Article | Published:

Succinate-acetate permease from Citrobacter koseri is an anion channel that unidirectionally translocates acetate

Cell Researchvolume 28pages644654 (2018) | Download Citation

Abstract

Acetate is an important metabolite in metabolism and cell signaling. Succinate-Acetate Permease (SatP) superfamily proteins are known to be responsible for acetate transport across membranes, but the nature of this transport remains unknown. Here, we show that the SatP homolog from Citrobacter koseri (SatP_Ck) is an anion channel that can unidirectionally translocate acetate at rates of the order of ~107 ions/s. Crystal structures of SatP_Ck in complex with multiple acetates at 1.8 Å reveal that the acetate pathway consists of four acetate-binding sites aligned in a single file that are interrupted by three hydrophobic constrictions. The bound acetates at the four sites are each orientated differently. The acetate at the cytoplasmic vestibule is partially dehydrated, whereas those in the main pore body are fully dehydrated. Aromatic residues within the substrate pathway may coordinate translocation of acetates via anion-π interactions. SatP_Ck reveals a new type of selective anion channel and provides a structural and functional template for understanding organic anion transport.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281, 785–789 (1963).

  2. 2.

    Baldwin, J. E. & Krebs, H. The evolution of metabolic cycles. Nature 291, 381–382 (1981).

  3. 3.

    Kornberg, H. L. & Krebs, H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179, 988–991 (1957).

  4. 4.

    Kamphorst, J. J., Chung, M. K., Fan, J. & Rabinowitz, J. D. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2, 23 (2014).

  5. 5.

    Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

  6. 6.

    Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).

  7. 7.

    L’Hernault, S. W. & Rosenbaum, J. L. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 24, 473–478 (1985).

  8. 8.

    Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

  9. 9.

    Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

  10. 10.

    Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

  11. 11.

    Perry, R. J. et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

  12. 12.

    Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

  13. 13.

    Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

  14. 14.

    Halestrap, A. P. & Price, N. T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343, 281–299 (1999).

  15. 15.

    Ganapathy, V. et al. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 10, 193–199 (2008).

  16. 16.

    Garcia, C. K., Goldstein, J. L., Pathak, R. K., Anderson, R. G. W. & Brown, M. S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle. Cell 76, 865–873 (1994).

  17. 17.

    Wang, Y. et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462, 467–472 (2009).

  18. 18.

    Waight, A. B., Love, J. & Wang, D. N. Structure and mechanism of a pentameric formate channel. Nat. Struct. Mol. Biol. 17, 31–37 (2010).

  19. 19.

    Lu, W. et al. pH-dependent gating in a FocA formate channel. Science 332, 352–354 (2011).

  20. 20.

    Lü, W. et al. The formate channel FocA exports the products of mixed-acid fermentation. Proc. Natl Acad. Sci. USA 109, 13254–13259 (2012).

  21. 21.

    Sa-Pessoa, J. et al. SATP (YaaH), a succinate-acetate transporter protein in Escherichia coli. Biochem. J. 454, 585–595 (2013).

  22. 22.

    Augstein, A., Barth, K., Gentsch, M., Kohlwein, S. D. & Barth, G. Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica. Microbiology 149, 589–600 (2003).

  23. 23.

    Casal, M., Queirós, O., Talaia, G., Ribas, D. & Paiva, S. In Yeast Membrane Transport (José Ramos, Hana Sychrová, & Maik Kschischo eds) 229–251 (Springer International Publishing, 2016).

  24. 24.

    Consortium, T. U. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).

  25. 25.

    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

  26. 26.

    Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).

  27. 27.

    Ovchinnikov, S. et al. Large-scale determination of previously unsolved protein structures using evolutionary information. eLife 4, e09248 (2015).

  28. 28.

