candidate approach, focusing
on ten small molecules derived from natural products that have
been tested in cancer therapy or show some effects in protecting
against radiation (Supplementary information, Fig. S2).10,11 Three
compounds, apigenin, baicalein and tannic acid, and a known

CTSB inhibitor, CA-074, exhibited good inhibitory activities
towards recombinant CTSB and CPR-4 proteases in vitro (Fig. 1h±j
and Supplementary information, Fig. S3). Although apigenin,

baicalein and tannic acid are less potent inhibitors of the CTSB and
CPR-4 proteases than CA-074, with the half maximal inhibitory
concentrations (IC50) ranging from 0.46 µM to 96 µM compared
with 0.013–0.023 µM by CA-074 (Supplementary information,
Fig. S4), they are the most abundant phenolic compounds found
in fruits and vegetables and have shown some anti-cancer
activities and low toxicity in animal tests.12–14

Using LUI intra-animal RIBE assays, we examined whether
apigenin, baicalein, and tannic acid could inhibit different
radiation-induced side effects in C. elegans.3 These include DNA
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damage in unexposed mitotic germ cells, increased lethality of
unexposed embryos, and elevated stress response in unirradiated
posterior regions, which can be quantified by monitoring GFP
expression from the stress reporter, Phsp-4GFP (Fig. 1a).3 Treatment of
hus-1::neongreen KI and hsr-9::gfp KI animals with apigenin, baicalein,
tannic acid, or CA-074 all blocked the formation of HUS-1::
NeonGreen or HSR-9::GFP foci in unexposed mitotic germ cells
following LUI (Fig. 1k, m and Supplementary information, Fig. S1e, f),
similar to that seen in the cpr-4(tm3718) mutant (Fig. 1c, e and
Supplementary information, Fig. S1b, d). These results indicate that
these compounds inhibit LUI-induced chromosomal DNA damage, a
critical RIBE that could lead to other side effects, including genome
instability, compromised survival of affected embryos, and stress
response.15 Indeed, apigenin, baicalein, tannic acid, and CA-074
similarly blocked increased lethality of unexposed embryos (Fig. 1l)
and stress response in the posterior regions after LUI treatment
(Supplementary information, Fig. S5). Therefore, as novel CTSB and
CPR-4 protease inhibitors, apigenin, baicalein, and tannic acid can
suppress several different side effects in a C. elegans radiation model
mimicking radiotherapy in humans. Given the findings that human
CTSB and C. elegans CPR-4 exhibit similar protease activities3 and
that human CTSB mimics CPR-4 to cause DNA damage (Fig. 1f, g),
increased embryonic lethality, and reduced germ cell death in C.
elegans,3 these compounds may similarly inhibit radiotherapy side
effects in humans.
Interestingly, apigenin and tannic acid were tested as adjuvant

chemotherapeutic agents to alleviate side effects or enhance the
potency of chemotherapy.12,13 Baicalein was used to mitigate
impairment of hippocampal neurogenesis and neurocognitive
deficits caused by whole-brain irradiation.14 However, their
mechanisms of action as adjuvant agents in these therapies are
unknown. Our findings provide a plausible mechanism by which
these compounds act to reduce side effects of radio- and chemo-
therapy. Importantly, our study raises alerts to the potentially
damaging effect of radiation to the nuclear DNA of distant
unexposed cells, which could lead to genetic mutations and other
side effects, and suggests possible treatment options to prevent
such side effects. Finally, this proof-of-concept drug screen in C.
elegans demonstrates that the combination of in vitro CTSB
inhibitor screens and in vivo verification by C. elegans RIBE models
is a powerful approach to identify drug leads for alleviating and
treating side effects caused by radiotherapy.
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