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Abstract
Glioma, with its heterogeneous microenvironments and genetic subtypes, presents substantial challenges for
treatment prediction and development. We integrated 3D bioprinting and multi-algorithm machine learning as a
novel approach to enhance the assessment and understanding of glioma treatment responses and microenvironment
characteristics. The bioprinted patient-derived glioma tissues successfully recapitulated molecular properties and drug
responses of native tumors. We then developed GlioML, a machine learning workflow incorporating nine distinct
algorithms and a weighted ensemble model that generated robust gene expression-based predictors, each reflecting
the diverse action mechanisms of various compounds and drugs. The ensemble model superseded the performance
of all individual algorithms across diverse in vitro systems, including sphere cultures, complex 3D bioprinted
multicellular models, and 3D patient-derived tissues. By integrating bioprinting, the evaluative scope of the treatment
expanded to T cell-related therapy and anti-angiogenesis targeted therapy. We identified promising compounds and
drugs for glioma treatment and revealed distinct immunosuppressive or angiogenic myeloid-infiltrated tumor
microenvironments. These insights pave the way for enhanced therapeutic development for glioma and potentially
for other cancers, highlighting the broad application potential of this integrative and translational approach.

Introduction
Glioma is a complex central nervous system cancer

exhibiting significant genetic and phenotypic hetero-
geneity among patients1. Investigations focusing solely on
molecular alterations driving neoplastic events or pre-
clinical studies have translated into limited survival
advantages in clinical practice for glioblastoma (GBM),
the most lethal type of glioma with a five-year survival rate
of 6.9%1. Methylation of the O-6-methylguanine-DNA
methyltransferase (MGMT) promoter has been associated
with better prognosis in newly diagnosed GBM patients

undergoing radiotherapy and temozolomide (TMZ)
maintenance treatment2. However, mismatch repair
defects and hypermutation following the TMZ treatment
contribute to drug resistance, and GBM patients often
experience high relapse rates and develop chemoresis-
tance3. Immunotherapies that demonstrate promising
effects in other cancers also show varied efficacies in
GBM4–6. Despite extensive attempts in glioma investiga-
tions and drug development, therapeutic improvement
appears stagnant, necessitating a further understanding of
the disease and more accurate treatment evaluations to
optimize patient survival rates7.
Growing evidence highlights that complex tumor

microenvironments, including myeloid cells, significantly
impact glioma treatment responses8,9. Clinical studies
have shown that drugs demonstrating promising out-
comes in preclinical settings did not yield significant
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clinical survival benefits, suggesting that current pre-
clinical models are suboptimal6,10. Traditional 2D cell
culture fails to recapitulate the heterogeneity of cells and
the extracellular matrix (ECM) of the tumor micro-
environment in vivo. In GBM, tumor-associated macro-
phages/microglia (TAMs), a highly plastic population of
non-neoplastic cells, constitute a substantial part of the
tumor mass and are implicated in GBM malignancy and
drug resistance11–13. TAMs, originating from two distinct
myeloid sources, blood-circulating monocytes, and brain-
resident microglia, form a pro-tumor stroma for GBM
growth and progression12. Creating clinically relevant
GBM microenvironments requires precise control of
cellular compositions and ECM properties, have been
achieved with recent advancements in 3D bioprinting
techniques and tissue-relevant biomaterials14,15. The
enabled crosstalk between tumor cells and stromal cells
provides valuable insights into tumor cell dependencies
and phenotypic features16. However, bioprinting has not
been exploited to develop patient-derived models using
freshly isolated tumor tissues, which might better reca-
pitulate the original tissues.
In addition, the advancement of machine learning has

facilitated better pattern recognition from large and
complex datasets, such as next-generation sequencing
data. Machine learning has been successfully deployed in
various disease management processes and to predict
cancer drug responses by integrating multi-omics fea-
tures, such as gene expression8,17–20. However, current
workflows face several challenges, including potential
overfitting issues due to the abundance of omics data and
relatively scarce drug response data, emphasizing the
critical importance of feature engineering. Furthermore,
current machine learning workflows usually rely on a
single algorithm for prediction, which is potentially
unsuitable for different drug compounds operating
through distinct mechanisms.
In this study, we reported the first integration of 3D

bioprinting and machine learning to encompass diverse
molecular and cellular features to enhance the assessment
of glioma treatment responses and microenvironment
characteristics. We first leveraged bioprinting to create
biomimetic, patient-derived tissues (PDTs) that closely
replicate the original tumor’s genomic characteristics,
gene expression patterns, and cellular compositions,
maintaining high clinical relevance. The bioprinted
models generated with recurrent patient tissues exhibited
drug resistance to TMZ treatment, which the MGMT
promoter (pMGMT) methylation assessment failed to
indicate. We next developed GlioML, a multi-algorithm
machine learning strategy, to generate independent drug
predictors with nine stack-one classic single algorithms
and one stack-two weighted ensemble model. GlioML
produced reliable drug response predictions based on

gene expression data, validated using a GBM cell line,
bioprinted PDTs, and bioprinted multicellular GBM-
myeloid models. GlioML unveiled unique susceptibility
patterns of glioma patients to a range of compounds,
several of which were confirmed by the bioprinted patient
tissues, including lovastatin, dasatinib, and 1S3R-RSL-3
(RSL), each operating through distinct mechanisms. Fur-
ther, this integration discerned discrete angiogenic or
immunosuppressive phenotypic traits in patient-derived
models and GBM-myeloid models developed using either
microglia or monocytes. Testing of immunotherapy and
targeted therapy, in conjunction with cytokine profiling
and immunofluorescent staining of 3D bioprinted GBM
models, further reinforced GlioML’s discoveries. Our
investigation underscores the synergistic capacity of this
approach to generate clinically pertinent treatment eva-
luations for patients and enrich our comprehension of
distinct myeloid characteristics in the tumor micro-
environment. This integrative strategy holds potential for
further refinement and broad application across diverse
cancer types, heralding a transformative era in cancer
research and treatment.

Results
3D bioprinted PDTs recapitulated genetic features and
clinical drug responses of patient tumors
Surgically resected GBM tumor tissues were obtained

from glioma patients spanning varied demographics
(Supplementary Fig. S1a). PDT cultures were successfully
generated for all obtained patient specimens as drug
testing models for 22 adult and 1 pediatric high-grade
glioma (HGG) patients, encompassing GBM, astro-
cytoma, oligodendroglioma, and pediatric HGG. Patient
tumor tissues were rinsed and dissociated using col-
lagenase to generate single-cell solutions. The bioink
comprised of gelatin methacrylate (GelMA) and hya-
luronic acid methacrylate (HAMA), has been formulated
to mimic the glioma ECM with greater fidelity than
Matrigel commonly used in organoid cultures16. The
prepolymer solution and the single-cell suspension were
thoroughly mixed to generate bioink for individual
patients and loaded onto the bioprinter, which had 96
independent light sources at the wavelength of 405 nm, to
polymerize the bioink and create PDTs.
Pairs of patient specimens and their PDT counterparts