    Gentsch, M., Kuschel, M., Schlegel, S. & Barth, G. Mutations at different sites in members of the Gpr1/Fun34/YaaH protein family cause hypersensitivity to acetic acid in Saccharomyces cerevisiae as well as in Yarrowia lipolytica. FEMS Yeast Res. 7, 380–390 (2007).

  29. 29.

    Daley, D. O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005).

  30. 30.

    Agre, P. et al. Aquaporin water channels–from atomic structure to clinical medicine. J. Physiol. 542, 3–16 (2002).

  31. 31.

    Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

  32. 32.

    Strugatsky, D. et al. Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 493, 255–258 (2012).

  33. 33.

    Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

  34. 34.

    Strugatsky, D. et al. Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 493, 255–258 (2013).

  35. 35.

    Fedotova, M. V. & Kruchinin, S. E. Hydration of acetic acid and acetate ion in water studied by 1D-RISM theory. J. Mol. Liq. 164, 201–206 (2011).

  36. 36.

    Naganuma, H., Kameda, Y. & Usuki, T. Neutron and X-ray diffraction studies on the structure of concentrated aqueous sodium acetate solutions (Proceedings of the 1st International Symposium on Advanced Science Research (ASR-2000), Advances in Neutron Scattering Research). J. Phys. Soc. Jpn. 70, 356–358 (2001).

  37. 37.

    Nelson, D. L., Lehninger, A. L. & Cox, M. M. Lehninger principles of biochemistry. (Macmillan, 2008).

  38. 38.

    Parsegian, V. A. Ion-membrane interactions as structural forces. Ann. N. Y. Acad. Sci. 264, 161–171 (1975).

  39. 39.

    Kane Dickson, V., Pedi, L. & Long, S. B. Structure and insights into the function of a Ca(2+)-activated Cl(-) channel. Nature 516, 213–218 (2014).

  40. 40.

    Yang, T. et al. Structure and selectivity in bestrophin ion channels. Science 346, 355–359 (2014).

  41. 41.

    Stockbridge, R. B. et al. Crystal structures of a double-barrelled fluoride ion channel. Nature 525, 548–551 (2015).

  42. 42.

    Park, E., Campbell, E. B. & MacKinnon, R. Structure of a CLC chloride ion channel by cryo-electron microscopy. Nature 541, 500–505 (2017).

  43. 43.

    Philip, V. et al. A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anion-π pairs. Biochemistry 50, 2939–2950 (2011).

  44. 44.

    Jackson, M. R. et al. A preference for edgewise interactions between aromatic rings and carboxylate anions: the biological relevance of anion-quadrupole interactions. J. Phys. Chem. B 111, 8242–8249 (2007).

  45. 45.

    Giese, M., Albrecht, M. & Rissanen, K. Experimental investigation of anion-[small pi] interactions - applications and biochemical relevance. Chem. Commun. 52, 1778–1795 (2016).

  46. 46.

    Holmgren, M. Influence of permeant ions on gating in cyclic nucleotide-gated channels. J. Gen. Physiol. 121, 61–72 (2003).

  47. 47.

    Pusch, M., Ludewig, U., Rehfeldt, A. & Jentsch, T. J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 373, 527 (1995).

  48. 48.

    Neyton, J. & Pelleschi, M. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K + channels. J. Gen. Physiol. 97, 641–665 (1991).

  49. 49.

    Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

  50. 50.

    Tang, L. et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56–61 (2014).

  51. 51.

    Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43 (2001).

  52. 52.

    Payaka, A., Tongraar, A. & Rode, B. M. Combined QM/MM MD study of HCOO(-)-water hydrogen bonds in aqueous solution. J. Phys. Chem. A 113, 3291–3298 (2009).

  53. 53.

    Gerlt, J. A. et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

  54. 54.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

  55. 55.

    Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

  56. 56.

    Liao, J. et al. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335, 686–690 (2012).

  57. 57.

    Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

  58. 58.

    Sheldrick, G. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

  59. 59.

