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Abstract
Single cell chromatin accessibility profiling and transcriptome sequencing are the most widely used technologies for
single-cell genomics. Here, we present Microwell-seq3, a high-throughput and facile platform for high-sensitivity
single-nucleus chromatin accessibility or full-length transcriptome profiling. The method combines a preindexing
strategy and a penetrable chip-in-a-tube for single nucleus loading and DNA amplification and therefore does not
require specialized equipment. We used Microwell-seq3 to profile chromatin accessibility in more than 200,000 single
nuclei and the full-length transcriptome in ~50,000 nuclei from multiple adult mouse tissues. Compared with the
existing polyadenylated transcript capture methods, integrative analysis of cell type-specific regulatory elements and
total RNA expression uncovered comprehensive cell type heterogeneity in the brain. Gene regulatory networks based
on chromatin accessibility profiling provided an improved cell type communication model. Finally, we demonstrated
that Microwell-seq3 can identify malignant cells and their specific regulons in spontaneous lung tumors of aged mice.
We envision a broad application of Microwell-seq3 in many areas of research.

Introduction
In the past decades, technical advances in single-cell

omics have led to the evolution of knowledge regarding
aspects of cellular and molecular biology in health and
disease1–3. Currently, single-cell omics have covered the
genome4,5, transcriptome6–9, chromatin accessibility10–12,
proteome13,14 and other layers of epigenomes15–17. Plate-
based methods have initially shaped the single-cell tran-
scriptomic field6,7,18. Later, different approaches for
single-cell barcoding, including droplet-based micro-
fluidic chips19–21, microwells22,23, and pool-split

strategies24–26 have significantly increased the through-
put of single-cell sequencing27. However, commercialized
platforms (e.g. 10X Genomics) or no-instrument strate-
gies (e.g. Parse Biosciences, Fluent Biosciences) are still
costly. In addition, sensitivity remains a problem for most
single-cell assays. For example, many high-throughput
oligo-dT-based methods capture only the 3′ end of
polyadenylated transcripts without a full-length coverage.
Common methods for high-throughput assay for
transposase-accessible chromatin sequencing (ATAC-
seq) usually use fixed nuclei, which may result in a rela-
tively low transcription start site (TSS) enrichment
score28.
To get around the limitation of 3′-end bias in single-cell

RNA-seq, full-length single-cell transcriptome sequencing
methods were developed to detect total RNA with high
sensitivity29–32. Plate-based full-length whole-transcriptome
methods are restricted by throughput and sorting
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instruments29,31–35. The characteristics of microfluidic sys-
tems also increase the difficulty in preparing library in some
full-length methods30,32. In order to provide a low-cost
method for single-cell sequencing, we previously developed
Microwell-seq22 and Microwell-seq 2.036 for 3′ end tran-
scriptome profiling using off-the-shelf reagents. However, the
complex loading workflow limits the application of current
protocols. Here, we present Microwell-seq3, which is easy
loading and appropriate for both single-nucleus RNA-seq
(snRNA-seq) and snATAC-seq. Microwell-seq3 adopts ran-
dom priming to capture non-polyadenylated and poly-
adenylated transcripts. For high-throughput snATAC-seq,
Microwell-seq3 optimizes the tagmentation step with fresh
or frozen nuclei to obtain high-quality TSS enrichment. Our
method combines a combinatorial indexing strategy and a
chip-in-a-tube design without the need for any specialized
equipment. We applied Microwell-seq3 to construct the
transcriptomic and chromatin accessibility landscapes of
multiple adult mouse tissues. Finally, we characterized the
copy number variations (CNVs) and regulon networks in
spontaneous lung tumors from aged mice to identify the
molecular state of malignant cells.

Results
Microwell-seq3 workflow
Microwell-seq3 utilized in situ preindexing of molecules

after nucleus isolation (Fig. 1a). The nuclei can be split
into different plates for either RNA-seq or ATAC-seq. In
the RNA-seq workflow, nuclei were partitioned into
multiple 96-well plates, and reverse transcription (RT)
was performed with barcoded random primers to intro-
duce P7 sequencing adapter and the first part of the cell
barcode (BC#1) (Supplementary Table S1). After exonu-
clease I treatment of the redundant oligos and poly(A)
tailing using terminal deoxynucleotidyl transferase, nuclei
were pooled for chip loading. In the ATAC-seq workflow,
Tn5 transposase embedded with the first part of the cell
barcode (BC#1) and P7 sequencing adapters was added
into multiple 96-well plates to tag open regions in chro-
matin. Then, treated nuclei (from RNA-seq and ATAC-
seq workflows) and magnetic beads with the second part
of the cell barcode (BC#2) were fully mixed and pipetted
into microwell chips. The beads used for snRNA-seq
contained a poly(T) tail, unique molecular identifiers
(UMIs) and P5 sequencing adapters. Alternatively, the
beads used for snATAC-seq contained a hybridization
linker tail to capture the DNA fragments.
The chip-in-a-tube approach was originally utilized in