were evaluated via RNA sequencing (RNA-seq) and whole
exosome sequencing (WES) to determine their molecular
statuses (Fig. 1a). RNA-seq showed a high correlation
between PDTs and their corresponding patient tissues
(Fig. 1b). Gene expression patterns remained mostly
consistent between the original tumor and its PDT
counterpart, although variations were observed among
individuals (Fig. 1c). Principal component analysis (PCA)
indicates that most tissue samples and corresponding
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Fig. 1 Bioprinting of clinically relevant PDTs for drug evaluations. a Schematic of processing workflow for patient specimens, including the
generation of PDTs via bioprinting for drug testing and characterization using RNA-seq, WES, and flow cytometry for both primary tissues and PDTs.
b Pearson correlation graph of the log-transformed gene expression data between primary tissues and PDTs. r: correlation coefficient. c Heatmap
representation of the transcriptome comparison between three pairs of PDTs and their respective tissue samples, demonstrating high similarity,
including a primary GBM patient (4358-HS), a recurrent astrocytoma patient (5256-HS), and a recurrent GBM patient (4089-HS). d Venn diagrams
illustrating genomic concordance between two patient samples and their PDTs, highlighting over 90% overlap in detected single nucleotide variants.
e Concordance of the recurrent clinical status to TMZ sensitivity predicted by pMGMT methylation status or assessed through bioprinted PDTs.
f Comparative efficacy of tumor cell inhibition for TMZ and CCNU in PDTs, showcasing the superior efficacy of CCNU across all patients, especially in
recurrent cases.
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PDTs cluster closely, except for an oligodendroglioma, a
gliosarcoma (GSM), and one GBM specimen showing
minor deviations (Supplementary Fig. S1b, c). A com-
parative analysis of RNA-seq data from patient tissues,
bioprinted PDTs, and Matrigel-based patient-derived
organoids (PDOs) revealed good correlations between
both in vitro models and patient tissues (Supplementary
Fig. S2a). The bioprinted models demonstrate a margin-
ally higher correlation coefficient (0.78 and 0.86 for PDT,
compared to 0.72 and 0.72 for PDO). This might indicate
a better representation of the in vivo condition by the
bioprinted PDTs. Despite identical cellular encapsulation,
the observed differences may stem from the effects of the
different ECM compositions and properties. Furthermore,
the majority of mutations identified in patient tissues were
mirrored in PDT cultures, confirming the genomic fidelity
of the bioprinted PDTs to the original tumors (Fig. 1d).
Copy number variations were largely retained across both
PDTs and PDOs (Supplementary Fig. S2b). Regarding
single nucleotide variants (SNVs) as well as short inser-
tions and deletions (INDELs), both in vitro models suc-
cessfully conserved the mutational landscape observed in
patient tissues (Supplementary Fig. S2c). Nonetheless,
PDOs exhibited an increased incidence of de novo
mutations, which was suboptimal for replicating native
tissue characteristics.
The drug testing involved only first-passage PDTs

derived from freshly dissociated cells to maximize clinical
relevance. All PDTs were subjected to the current gold
standard treatment, TMZ, and lomustine (CCNU), a
superior option for recurrent GBM21. Additionally, two
platinum-based compounds were tested due to their fre-
quent use in pediatric HGG (pHGG) treatment. Viability
assessments were conducted post 48 h treatment with
100 μM of the compounds (Supplementary Fig. S3).
Lobaplatin was the only drug among the four tested to
have both its median and average tumor inhibition rates
over 50% in PDT models. PDTs more accurately predicted
TMZ resistance in most recurrent adult patients who had
already undergone TMZ treatment, compared to the
pMGMT methylation status (Fig. 1e). Although pMGMT
status (> 10% clinical threshold) indicated TMZ sensitivity
in 6 out of 9 adult recurrent patients22, drug testing using
PDTs revealed that 5 of these 6 patients would not
respond to TMZ treatment. This was evidenced by PDTs
demonstrating more than 100% cell viability post-
treatment (Table 1). The concordance rate of PDTs in
reflecting drug resistance among recurrent patients was
89%, in contrast to only 33% for pMGMT status. CCNU
exhibited a higher efficacy in inhibiting tumor cells in
PDTs, particularly in recurrent GBM patients (Fig. 1f).
The median viability of all PDTs after the CCNU treat-
ment was 74%, compared to > 100% for TMZ. Moreover,
the median viability of PDTs generated from recurrent

patients after the CCNU treatment was 68%, compared to
115% for TMZ (P < 0.001). PDT responses to clinical
drugs aligned with a meta-analysis identifying CCNU as
the most effective chemotherapy for recurrent GBM
patients21.

Multi-algorithm workflow identified optimal algorithms for
diverse compounds
We extracted the gene expression data of established

cancer cell lines, as profiled by RNA-seq from the Cancer
Cell Line Encyclopedia (CCLE), and the drug response
data from the Cancer Therapeutics Response Portal
(CTRP), which included 481 drugs and their corre-
sponding drug sensitivity results in well-characterized
cancer cell lines as area-under-curve (AUC) values23,24.
We curated a list of gene sets most relevant to our study,
covering canonical pathways, transcription factor-binding
sites, and oncogenic signature gene sets, as the initial
features for GlioML, the multi-algorithm auto-machine
learning workflow25,26. Expression data of raw protein-
coding genes were converted into single-sample gene set
enrichment analysis (ssGSEA) scores of the curated gene
sets. These ssGSEA scores provided insight into the level
of regulation within each gene set and offered more
interpretability than individual gene expression. Of all cell
lines in CTRP, 636 were comprehensively characterized in
the CCLE and therefore extracted for further use. We
employed the AUC values for each cell–compound pair-
ing as labels, while pairs with missing labels were pre-
processed and subsequently excluded. We consolidated
all this information to generate the raw training data for
the workflow (Fig. 2). To mitigate the batch effects in
RNA-seq data resulting from disparate sample handling
processes, like cell culture methods and library prepara-
tions, we performed normalization and data cleansing on
the features of both training data and our sample data
before submitting them to GlioML (Supplementary
Fig. S4).
We incorporated nine supervised base algorithms in our

workflow, including three variations of Light Gradient-
Boosting Machine (LightGBM), two of K-Nearest
Neighbor (KNN), FastAI Neural Network (FastAI),
NeuralNetTorch (NNTorch), Random Forest, and Extra
Trees, along with a stack-two weighted ensemble
model27–32. We chose algorithms representing a broad
range of learning categories. Each compound underwent
independent training to account for its unique mechan-
isms of action and to accommodate the potential for
different algorithms to yield optimal performance. We
evaluated model performance via validation scores, with
lower absolute values signifying better performance. The
tabular data were restructured to incorporate the top n%
features, and the models were re-trained to improve
performance further.
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The training results underscored the superior predictive
capacity of neural networks and gradient-boosting algo-
rithms in estimating drug responses from gene expression
features. These two categories produced over 98% of the
best predictors from single algorithms, while the KNN
models did not generate any top predictors (Fig. 3a).
Moreover, through an effective combination of base
models with optimized weights (Supplementary Fig. S5),
the weighted ensemble model outperformed all single
algorithms across all compounds in the training datasets
(Supplementary Fig. S6).

GlioML predicted drug response on an independent
patient-derived dataset
We next used a line of GBM stem cells (GSCs), CW468,

to assess the predictive capacity of the workflow on
independently generated data. CW468 was profiled by
RNA-seq, and its gene expression data were processed
and analyzed. AUC predictions were obtained for all
compounds from every algorithm and the weighted
ensemble model. The GSCs were then exposed to nine
compounds, including TMZ, the standard drug treatment
for GBM, with the predicted AUC spanning the entire

range. Half maximal inhibitory concentration (IC50)
values for each drug–compound pair were obtained.
A second round of feature engineering was conducted to

prevent potential overfitting due to the original feature-to-
sample size ratio, reducing the number of features used in
training to a quantity less than the total sample number.
The top 20%, 10%, and 3% highest-ranked features were
selected for further training, which resulted in approxi-
mately 1:1, 2:1, and 6:1 sample-to-feature size ratios,
respectively. Reducing the feature size from the original to
the top 20% (RF20) significantly enhanced the validation
scores for most drugs, except for lovastatin (P= 0.03) (Fig.
3b). The validation scores for six of the nine compounds
improved when the feature size was reduced to 3% (RF3)
compared to 10% (RF10). However, dasatinib, docetaxel,
and trametinib experienced diminished performance, sug-
gesting that a 3% cutoff may be excessively stringent for a
few compounds. Statistical analysis of validation scores
revealed no significant difference between RF20, RF10, and
RF3. Thus, decreasing the feature size to a ratio less than 1:1
with the sample size was critical, and additional fine-tuning
yielded minor improvements. RF3-trained predictors were
utilized for downstream investigations.