    Ness, S. R., de Graaff, R. A. G., Abrahams, J. P. & Pannu, N. S. Crank. Structure 12, 1753–1761 (2004).

  60. 60.

    Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

  61. 61.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

  62. 62.

    Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

  63. 63.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

  64. 64.

    Petřek, M. et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform. 7, 316 (2006).

  65. 65.

    Schrödinger Release 2017-1: Maestro, Schrödinger, LLC, New York, NY, 2017. (2017).

  66. 66.

    DeLano, W. L. The PyMOL Molecular Graphics System. (DeLano Scientific, San Carlos, CA, USA, 2002. http://www.pymol.org

  67. 67.

    Xia, B. et al. MLKL forms cation channels. Cell Res. 26, 517–528 (2016).

Download references

Acknowledgements

The synchrotron radiation experiments were performed at BL41XU of the Spring-8 facility with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal numbers 2015B1933, 2014B1158, 2015A1100, 2015B2100, 2016A2531, 2016B2531, and 2017A2559), and beamlines BL17U1, BL18U1, and BL19U1 of the Shanghai Synchrotron Radiation Facility (SSRF). This work was supported by the Ministry of Science and Technology of China (2017YFA0504800), the National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (2018ZX09711003-003-003), the National Key Scientific Instrument and Equipment Development Program (2012YQ03026010), and the Joint Fund of the National Natural Science Foundation of China and the Israel Science Foundation Research Program (8146114802). B.X. was supported by the China Post-Doctoral Science Foundation (2016M600344). We also thank the Shanghai Municipal Government and ShanghaiTech University for financial support.

Authors contributions:

B.Q. cloned constructs for structure determination, purified proteins, and crystallized SatP_Ck. B.Q. and J.L. collected and analyzed diffraction data, solved the crystal structures, and built and refined atomic models. F.W. and Z.M. participated in crystal optimization. K.H. participated in diffraction data collection. B.Q., Y.L., M.H., F.Z., and L.G. performed mutagenesis. B.X., Q.M., and G.Z. performed channel recordings and analysis. Q.Z. and S.Z. did bioinformatics analysis. J.L. and Z.G. wrote the manuscript with inputs from all authors.

Author information

Author notes

  1. These authors contributed equally: Biao Qiu, Bingqing Xia.

Affiliations

  1. School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China

    • Biao Qiu
    • , Yan Lu
    • , Miaomiao He
    • , Suwen Zhao
    •  & Jun Liao
  2. Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China

    • Biao Qiu
    • , Yan Lu
    • , Miaomiao He
    •  & Jun Liao
  3. CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China

    • Bingqing Xia
    • , Qionglei Mao
    •  & Zhaobing Gao
  4. iHuman Institute, ShanghaiTech University, Shanghai, 201210, China

    • Qingtong Zhou
    •  & Suwen Zhao
  5. Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Hyogo, 679-5198, Japan

    • Kazuya Hasegawa
  6. Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China

    • Zhiqiang Ma
  7. State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, 250100, China

    • Fengyu Zhang
    •  & Lichuan Gu
  8. Wuxi Biortus Biosciences Co., Ltd, Wuxi, Jiangsu, 214437, China

    • Feng Wang
  9. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China

    • Bingqing Xia
    •  & Qionglei Mao

Authors

  1. Search for Biao Qiu in:

  2. Search for Bingqing Xia in:

  3. Search for Qingtong Zhou in:

  4. Search for Yan Lu in:

  5. Search for Miaomiao He in:

  6. Search for Kazuya Hasegawa in:

  7. Search for Zhiqiang Ma in:

  8. Search for Fengyu Zhang in:

  9. Search for Lichuan Gu in:

  10. Search for Qionglei Mao in:

  11. Search for Feng Wang in:

  12. Search for Suwen Zhao in:

  13. Search for Zhaobing Gao in:

  14. Search for Jun Liao in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Zhaobing Gao or Jun Liao.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41422-018-0032-8