digital polymerase chain reaction (dPCR) system37. In the
system presented herein, the 10,000 subdivided “macar-
oni-like” partitions allow the trapping of multiple nuclei
and beads by capillary effect (Supplementary Fig. S1a).
Thus, the penetrable wells do not rely on gravity and the
Poisson probability distribution, as do other microwell-

based methods with a limited cell trap efficiency22,23,36,38.
Of note, unlike the sealed microfluidic system, the pene-
trable wells allow multiple rounds of loading for other
potential antibody-labeling-based applications in a
reagent-saving manner (Supplementary Fig. S1b). In each
round of the reaction, the chip can be incubated at the
desired temperature. This strategy is motivated by the
need to provide the possibility for a multi-step treatment
of DNA, RNA and proteins in single cells or nuclei. Oil
sealing of the chip surface effectively prevents potential
cross-contamination during amplification steps.
In the microwell chip, USER enzyme treatment released

the oligos from the beads. Thus, cDNA synthesis (snRNA-
seq), DNA gap filling (snATAC-seq) and linear pre-
amplification were integrated into a one-step reaction in
the chip. Finally, we recovered all the reaction mixture
and discarded the beads. After DNA purification, the
second round of amplification was performed to intro-
duce the library index for next generation sequencing
(NGS) (detailed Microwell-seq3 protocols are available in
Supplementary Methods). The effective microwells with
multiple beads and nuclei can be distinguished and
decoded through the following data analysis procedure.

Benchmarking and data quality control of Microwell-seq3
As proof-of-concept, we performed species-mixing

experiments with mouse NIH/3T3 cells and human
HEK 293 T cells. Benchmarking of our data and external
published data generated by other representative methods
was performed. The genome-wide read signals around
TSSs (ATAC-seq) and transcription termination sites
(TTSs) (RNA-seq) demonstrated similar region enrich-
ment profiles among Microwell-seq3, 10X Genomics and
other full-length scRNA-seq methods, including VASA-
seq30 and Smart-seq-total33 (Fig. 1b). We observed
doublet rates of 0.93% and 1.2% for snRNA-seq and
snATAC-seq data, respectively (Supplementary Fig. S1e).
Chromatin accessibility profiling with Microwell-seq3
generated a higher TSS score than that obtained with
the 10X Genomics (Fig. 1c). Peak annotation39 using
snATAC-seq fragments demonstrated a typical distribu-
tion of ~20% peaks in the promoter region (Supplemen-
tary Fig. S1d).
In snRNA-seq, we benchmarked different methods after

data remapping and down-sampling. We observed an
improved gene detection ability in Microwell-seq3 com-
pared with our previous version and other methods (Fig.
1d). Full length RNA-seq methods (Microwell-seq3,
VASA-seq, Smart-seq329, FLASH-seq35) demonstrated
whole gene body coverage from the 5′ end to the 3′ end of
protein-coding sequences, while reads obtained by other
methods were enriched at the 3′ end (Fig. 1e). In addition,
9.3% of the detected reads in Microwell-seq3 were
annotated as long noncoding RNAs (Fig. 1f;
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Fig. 1 (See legend on next page.)

Ye et al. Cell Discovery           (2024) 10:33 Page 3 of 20



Supplementary Fig. S1c). Both FLASH-seq and
Microwell-seq3 detected higher proportions of ribosomal
RNAs. The full-length scRNA-seq methods captured
different types of short noncoding RNAs (Supplementary
Fig. S1f). Only Microwell-seq3 and VASA-seq detected
small nuclear RNAs (snRNAs), while VASA-seq detected
more miscellaneous RNAs and small nucleolar RNAs.
Paraformaldehyde crosslinking of RNAs and proteins in