Fig. 2 GlioML, a multi-algorithm machine learning approach for drug response prediction. The process consists of four key components: (1)
Data Preprocessing — standardization and labeling of the training dataset, (2) Feature Engineering — derivation of relevant features for robust
glioma drug response prediction, (3) Training Module — a comprehensive process involving initial training, feature reduction, and performance
assessment for individual predictor development, and (4) Downstream Applications — functionalities such as drug response predictions and
microenvironment interpretations.
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A strong linear relationship was observed between the
log2 transformed IC50 values in the GSCs and the pre-
dicted AUC from the weighted ensemble model across all
four conditions, including the original, RF20, RF10, and
RF3. Simple linear regression analyses on the measure-
ments and predictions produced an R2 value exceeding
0.80 in all groups, with RF3 predictions providing the best
fit (Fig. 3c). In the single algorithm models, NNTorch,
FastAI, LightGBM and LightGBMXT, exhibited strong

linear relationships between the log-transformed IC50

values and the predicted AUC (Fig. 3d–g). The other
models, including LightGBMLarge (LGBMLarge), Ran-
dom Forest, Extra Trees, KNN uniform (KNNUnif), and
KNN distance (KNNDist), demonstrated less optimal
performance on the GSCs (Fig. 3h–l). These results
indicated that GlioML could be reliably employed for
independent datasets and thus can easily accommodate
other cancer types. Furthermore, it was found that the

Fig. 3 Performance evaluation of GlioML for drug response predictions. a The proportion of top-performing predictors generated by different
single machine learning algorithms. b Absolute validation scores for the weighted ensemble model with feature reduction applied to the top 20%,
10%, and 3% of highest-ranked features. Lower scores imply better performance. c Linear regression analysis comparing log-transformed IC50 values
in GSC with predicted drug response AUC by the weighted ensemble model across all four conditions: original, RF20, RF10, and RF3. d–l Individual
linear regression analyses of log-transformed IC50 values and predicted AUC by individual algorithm models: NNTorch (d), FastAI (e), LightGBM (f),
LightGBMXT (g), LGBMLarge (h), Random Forest (i), Extra Trees (j), KNNUinf (k), and KNNDist (l). R2: coefficient of determination.
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weighted ensemble, neural network, and certain variations
of LightGBM models provided the most robust predic-
tions for the evaluated compounds compared to other
models, corroborating the training set evaluation.
To further enhance the predictive precision of our

multi-algorithm workflow, we employed three strategies:
Glioma+ (focusing the dataset solely on glioma cases),
Metadata+ (adding clinical metadata such as age, gender,
and pivotal mutation statuses), and Feature+ (including a
more extensive array of non-linear conditions). Our ana-
lysis revealed that the Glioma+ approach significantly
increased accuracy within the training dataset, as indi-
cated by improved validation scores (Supplementary Fig.
S7a). The Glioma+ model attained a median validation
score of –0.636, markedly better than –1.16 of the base
model and –1.14 of the Metadata+ and Feature+ models.
Given the considerable extension in training time and the
marginal score enhancement from integrating more
metadata or features, coupled with the need for time
efficiency, we proceeded with a trial training and evalua-
tion using the Glioma+ condition. This strategic narrow-
ing of the dataset also allowed us to incorporate additional
base algorithms, specifically CatBoost and XGBoost,
additional leading Boosting algorithms other than the
LightGBM. The remaining methodology paralleled our
preceding multi-algorithmic approach. In the Glioma+

workflow, neural networks and gradient-boosting models
still emerged as the most effective, yielding ~97% of the
top-performing predictors (Supplementary Fig. S7b). The
superior performance of these algorithms compared to
regression or bagging algorithms can likely be ascribed to
their capacity for modeling the intricate patterns present
in omic data. Additionally, techniques such as shrinkage
and regularization were pivotal in preventing overfitting, a
critical concern in datasets where features often out-
number samples, as observed in this study. In contrast,
bagging models, including Random Forests, though gen-
erally robust, may fall short of fully capturing the nuanced
complexity of omics datasets and managing the prevalent
noise and outliers. Notably, within the spectrum of
boosting algorithms, LightGBM and XGBoost, which
utilize asymmetric tree structures, significantly out-
performed CatBoost, which employs symmetric trees.
When considering the efficiency of neural network models
compared to gradient-boosting algorithms, the sig-
nificantly shorter median fit times for neural network
models such as FastAI and NNTorch (5 s and 46 s,
respectively) suggest a computational advantage over the
boosting algorithms, with CatBoost taking 246 s,
LightGBM Large taking 167 s, and XGBoost taking 85 s
for median fit time (Supplementary Fig. S7c). This effi-
ciency does not seem to come at the cost of performance,
as the neural network models still deliver a comparable
number of top-performance predictors.

Nevertheless, upon evaluation with the CW468 dataset,
the Glioma+ workflow demonstrated reduced perfor-
mance compared to the original GlioML (Supplementary
Fig. S7d). This discrepancy of performance in the training
dataset and independent dataset suggested that the
improved validation scores may be attributed to over-
fitting within a constrained training dataset, which in turn
could diminish the generalization ability and this was a
crucial aspect of the workflow where predictive accuracy
across diverse datasets was imperative. Consequently, we
proceeded with the original GlioML workflow for further
investigation.

GlioML identified promising compounds and predicted
drug efficacies on glioma PDTs
We then explored the synergistic potential of integrating

3D bioprinted models and GlioML for predicting and
evaluating individual glioma patient drug responses (Fig.
4a). PCA of the AUC matrix for all patients using GlioML
effectively distinguished between World Health Organi-
zation (WHO) grade III and WHO grade IV gliomas,
suggesting that patients at different stages of glioma
exhibited different drug response patterns (Supplementary
Fig. S8a). Despite the limited number of cells extracted
from primary tissues, several PDTs were exposed to three
GlioML compounds, along with TMZ. These compounds,
including RSL, dasatinib, and lovastatin, demonstrated
favorable responses in the CW468. Following treatments
with RSL, dasatinib, and lovastatin, the median viabilities
were 5.8%, 4.2%, and 50%, respectively. These viabilities
significantly surpassed those achieved with TMZ. RSL and
dasatinib, lovastatin, and TMZ emerged in three different
clusters based on GlioML’s overall predictions for all
patient samples (Fig. 4b). Given the effectiveness of RSL
and dasatinib, the compounds within this cluster were
identified as potential candidates for glioma treatment and
could be further explored in the future (Table 2).
Although the efficiency of tumor-killing varied among the
tested compounds, PDTs treated with CCNU, cisplatin,
lobaplatin, dasatinib, lovastatin, and RSL all displayed
significantly lower tumor viability than untreated controls
(Supplementary Fig. S8b). As PDTs were shown to align
with clinical TMZ and CCNU responses, the superior
tumor-killing efficacy of GlioML-identified compounds in
PDTs supports the potential of GlioML to have a clinical
impact on the treatment of glioma.
Subsequently, we evaluated GlioML’s capacity to rank

compound efficacy for individual patients by comparing
the measured PDT viability to GlioML predictions.
GlioML displayed strong predictive potential for various
WHO grade IV gliomas, including GBM, giant cell GBM,
IDH mutant astrocytoma, and pHGG. However, it
demonstrated suboptimal performance for WHO grade
III grade oligodendroglioma. Notably, the PDTs treated
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with all four GlioML compounds, giant cell GBM (3199-
HS), recurrent pHGG (3833-HS), recurrent GBM (4089-
HS), and recurrent astrocytoma (5256-HS), yielded R2

values of 0.83, 0.83, 0.94, and 0.84, respectively (Fig. 4c).

The oligodendroglioma (3917-HS) yielded a lower R2

value of 0.57. The median R2 values were 0.83 for all
WHO grade IV gliomas, suggesting that GlioML is par-
ticularly adept at interpreting WHO grade IV gliomas.

Fig. 4 Integration of bioprinted PDTs and GlioML for precision medicine. a Schematic of an integrative workflow that combines a
computational component (gene expression data acquisition and GlioML prediction) with an experimental part (PDT generation and multiple
compound/drug evaluations). b t-SNE plot representing all 481 compounds based on their response profiles to patient samples, with RSL and
dasatinib in the same cluster, while lovastatin and TMZ belong to different clusters. c Linear regression analysis correlating GlioML prediction and log-
transformed cell viability in five cases of high-grade gliomas, including three WHO grade IV adult gliomas, one WHO grade III oligodendroglioma, and
one pHGG. R2: coefficient of determination.
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Evaluating multimodal therapies through bioprinted PDTs
and multicellular models
HGGs, particularly GBM, exhibit heterogenous non-

neoplastic populations, such as immune cells and endo-
thelial cells. Patient samples collected in this study
exhibited a varied composition of stromal cells, especially
the CD45+ immune cells, spanning from < 1% to 44%, and
the PDTs effectively preserved the stromal cells (Supple-
mentary Fig. S9). Comparative analysis between 12 mat-
ched pairs of patient tissues and PDTs showed no
significant variance (P= 0.43), barring a few instances
where a reduction in CD45+ ratio was observed (Fig. 5a).
The macrophage populations, including subsets such as
CD14+ and P2RY12+ cells, which are indicative of TAMs
of peripheral and cerebral origin, respectively, were found
to constitute a considerable fraction of the tumor mass
and CD45+ cell population, consistent with literature
findings. While the CD14+ cells were well-maintained,
the P2RY12+ cells presented challenges in terms of
extended in vitro preservation (Fig. 5b). Among the
examined patient tissues, CD3+ T cells accounted for less
than 5% of the cell population in all samples, aligning with
the immunosuppressive microenvironment of HGGs.
Varying amounts of CD31+ endothelial cells were
observed in patient samples, spanning from < 1% to 28%.
PDTs also successfully preserved the CD31+ cells, with no
significant differences (P= 0.60) observed between 12
pairs of patient tissues and the corresponding PDTs
(Fig. 5c).
We further investigated the utility of bioprinted PDTs

in assessing the efficacy of activated T cells and Bev-
acizumab, in addition to the demonstrated capability of
evaluating small molecule compounds. We selected
PDTs representing two distinct subtypes: CD14-
dominant (1779-HS) and P2RY12-dominant (29259-

HS). These PDTs were treated with T cells activated by
CD3/CD28 microbeads, at an effector:target (E:T) ratio of
1:1. Initially, 1779-HS comprised 41% CD14+ cells within
45% of the total CD45+ cell population, whereas 29259-
HS contained 9% P2RY12+ cells within 9% of the total
CD45+ cells (Fig. 5d). Upon exposure to activated T cells,
we observed a higher level of apoptosis, as indicated by
Caspase 3 staining (Fig. 5e), in P2RY12-dominant PDTs
compared to CD14-dominant PDTs, suggesting greater
susceptibility to T-cell mediated cytotoxicity. Differential
responses were also noted when PDTs were exposed to
Bevacizumab, an anti-angiogenic drug. In CD14-
dominant PDTs, post-treatment CD31+ cells showed
over 50% inhibition relative to the baseline ratio, whereas
the untreated control maintained the initial CD31+ cell
ratio. Conversely, P2RY12-dominant PDTs exhibited a
more resistant profile to Bevacizumab, with only a 5%
inhibition in CD31+ cells post-treatment compared to
the baseline. Intriguingly, the untreated P2RY12-
dominant PDTs demonstrated a fourfold increase in the
CD31+ cell ratio, suggesting an environment conducive
to angiogenesis.
Despite their significant clinical relevance, PDTs

exhibited patient-specific characteristics and presented
inconsistent cellular compositions. This included varying
quantities of immune cells and cells related to blood
vessels, posing challenges for repeatable mechanistic
studies. To address this, we employed digital light
processing-based bioprinting to create engineered multi-
cellular GBM models to further investigate the differential
behaviors observed in CD14-dominant and P2RY12-
dominant PDTs. We attempted to reconstruct multi-
cellular models that accurately represented the three cell
populations involved in PDT examinations. These inclu-
ded CD14+ cells representing peripheral-origin TAMs,

Table 2 Promising compounds for glioma treatment based on GlioML predictions for drug response in patient samples.

Bardoxolone methyl Gemcitabine Topotecan Doxorubicin Teniposide

Foretinib NVP-BEZ235 AZD8055 NVP-TAE684 Cucurbitacin I

KPT185 LBH-589 Belinostat Apicidin BRD-A86708339

Obatoclax BRD-K63431240 Pluripotin Dasatinib Afatinib

Trametinib SCH-79797 Methotrexate Daporinad CAY10618

PF-3758309 Omacetaxine mepesuccinate SNS-032 Leptomycin B Narciclasine

SR-II-138A CR-1-31B Dinaciclib Alvocidib AZD7762

AT13387 SNX-2112 BI-2536 GSK461364 Triazolothiadiazine

Vincristine Parbendazole KX2-391 Paclitaxel SB-743921

Rigosertib Docetaxel Brefeldin A Ouabain MLN2238

Avicin D ML210 ML162 1S3R-RSL-3 Neopeltolide

Oligomycin A

Tang et al. Cell Discovery           (2024) 10:39 Page 10 of 20



Fig. 5 (See legend on next page.)
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P2RY12+ cells representing cerebral-origin TAMs, and
CD31+ cells representing endothelial cells. Accordingly,
our assembly included four multicellular combinations:
GBM-Monocyte (GBM-Mo), GBM-Microglia (GBM-Mg),
GBM-Monocyte-Endothelial Cell (GBM-Mo-EC), and
GBM-Microglia-Endothelial Cell (GBM-Mg-EC). These
models incorporated tumor cells (CW468), myeloid cells
(THP1 monocytes and HMC3 microglia) representing the
peripheral and cerebral TAM origins, respectively, and
endothelial cells (HUVEC), the critical components of
blood vessels. The prepolymer solution used for these
models maintained the same concentration and light
intensity as that used for the PDTs.
These engineered multicellular models enabled the

assessment of various therapeutic approaches, including
small molecules identified by GlioML, T-cell therapies, and
targeted treatments like Bevacizumab. An initial evaluation
of the GlioML’s predictive capacity in these bioprinted
multicellular GBM models revealed a linear correlation
between the GlioML predictions and the observed drug
responses of GSCs in 3D co-cultured models. GlioML
demonstrated better predictive performance in GBM-Mg
models compared to the GBM-Mo models (Supplementary
Fig. S10a, b). The GlioML predictions indicated that tra-
ditionally cultured GSCs had lower drug resistance,
represented by a smaller AUC value, than 3D myeloid-co-
cultured GSCs (Supplementary Fig. S10c). Moreover, we
identified similar drug response patterns in microglia-co-
cultured GSCs (G-GSCs) and monocyte-co-cultured GSCs
(O-GSCs). However, distinct drug susceptibility patterns
emerged in GBM-transformed microglia (G-Mg) and
GBM-transformed monocytes (G-Mo) (Fig. 5f). G-Mo
displayed significantly different drug response patterns
than co-cultured GSCs and G-Mg. Given that our bio-
printed co-culture models contained a high proportion of
myeloid cells, mirroring clinical scenarios where TAMs
constitute up to 30% of GBM tissues, the marginally
reduced accuracy of GlioML in predicting GSC responses
in the GBM-Mo model could likely be ascribed to the
GlioML’s analysis focusing primarily on tumor cells.
We subsequently applied the bioprinted GBM-Mg and

GBM-Mo models to assess the efficacy of activated T cells

and Bevacizumab. Interestingly, although GSCs in the two
3D myeloid-co-culture models showed comparable
responses to small molecules, they showed distinct sen-
sitivities to these other treatment modalities. This finding
aligned with our observations in the PDTs, where G-GSCs
were more susceptible to T-cell therapy than O-GSCs
(Fig. 5g). Notably, O-GSCs even demonstrated prolifera-
tion under T-cell treatment at an effector:target (E:T)
ratio of 1:1. Post-treatment analysis of the GBM-Mo
models revealed a reduction in CD8+ cytotoxic T cells
and an increase in CD4+ T cells. Within the CD4+ T-cell
population, a significantly higher proportion of CD25+

T cells was observed in GBM-Mo models compared to
GBM-Mg models, suggesting a more immunosuppressive
microenvironment in the former. Conversely, with Bev-
acizumab treatment, O-GSCs demonstrated a higher
susceptibility than G-GSCs (Fig. 5h). These results were
consistent with those observed in PDTs, suggesting that
the differing myeloid cell compositions in these models
might foster distinct GBM microenvironments. These
environments could be characterized as either immuno-
suppressive or angiogenic, both of which are recognized
as key features of GBM.