nuclei blocks reverse transcription of long fragments. We
compared the sensitivity between two fixation time peri-
ods in a shallow sequencing depth. Slight fixation with a
short time resulted a higher gene detection sensitivity
(Supplementary Fig. S1g). Moreover, random priming of
crosslinked RNA avoided Tn5 tagmentation, which is a
time-consuming and costly step in conventional RNA-seq
library preparation. Thus, the entire snRNA-seq process
of Microwell-seq3 could be achieved by one researcher
within 8 h. As for snATAC-seq, the entire library pre-
paration process could be achieved by one researcher
within only 6 h with a total cost of $0.06 per cell (for cells
passed quality control). Compared with other non-
commercial combinatorial indexing methods40,41 (e.g.
sci-RNA-seq ($0.28 per cell), sci-ATAC-seq ($0.25 per
cell), s3-ATAC-seq42 ($3.80 per cell)), Microwell-seq3
enabled a more flexible workflow in a time- and cost-
saving manner (Supplementary Fig. S1h).
In order to identify the “Cell-containing wells with

beads” in the chip (microwells with at least one cell and
one bead). We applied a strategy of computing the
insertion similarity coefficient (Jaccard index) for over-
loaded beads in the same microwell (see Materials and
methods)11. The bead barcodes sharing a noticeable
overlap of certain oligonucleotides would be barcodes
from two beads in the same well. In snATAC-seq, a
diverse library of random oligonucleotides (containing
bead capture linker and 14 random nucleotides, 14 N,
Supplementary Table S1) were spiked into the cell-bead
mixture and loaded into the chip. The calculation of
Jaccard index was facilitated on the insertion positions of

paired-end reads and refined by spike-in random oligo-
nucleotides (Supplementary Fig. S1i, right). In snRNA-
seq, however, the Jaccard index was identified using self-
containing random oligonucleotides in the barcoded RT
primers and beads (17 random nucleotides, 17 N) without
spike-in random oligonucleotides (Supplementary Fig.
S1i, left). Bead pairs with certain similarity coefficients
were assigned into one “Cell-containing well with beads”.
We determined the distribution frequency of the beads in
the chip (Supplementary Fig. S1j). Microwells with < 4
beads constituted the majority of the “Cell-containing
wells with beads”. We removed the wells with >6 beads. In
microwells with more than one nucleus, we further
assigned the reads based on the RT cell barcodes or Tn5
adapter barcodes to construct the final matrix files.

Mapping of the adult mouse cellular landscape using
Microwell-seq3
Next, we tested whether Microwell-seq3 can distinguish

distinct cell types in a wide range of tissues. To this end,
we collected nuclei from multiple adult mouse tissues and
used Microwell-seq3 to generate the snATAC-seq and
snRNA-seq landscapes (Fig. 2a). After quality control and
doublet filtering, we obtained 49,698 cells from the RNA-
seq data. The cells were visualized by uniform manifold
approximation and projection (UMAP)43 (Supplementary
Fig. S2a, b). We annotated 27 major cell types from dif-
ferent tissues. High gene expression correlations were
observed within the similar cell lineages (Supplementary
Fig. S2c). Cell type-specific marker genes enrichment
identified a variety of heterogeneous epithelial cells,
neurons, endothelial cells and stromal cells (Supplemen-
tary Fig. S2d). We analyzed the sensitivity and genome
mapping biotype of different tissues (Supplementary Fig.
S2e). Although shallow sequencing of a large number of
cells resulted in a limited sensitivity, we found a higher
detectability in Microwell-seq3 compared with 10X
Genomics snRNA-seq data in multiple tissues after data
down-sampling (Supplementary Fig. S2f).

(see figure on previous page)
Fig. 1 Overview of the microwell-seq3 workflow. a Schematic view of the Microwell-seq3 workflow. Single nuclei are extracted from fresh or
frozen tissues. DNA or RNA in nuclei is tagged with the first part of the cell barcode (BC#1) in multiple 96-well plates. Labeled nuclei and barcoded
magnetic beads are pooled and evenly loaded into Microwell chips. Oligos are released from the beads and linear preamplification is performed in
the chips. Preamplified DNA or RNA fragments are collected from the chips for final library preparation and sequencing. b Representative University
of California Santa Cruz (UCSC) Genome Browser view of ATAC-seq and RNA-seq signal tracks (HEK293T cells) from Microwell-seq3, 10X Genomics,
VASA-seq and Smart-seq-total data. c Distribution of TSS enrichment scores from Microwell-seq3 and 10X Genomics ATAC-seq data in the indicated
cell lines, reads (fragments) are down sampled to 2000 fragments per nucleus. The statistical test used is a two-sided Student’s t-test. d Number of the
detected annotated genes in human and mouse cell lines (HEK293T, mouse NIH/3T3 and embryonic stem cells (mESCs)) in each method is plotted
against the number of unique mapped reads per cell in different down-sampling thresholds. All the reads are remapped with the same pipeline after
adapter filtering and trimming. Data of mESCs were generated by VASA-seq. e Comparison of mean ± standard deviation (SD) gene body coverage in
protein-coding genes in cell lines across the different methods. Microwell-seq3, FLASH-seq and VASA-seq show even coverage across the length of
the genes. Other methods show bias toward the 5′ and 3′ ends of transcripts, respectively. Reads in each method are trimmed to 500,000 per sample.
f Proportions of the reads mapped to all annotated genes for each biotype in cell lines across the different methods. Microwell-seq3 detects
proportionally higher levels of lncRNAs. Reads in each method are trimmed to 5000 per cell.
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Fig. 2 (See legend on next page.)

Ye et al. Cell Discovery           (2024) 10:33 Page 5 of 20



We further performed clustering of cell types in each
tissue separately. Subclustering analysis of major cell types
predicted a total of 164 subclusters in the hierarchy
(Supplementary Fig. S3a). Comprehensive tissue-specific
epithelial cells (such as hepatocytes, acinar cells, urothelial
cells, enterocytes and pit cells), stromal cells (cardio-
myocytes, fibroblasts), endothelial cells, neurons, glia and
immune cells were identified. Gene expression patterns in
Microwell-seq3 RNA-seq data of multiple tissues showed
relatively high correlation with the total VASA-seq mouse
embryo dataset (both with full-length coverage) (Supple-
mentary Fig. S3b). Comparison between Microwell-seq3
and typical 3′ end gene expression data in 10X Genomics
snRNA-seq also showed high correlation in adult mouse
tissues (Supplementary Fig. S3b). The kidney demon-
strated the highest gene expression correlation with 10X
Genomics snRNA-seq data. As one of the most hetero-
geneous structures, our data unveiled comprehensive cell
types in nephron (Supplementary Fig. S3c, d). Inner gene
expression correlations in the cell hierarchy showed dis-
tinct clustering of cell types (Supplementary Fig. S3e, f).
Cross-platform comparison also indicated a credible gene
expression similarity between Microwell-seq3 and 10X
Genomics (Supplementary Fig. S3g).
Then, we performed clustering of the cells profiled by

Microwell-seq3 snATAC-seq, with a total of 173,558
nuclei recovered after quality control (Fig. 2b; Supple-
mentary Fig. S4c). We obtained a median of 2227 unique
mapped fragments and a median TSS enrichment score of
13.663. Unsupervised clustering identified 26 major
clusters from 21 different tissues (Fig. 2c–e; Supplemen-
tary Fig. S4g). We compared the TSS enrichment score
between Microwell-seq3 and sci-ATAC-seq (both are
pool-split-based methods) (Fig. 2f). An improved perfor-
mance was observed cross multiple adult mouse tissues in
Microwell-seq3. Enrichment of gene regulation markers
identified canonical regulators in major cell types (Fig.
2g). To facilitate the identification of the major cell types,
we performed label transfer44 to integrate Microwell-seq3
ATAC-seq data with Mouse Cell Atlas data (Microwell-
seq 1.0)22 and Microwell-seq3 RNA-seq data (Supple-
mentary Fig. S4a, b). Integration with Microwell-seq3
RNA-seq data resulted in a better prediction score for
parenchymal cells (Supplementary Fig. S4d–f).

Integrative analyses of an adult mouse brain cell landscape
To make a more systematic comparison of cell types

and genes in two modalities, we performed a second
round of unsupervised clustering of brain datasets (Sup-
plementary Fig. S5a). There was no significant difference
of TSS enrichment score between Microwell-seq3 and
10X Genomics (Supplementary Fig. S5b), whereas down
sampled gene expression showed a higher sensitivity in
Microwell-seq3 (Supplementary Fig. S5c). Transcription
factor (TF) enrichment analysis of the ATAC-seq data
clearly distinguished specific open chromatin signals in
each cell type (Supplementary Fig. S5e). We profiled the
average activity score of the Microwell-seq3 brain ATAC
data clusters. Normalized activity scores and gene
expression profiles (10X Genomics and Microwell-seq3
RNA-seq data) were compared using Kendall correlation
analysis. Gene expression profiles in concordant cell types
were correlated well between Microwell-seq3 ATAC and
RNA data (Supplementary Fig. S5g). Label transfer of
Microwell-seq3 RNA-seq data suggested a high transfer
score and identified comprehensive cell types in the
ATAC-seq data (Supplementary Fig. S5f, h).
In Microwell-seq3 RNA-seq data, we identified different