Distinct microenvironment characteristics of bioprinted 3D
GBM-myeloid models
To elucidate the factors driving the observed diversity in

drug sensitivity, we investigated the bioprinted GBM-
myeloid models and GlioML features. We first profiled
the gene expression of GSCs under different culture
conditions, including traditional sphere culture, bio-
printed co-culture (GBM-Mg and GBM-Mo), and bio-
printed triculture (consisting of GSCs, microglia, and
monocytes together). Traditionally cultured GSCs exhib-
ited significant divergence from all the 3D bioprinted
cultures. In contrast, the difference between O-GSC and
G-GSC was relatively minor, as indicated by the PCA and
differential gene expression analysis (Supplementary
Fig. S11a, b). GSC isolated from the triculture model
(Tri-GSC) also displayed differences from the co-cultured
O-GSC or G-GSC, indicating that combining the two
myeloid cell types further impacted the GSCs. We noted

(see figure on previous page)
Fig. 5 Assessing multimodal treatments in bioprinted PDTs and GBM-myeloid models. a Percentage of CD45+ cells in patient tissue and
bioprinted PDTs. b Percentage of CD45+, CD14+, and P2RY12+ cells in patient tissues and PDTs. c Percentage of CD31+ cells in patient tissue and
bioprinted PDTs. d Immunofluorescent staining of PDTs derived from 1779-HS and 29259-HS. Green: CD45. Red: GFAP. Scale bars, 100 μm.
e Immunofluorescent staining of Caspase 3 in PDTs derived from 1779-HS and 29259-HS after T-cell treatment. Scale bars, 100 μm. f PCA of drug
responses in GSC, Mg, and Mo under different culture conditions. 2D-Mo: 2D cultured monocyte. G-Mo: GSC co-cultured monocyte. 2D-Mg: 2D
cultured microglia. G-Mg: GSC co-cultured microglia. Sphere: traditional sphere cultured GSC. G-GSC: microglia-coculturedd GSC. O-GSC: monocyte
co-cultured GSC. g Cytotoxicity evaluation of T-cell treatment for GSCs in bioprinted GBM-Mg and GBM-Mo models, with E:T ratios of 1:1.
h Cytotoxicity evaluation of bevacizumab treatment (25 μg/mL) for GSCs in bioprinted GBM-Mg and GBM-Mo models. Immunofluorescence staining
of immunosuppressive markers CD163 and CD206 (i), and tight junction marker ZO-1 and glial cell marker GFAP (j) in GBM-Mg and GBM-Mo models.
Scale bars, 100 μm.
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distinct GSC morphologies in the GBM-Mg and GBM-
Mo models, with G-GSCs appearing more fibroblastic and
O-GSCs exhibiting a more rounded shape (Supplemen-
tary Fig. S11c). Immunofluorescent staining of hypoxia
marker CA9 suggested a more hypoxic state in GSCs co-
cultured with myeloid cells than those bioprinted alone
(Supplementary Fig. S11d).
Variations in responses to T-cell and Bevacizumab

treatments suggested potential roles of immune interac-
tions and angiogenesis. Upon further analysis, GBM-Mo
models showed elevated immunosuppressive CD163 and
CD206 expression levels (Fig. 5i). According to reverse
transcription quantitative polymerase chain reaction (RT-
qPCR) data, G-Mo had a substantially higher CD163
expression than its 2D counterparts, with this elevated
expression maintained in G-Mo for up to a week. In
contrast, G-Mg maintained a low level (Supplementary
Fig. S12a). Conversely, G-Mg displayed increased
expression of angiogenesis-related VEGFA based on RT-
qPCR data (Supplementary Fig. S12b). Immuno-
fluorescent staining revealed a higher ZO-1 tight junction
protein expression in GBM-Mg models, while it was
undetectable in GBM-Mo models (Fig. 5j). Furthermore,
the tube formation assay and endothelial growth evalua-
tion demonstrated that the conditioned medium of GBM-
Mg models facilitated more meshes’ formation and
increased endothelial cell proliferation (Supplementary
Fig. S12c, d).
Cytokines were pivotal in promoting the immunosup-

pressive or angiogenic states in the two GBM-myeloid
models. In GBM-Mg, the most abundant cytokines were
IL8, IL6, and CCL2, while in GBM-Mo, IL8, CCL5, and
G-CSF were most prevalent (Fig. 6a). The CCL2/IL6 axis
was previously associated with TAM-GBM crosstalk,
contributing to enhanced GBM invasiveness11. The co-
culture supernatant was compared to the mixed super-
natant of monoculture of involved cell types (Fig. 6b;
Supplementary Fig. S12e). Both 3D co-culture models
exhibited reduced levels of pro-inflammatory molecules,
such as interferon-gamma (IFN-γ), interferon-gamma-
induced protein 10 (CXCL10), and tumor necrosis
factor-alpha (TNF-α) compared to the sum of single
cultures, indicating the induction of an immunosup-
pressive state through cellular interactions and trans-
formations in both models, with a more pronounced
effect in GBM-Mo (Supplementary Fig. S12f)33. Despite
the increase in IL8 in both co-culture conditions, other
cytokines manifested different alterations in GBM-Mg
and GBM-Mo. Most cytokines either did not change
significantly or were found at decreased levels in GBM-
Mg. Conversely, in GBM-Mo, several chemokines,
including G-CSF, CCL3, CCL4, and CCL5, and cyto-
kines, such as IL4, IL9, IL10, IL12, and IL15, were
detected at increased levels.

The GlioML feature analysis of cells isolated from the
bioprinted models aligned with these observations
(Fig. 6c). Cytokine signaling and inflammatory features
were the most enriched in the G-Mo, while angiogenic
features were dominant in the GBM-Mg microenviron-
ment. Both G-GSC and G-Mg were markedly enriched in
angiogenesis-related pathways. Additionally, hypoxia fea-
tures, hypoxia-induced p53 activation, and glycolysis were
most enriched in G-Mg. 3D myeloid-co-cultured GSCs
showed an increased expression in these pathways com-
pared to their traditionally cultured counterparts. The
GlioML feature analysis aligned with the outcomes of
other analysis pipelines, such as gene set enrichment and
gene ontology analyses (Fig. 6d–f; Supplementary Fig.
S13a–d). We also found these observations consistent
across cell lines, as similar gene expression changes were
observed in GBM models constructed with another GBM
cell line, U251 (data not shown).

Discussion
We present a pioneering integration of 3D bioprinting

and machine learning in a clinically relevant context,
advancing experimental and computational methodolo-
gies to predict and evaluate multimodal tumor treatment
responses. Moreover, this integrative approach enabled
the exploration of the intricate tumor-immune micro-
environment characteristics.
The bioprinted PDTs using fresh patient samples and a

defined hydrogel composition, as the first of their kind in
glioma research, represented an excellent alternative to
Matrigel-cultured tumor organoids. The cost-effectiveness
and batch-to-batch uniformity of the bioink also support
the scalability of tissue model production. They faithfully
replicated molecular characteristics, cellular composition,
ECM compositions, and clinical drug responses found in
patient tumors, validating their utility for drug response
assessment. Notably, the PDTs demonstrated a capacity to
accurately predict TMZ resistance in most recurrent adult
patients when pMGMT status failed to predict. This
capacity indicates their potential for enhancing treatment
planning for GBM patients. Furthermore, these models
offer a flexible platform for evaluating patient responses to
various therapies, with the ability to differentiate responses
to T-cell and anti-angiogenesis targeted therapies, such as
Bevacizumab. Despite these advantages, we recognize the
limitations of the bioprinted model in forming mature
vascular structures within the experimental timeframe, a
limitation we aim to address in future studies.
In addition, the GlioML workflow demonstrated profi-

ciency in predicting small molecule efficacy in tumor cells
across various in vitro systems, including the bioprinted
PDTs developed in the study. Recognizing the distinct
mechanistic actions of compounds, we hypothesized that
a single algorithm might not generate an optimized
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Fig. 6 Distinct microenvironment characteristics in GBM-myeloid models. a Absolute cytokine abundance in GBM-Mg and GBM-Mo models.
b Fold-change comparison of cytokine abundance in co-culture supernatants vs supernatants from monocultures of the corresponding cell types.
c GlioML feature analysis of cells isolated from bioprinted GBM-myeloid models and their traditionally cultured counterparts. d Heatmap
representation of the top differentially expressed genes in G-Mg and G-Mo, with related pathways annotated on the side. e GSEA showing greater
enrichment of the angiogenesis pathway in G-Mg. f GSEA demonstrating enhanced chemokine production pathway in G-Mo.
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predictor for all drugs. The ensemble model of GlioML
leveraged the stacking strategy, merging multiple cate-
gories of algorithms and validated our hypothesis by
surpassing the performance of all individual algorithms.
This approach underscored the necessity of context-
specific algorithm selection for optimal predictions and
bypassed the need for arbitrary model selection and
manual parameter tuning typically required in traditional
methodologies. The synergy between GlioML and bio-
printing yielded a powerful tool for drug assessment and
illuminated differential microenvironments within tumor-
immune models. This integration identified a cluster of
promising yet unexpected candidate compounds. This
integrated strategy identified a cohort of unexpected yet
promising candidate compounds. RSL3, a ferroptosis
activator, demonstrated strong efficacy on GSCs and bio-
printed models. Lovastatin, a drug typically used for
managing high cholesterol and triglyceride levels, displayed
variable efficacy across different PDTs, yet displayed good
effectiveness in a few samples. GlioML in combination
with 3D bioprinted multicellular models also revealed
distinctive drug susceptibility and gene expression patterns
in GSCs and myeloid cells. These findings, particularly
concerning GBM-transformed microglia and monocytes,
enhance our understanding of their unique roles in
immunosuppression and angiogenesis. In summary, the
versatility of this integrated computational and experi-
mental approach supports its applicability across a range of
cancer types, indicating its promising potential for future
advancements in personalized cancer therapeutics.

Materials and methods
Patient tissue collection
Glioma tissue specimens or blood samples were col-

lected from Huashan Hospital. The research undertaken
was approved by the research ethics committee at Hua-
shan Hospital, Fudan University, under the ethics
approval numbers: KY2021-670, KY2021-059, KY2023-
846. All participating patients provided written consent
for using their samples in research endeavors. Pathologists
confirmed the classification of the tumor samples.
Detailed patient demographic and clinical data are avail-
able in Table 1 and Supplementary Fig. S1a.

Isolation of cells from patient specimens
Surgical samples were cut or minced into 1–3mm

pieces and rinsed thoroughly with Dulbecco’s Phosphate-
Buffered Saline (DPBS, Gibco). The mixture was then
treated with collagenase type I (Yeasen) and rocked on a
shaker at 37 °C for 1 h to aid digestion. The digested
samples were rinsed with DPBS. The resulting cell sus-
pensions were collected by centrifugation at 200× g for
5 min. A 5-min red cell lysis procedure was performed if
excessive red blood cells were present.

Flow cytometry analysis
Isolated patient cells were resuspended in a DPBS buffer

with 40 μg/mL DNase I and analyzed using CytoFLEX
flow cytometer (Beckman Coulter). For staining, 1 μL of
conjugated CD45 antibody (Biolegend, Cat# 304012) was
added to 100 μL cell suspension (0.1 million cells) and
incubated for 20 min on ice in the dark. After washing 3
times with DPBS (Gibco), cells were stained with 7-AAD
(Biolegend, Cat# 420403) for 10min at room temperature
in the dark. A total of 10,000 events were collected for
each sample. Data were analyzed using FlowJo v10.8. All
experiments were performed in triplicates.

GlioML workflow
The GlioML input preparation involved generating

features and labels, followed by data cleaning and nor-
malization. Cancer cell line gene expression and ther-
apeutic response AUC data were accessed through the
CCLE23 and the CTRP24,34,35. AUCs were used as labels.
Gene-expression TPM values for clinical samples and cell
line samples generated in this study were calculated from
raw RNA-seq data and transformed to log2(TPM+ 1) to
match the CCLE data format. The ssGSEA module on
GenePattern36 was used to calculate the ssGSEA scores of
each sample using a specific list of gene sets curated from
the Molecular Signatures Database (v7.5)25,37. The cal-
culated ssGSEA scores for all curated gene sets were used
as the feature values. The data cleaning process involved
filtering out samples that did not have labels. Normal-
ization was performed by scaling all signature scores to
the range of [0, 1].
AutoGluon 0.5.1 was used to build the GlioML

workflow. Nine basic models, including FastAI, Neural
Network Torch, LightGBM, LightGBM_XT, Light-
GBM_Large, Random Forest, Extra Trees, KNN_uni-
form, KNN_distance, and a weighted ensemble model
were included. AutoGluon Tabular Predictor was used
with specific parameters, including ‘best_quality’ presets,
bagging and multi-layer stack ensembling, 3 repeats of
5-fold cross-validation, and random search hyperpara-
meter tuning for 512 times for each model. The problem
type was regression; the evaluation metric was mean
squared error.
After initial training, feature importance scores were

generated using feature_importance(), with sub-
sample_size set to 5000 and num_shuffle_sets set to 10 for
highly accurate importance and P-value estimates. The
scores were presented as a ranking of the most important
features to the least important features. These scores were
used to interpret the model and identify the most pre-
dictive features. Then the top 20, top 10, or top 3 percent
of the features were extracted, and the models were re-
trained based on the newly formulated training data using
the same parameters as the initial training.
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Cell culture
CW468 cells were established by Dr. Jeremy N. Rich lab

(UCSD) and cultured in Neurobasal medium (NBM,
Gibco, Cat# 21103049) supplemented with 1% B27 minus
vitamin A, 1% L-glutamine, 1% sodium pyruvate, 1%
penicillin/streptomycin (P/S), 10 ng/mL basic human
fibroblast growth factor (Peprotech, Cat# AF-100-18B),
and 10 ng/mL human epidermal growth factor (Pepro-
tech, Cat# AF-100-15). THP1 cells (American Type Cul-
ture Collection, ATCC, Cat# TIB-202) were cultured in
Roswell Park Memorial Institute (RPMI) 1640 medium
supplemented with 10% FBS and 1% P/S. HMC3 cells
(ATCC, Cat# CRL-3304) were cultured in Minimum
Essential Medium (MEM, Gibco) medium with 10% fetal
bovine serum (FBS), 1% P/S, and 1% non-essential amino
acids. HUVEC (Cell Applications, Cat# 200p-05n) were
cultured in endothelial cell growth medium v1 (Cell
Applications, Cat# 211-500) supplemented with 1% P/S.
U251 cells were cultured in DMEM medium with 10%
FBS and 1% P/S. All cells were maintained at 37 °C with
5% CO2 and passaged with TrypLE (Gibco) or Accutase
(Stemcell Technologies) every two to three days. Cell line
authentication was conducted for immortalized cell lines,
including HMC3 and THP1, using short tandem repeat
(STR) profiling and comparison to known reference
profiles to ensure data integrity and reliability.

Drug response evaluation
Drug compounds were pre-dissolved in dimethyl sulf-

oxide (DMSO) or de-ionized water to a stock solution
based on solubility and stored at –20 °C. Cisplatin was
obtained from Qilu Pharmaceutical. Lobaplatin was
obtained from Hainan Changan International Pharma-
ceutical. All other tested compounds were obtained from
Selleck, including RSL (Cat# S8155), Erlotinib (Cat#
S1023), TMZ (Cat# S1237), JW-55 (Cat# S6745), TGX-
221 (Cat# 1169), Dasatinib (Cat# S1021), Lovastatin (Cat#
S2061), Daporinad (Cat# S2799), and Docetaxel (Cat#
S1148).
Before drug treatment, the compounds were diluted in

NBM to a concentration that ensured DMSO was less
than 0.1% when treating cells. GSCs were bioprinted at
5000 cells per well with 50 μL of medium in 96-well plates
and allowed to culture overnight at 37 °C with 5% CO2.
The next day, 50 μL of 2× drug solution was added to the
wells. Cell viability was assessed at the 72-h time point
after drug treatment using CellTiter-Glo 3D assay (Pro-
mega). Briefly, 100 μL of CellTiter-Glo 3D was added, and
the plates were shaken at 300 rpm for 10min to ensure
uniform mixing. The luminescence was measured on a
plate reader (Tecan) using luciferase reading. The IC50

values were calculated from dose-response curves gener-
ated using GraphPad Prism 9 software. All experiments
were performed as triplicates.

Bioprinting PDTs and GBM-myeloid models
PDTs were bioprinted using a light-based bioprinter,

Biocube (Cyberiad Biotechnology), with a wavelength of
405 nm, and multicellular GBM-myeloid models were
created with a digital light processing bioprinting system,
also with a wavelength of 405 nm. Both systems employed
matching printing parameters, including a power density
(irradiance) of 50 mW/cm2 and a scaffold thickness of
0.5 mm. For the PDTs, a cell suspension containing 30
million cells/mL was prepared, with 2 μL of the cell-
material suspension required for each sample. For GBM-
myeloid cells, a cell suspension composed of equal parts
40 million/mL GBM cells and 20 million/mL THP1 or
HMC3 cells was prepared, using 5 μL of cell-material
solution for each printed sample.
The prepolymer solution used for all bioprinting processes

consisted of 8% GelMA, 2% HAMA (Yuju Technology), and
0.2% lithium phenyl-2,4,6-trimethylbenzoylphosphinate
(TCI Chemicals). This solution was thoroughly mixed and
stored at 37 °C in the dark before use. The cell suspension
was combined with the prepolymer solution at a 1:1 ratio
immediately before printing to ensure maximum cell via-
bility. The cell-material mixture was exposed to the bio-
printer for an optimized 15–20 s duration. Afterward, the
bioprinted constructs were rinsed with DPBS and cultured
in a maintenance medium at 37 °C and 5% CO2.
The maintenance medium for PDTs consisted of DMEM/

F12 supplemented with 1% B27, 1% P/S, 10 ng/mL basic
human fibroblast growth factor (Novoprotein), and
10 ng/mL human epidermal growth factor (Novoprotein).
The maintenance medium for GBM-myeloid cells con-
tained equal parts CW468 medium and THP1/HMC3
medium. Bioprinted constructs were cultured 7 days before
analytical experiments and 3 days before drug treatments.
Model monitoring was conducted regularly using optical
microscopy.

Cell isolation from bioprinted samples
The bioprinted samples were incubated with 1 mg/mL

collagenase in HBSS (Gibco) for 30–60min at 37 °C with
constant shaking to digest the hydrogel. The samples were
then filtered through a 70-μm cell strainer to remove any
remaining clumps. The resulting single-cell suspension
was collected and centrifuged at 200× g for 5 min to
collect cells for subsequent analysis.

WES analysis
Patient samples and their corresponding PDTs and

PDOs were subjected to WES analysis and germline
corrected using matched blood samples. DNA was
extracted using the QIAamp FFPE DNA Tissue Kit
(Qiagen). DNA degradation and contamination were
assessed on a 1% agarose gel, while concentrations were
determined using the Qubit DNA Assay Kit (Life
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Technologies) and the Qubit 2.0 Fluorometer (Life
Technologies). DNA was further fragmented to
150–230 bp, and adapters were ligated at both ends of the
fragments. The extracted DNA was then PCR-amplified
and hybridized to the KAPA HyperExome Probes (Roche)
for enrichment. Libraries were subsequently loaded onto
the Illumina NovaSeq 6000 platform (Honsunbio). Patient
samples, PDTs, and blood DNA samples were respectively
sequenced to average depths of > 400×, > 400×, and >
100× in targeted exonic regions.
The obtained reads were processed using the following

pipeline. We aligned the sequencing reads to the human
reference genome (hg19) using the Burrows-Wheeler
Aligner v0.7.17 and then processed them with Picard
v1.119 to remove duplicates. Genome Analysis Toolkit
v4.1.9 was used to conduct INDEL realignment and
recalibrate base quality scores. Somatic SNVs and INDELs
were identified using Mutect2 and Varscan_Indel v2.4.2,
respectively, and annotated with ANNOVAR. Copy
number variations (CNVs) and gene fusions were detected
using CNVkit v0.9.9 and Lumpy v0.2.13, respectively.
Purity and ploidy for each sample were manually calcu-
lated by comparing the variant allele frequency (VAF) of
somatic SNV and CNV log2 values of multiple variants
within each sample. The final average ploidy/purity was
taken from the Sequenza or ABSOLUTE estimate that
most closely matched the manual calculation. No precise
purity estimates were made for tumor samples with
extremely low purity (< 15%).
SNV concordance between tumor–PDT pairs was

determined by examining the overlap of variant calls
and variant allelic fractions. For each SNV identified in
the tumor or PDT, SAMTOOLS Pileup (with a mini-
mum base quality and minimum mapping quality of
10) was run at this position for both samples to com-
pute the variant allele fractions. If read evidence for the
SNV was present in both samples (and therefore
VAF > 0), the SNV was considered concordant. SNVs
called by two or more variant callers in at least one of
the samples were included. CNVs were compared
between PDTs and tumors by plotting CNV log2 values
across chromosomes. A threshold of –0.235 and 0.2
was used to delineate the cutoff for deletions and
amplifications, respectively, based on a diploid sample
with 30% purity. Neutral segments were colored in
green, and deletions/amplifications in red. The y-axis
range was smaller for tumor samples to facilitate CNV
identification. SVs were compared between PDTs and
tumors by plotting intra- and inter-chromosome
rearrangements based on LUMPY results. The SNV
landscape was visualized using the Bioconductor
package GenVisR v1.8.0. The CNV per gene heatmap
was generated using the Bioconductor package Com-
plexHeatmap v1.17.1.

Gene expression analysis
Total RNA was extracted from cell pellets using Trizol and

Microprep kit (Zymo Research). For RNA-seq, paired-end
FASTQ sequencing reads were generated and trimmed using
Trim Galore version 0.6.2 and Cutadapt version 2.3,
respectively. Transcript quantification was performed using
Salmon version 0.13.1 in the quasi-mapping mode using
transcripts derived from human Gencode release 30
(GRCh38). Salmon quant files were converted using the R
package Tximport, and differential expression analysis was
performed using DESeq2. Genes with an adjusted P-value
(Padj) less than 0.05 were considered differentially expressed.
To perform gene set enrichment analysis (GSEA), we utilized
the GSEA desktop application version 4.1.0 provided by the
Broad Institute. The gene sets used for enrichment analysis
were obtained from the Molecular Signatures Database
(MSigDB). The enrichment analysis was performed using the
gene set permutations option, and gene sets with a false
discovery rate (FDR) less than 0.25 were considered sig-
nificantly enriched. The cutoff for gene ontology (GO) ana-
lysis was Padj < 0.01 and log2 fold change > 3. To generate a
heatmap, the gene expression data is clustered using a
hierarchical clustering approach with the “ward.D2” method
and “euclidean” distance, both for rows and columns. Pear-
son’s correlation coefficient I was computed to measure the
linear correlation between each Tissue–PDT pair. Genes that
were not detected across a pair of samples (i.e., having zero
values) were excluded from each comparison.
For RT-qPCR, cDNA was synthesized from total RNA

using the First-Strand cDNA Synthesis Kit (New England
Biolabs). After obtaining the cDNA, PowerUp SYBR Green
Master Mix (Thermo Fisher Scientific) was used to carry
out RT-qPCR analysis with specific primers for VEGFA
(NM_001025366.3) and CD163 (NM_203416.3). VEGFA
Forward: TTGCCTTGCTGCTCTACCTCCA. VEGFA
Reverse: GATGGCAGTAGCTGCGCTGATA. CD163
Forward: AAAAAGCCACAACAGGTCGC. CD163
Reverse: CTTGAGGAAACTGCAAGCCG. For each
sample, the RT-qPCR reactions were conducted in tripli-
cate, and the expression levels of the target genes were
normalized to GAPDH (NM_002046.7) as a reference
gene. GAPDH Forward: ACAACTTTGGTATCGTG-
GAAGG. GAPDH Reverse: GCCATCACGCCA-
CAGTTTC. The data were analyzed to determine the fold
change in G-Mg and G-Mo gene expression at day 7 and
day 3 compared to their 2D control. We used a two-tailed
t-test for statistical analysis, and P-values less than 0.05
were considered statistically significant.

Tube formation assay and endothelial cell growth
A composite medium was prepared using equal parts

Neurobasal medium, MEM, and RPMI 1640. For tube
formation assessment, conditioned medium from GBM-
Mg and GBM-Mo was collected after 72 h of incubation.
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In each well of an angiogenesis slide (Ibidi), 10 μL of
growth factor-reduced Matrigel was added and incubated
at 37 °C for 30 min. Subsequently, 50 μL of HUVEC sus-
pension (10,000 cells) was introduced into each well. Cells
were cultured in conditioned media from GBM-Mg or
GBM-Mo, with non-supplemented endothelial cell
growth medium v1 serving as a negative control and
endothelial cell growth medium containing 50 ng/mL
recombinant VEGF as a positive control. Mesh counts
were determined using the ImageJ plugin.
To evaluate endothelial cell growth, 5000 HUVECs were

seeded and cultured overnight in endothelial cell growth
medium v1. Simultaneously, GBM-Mg and GBM-Mo
models were printed. The following day, conditioned
medium from GBM-Mg and GBM-Mo was collected and
added to the HUVEC culture, with non-supplemented
endothelial cell growth medium v1 used as a control.
HUVEC medium was replaced every other day using
collected conditioned medium. HUVEC growth was
assessed on days 1, 3, and 5 post-incubation in the con-
ditioned medium using CellTiter-Glo (Promega), with the
experiment conducted in triplicate.

Isolation, culture, and activation of primary human T cells
Human peripheral blood mononuclear cells (PBMCs)

were isolated from diluted whole blood (1:1 in DPBS) (San
Diego Blood Bank) using density gradient centrifugation
with lymphocyte separation medium (Corning) or pur-
chased from Hycells Biotechnology. Primary human T cells
were then isolated from PBMCs using a Pan T-Cell Iso-
lation Kit (Miltenyi) following the manufacturer’s instruc-
tions using magnetic-activated cell sorting (MACS)
columns. Isolated primary human T cells were cultured
with RPMI 1640 with 10% FBS, 1% P/S, and 100 U/mL
recombinant human IL-2 (PeproTech). Primary human
T cells were activated with Dynabeads Human T-Expander
CD3/CD28 (Gibco) for 72 h before usage. Cells were cul-
tured at 37 °C with 5% CO2 in a humidified incubator.

Activated T cell or bevacizumab cytotoxicity assay
Bioprinted PDTs or GBM-myeloid models were fabri-

cated as described earlier. For the multicellular models,
luciferase-labeled GSCs were used. For the activated
T-cell assay, the bioprinted PDTs or GBM-myeloid
models were incubated with activated T cells at an
effector-to-target (E:T) ratio of 1:1. The T cells were
added to the bioprinted PDTs or models and incubated at
37 °C with 5% CO2 for 3 days. The control group con-
tained the bioprinted model without T cells. The assay
was performed in triplicate for all conditions.
For bevacizumab evaluation, HUVEC was mixed with

the cell mixture at 20 million/mL for printing of the
multicellular models. The other printing parameters were
the same as previously described. Bevacizumab was tested

at a concentration of 25 μg/mL. The bioprinted models
containing both HUVEC and the cell mixture, or the
bioprinted PDTs, were treated with Bevacizumab for
three days. The control group contained the bioprinted
model without bevacizumab treatment. The assay was
performed in triplicate for all conditions.
The impact of T cells or Bevacizumab on the PDTs was

assessed through immunofluorescent staining for Caspase 3,
and flow cytometry to quantify CD31+ cell populations. The
cytotoxicity of T cells or bevacizumab to GSCs in the
multicellular models was measured using a luciferase assay
system (Promega). The bioprinted models were digested and
fully lysed, and the substrate was mixed with cell lysates.
Luminescence was measured using a luminometer (Tecan).
The assay was performed in triplicate for all conditions.

Immunofluorescent staining
For immunofluorescent staining, the models were fixed

with 1mL of 4% paraformaldehyde in PBS overnight at
4 °C. Following PBS washing, the cells were permeabilized
with 0.1% Triton X-100 for 20min and subsequently
blocked with 5% BSA for 90min. Primary antibodies
against CD163 (1:100 dilution, Proteintech, Cat# 16646-1-
AP), CD206 (1:100 dilution, Abcam, Cat# 91992 S), ZO-1
(1:100 dilution, Invitrogen, Cat# 339100), Caspase 3 (1:100
dilution, Proteintech, Cat# 66470-2-lg), CD45 (1:100
dilution, Proteintech, Cat# 65109-1-lg), or GFAP (1:100
dilution, Sigma, Cat# G3893) were diluted in staining
buffer (BioLegend, Cat# 420201) and incubated at 4 °C
overnight. Samples were rinsed again with PBS for 3 times
and then incubated with secondary antibodies (1:200)
conjugated with fluorophores for 2 h at room temperature.
DAPI (1:1000) was used for nuclear staining. Samples were
imaged using a confocal microscope (Leica SP8), and
image analysis was performed using ImageJ software. A
minimum of three samples were analyzed per condition.

Luminex for cytokine analysis
Culture supernatants were collected from 3D bioprinted

models on day 7. The supernatants were centrifuged at
3000 rpm for 5 min to remove cellular debris. The assay
was performed using the Human 27 Cytokine/Chemokine
Panel. The samples were read using a Luminex 200
instrument (Luminex Corporation), and the results were
analyzed using Milliplex Analyst 5.1 software. Replicates
were measured for each condition.

Statistical analysis
Statistical analysis was performed using GraphPad Prism

9. The data presented are the mean ± SD from a minimum
of triplicates. We used a two-tailed t-test to analyze the
differences between two groups, and for multiple group
comparisons, we employed one-way ANOVA followed by
Tukey’s post hoc test. We considered a P-value below 0.05
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to be statistically significant. To assess the relationships
between GlioML predictions and measured drug respon-
ses, we fit and calculated the coefficient of determination
(R2) to determine the amount of variance explained by the
models. To perform dimensionality reduction and visua-
lize complex datasets, we utilized the scikit-learn library
v1.1.0 in Python to conduct PCA and t-distributed sto-
chastic neighbor embedding (t-SNE).
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