subtypes of neuron, astrocytes, oligodendrocytes and
other nonneuronal cell types with distinct marker gene
expression patterns (Supplementary Fig. S5d). After data
integration, full-length coverage data in Microwell-seq3
captured more uniquely expressed genes (Supplementary
Fig. S6a). Microwell-seq3 detected a slightly lower pro-
portion of protein-coding genes compared to 10X
Genomics (Supplementary Fig. S6b). However, snRNAs
were only detected in Microwell-seq3. Differential gene
expression analysis of overall brain gene signatures iden-
tified a series of upregulated genes in the Microwell-seq3
data (Supplementary Fig. S6c). We highlighted non-
polyadenylated upregulated genes such as Ppef2, Kcnh6
and Kcnh8. Functional enrichment analysis showed that
these upregulated genes were associated with potassium
and calcium ion sensing and transport functions in neu-
rons (Supplementary Fig. S6d).
We then classified the brain cell types into three major

groups (neurons, glia and nonneuronal cells). The upre-
gulated gene module was enriched in neurons (Supple-
mentary Fig. S6e). We performed differential gene

(see figure on previous page)
Fig. 2 Analysis of chromatin accessibility in multiple mouse tissues. a Schematic view of the workflow. b Quality control plots generated with
ArchR for all cells in the Microwell-seq3 ATAC-seq data from wild-type mice showing the TSS enrichment score and number of unique nuclear DNA
fragments per cell. The dot color represents the density (in arbitrary units) of the point in the plot. c Annotations of major snATAC-seq clusters in 8-
week-old wild-type mice. d UMAP plot of all major cell types from 8-week-old wild-type mice in ATAC-seq. e UMAP plot of all cell clusters from 8-
week-old wild-type mice colored by tissue. f Distribution of TSS enrichment scores from Microwell-seq3 and sci-ATAC-seq data in different tissues,
reads (fragments) are down sampled to 2000 fragments per nucleus. The statistical test used is a two-sided Student’s t-test. g Heatmap of differential
accessibility relative to the annotated cell type. Significant highly accessible sites in relevant genes are highlighted along the bottom. The proportion
of each cluster originating from each tissue is shown alongside the heatmap.
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expression analysis for all genes across these groups
(Supplementary Table S2). Consistent with the above
findings, most downregulated genes identified by
Microwell-seq3 were localized in mitochondria (Cox8a,
Chchd2) (Supplementary Fig. S6f). Another predominant
transcript type among the non-polyadenylated upregu-
lated genes was the fusion transcripts. Both Schip1 and
Sept5 are associated with neurite extension and neuro-
transmitter release45,46.
Finally, we performed a differential gene expression

analysis of common neuron and glia cell types between
Microwell-seq3 and 10X Genomics snRNA-seq data
(Supplementary Table S3). Interneurons contained the
highest number of differentially expressed genes (DEGs)
(Supplementary Fig. S6g). Downregulated genes included
neuroendocrine secretory pathway gene Pcsk1n, micro-
tubule regulator Rmdn1, lipid metabolism-associated
genes Apoe and Tecr. Upregulated genes in Microwell-
seq3 included neuronal splicing regulator Rbfox3,
corticogenesis-related transcription factor Satb2 and
presynaptic scaffolding protein-encoding gene Bsn. Most
of upregulated gene functions in those neurons and glia
were related to synapse organization, neurotransmitter
and dendrite development (Supplementary Fig. S6h).
Generally, a common gene function enrichment could be
observed in major cell lineages and specific cell types
(Supplementary Fig. S6i). Global gene signatures and
DEGs in different brain cell types shared comparable
detection efficiency.

Gene regulatory network in the normal mouse brain
We further investigated whether Microwell-seq3 data-

sets would allow for gene regulatory network construc-
tions. We used Single-Cell gene Regulation network
Inference using ChIP-seq and motif (SCRIP)47 to infer
transcriptional regulators and trajectories by integrative
analysis of our adult mouse brain datasets. To reconstruct
the oligodendrocyte differentiation process, we first used
the FNN package to transfer the pseudotime trajectory
value of oligodendrocytes from the RNA-seq to the
ATAC-seq data. We leveraged both the SCRIP ATAC-seq
enrichment matrix and RNA-seq pseudobulk matrix to
estimate the trajectory stage and common TFs. Oligo-
dendrocytes were arranged along the pseudotime trajec-
tory at the early and late stages (Fig. 3a). The RNA
expression level of common regulators in

oligodendrocytes was consistent with the TF activity score
in ATAC-seq data. Oligodendrocyte differentiation-
associated TFs, including Olig1 and Olig2, were identi-
fied along the pseudotime trajectory. In the early stage,
Tp53 and Tp73 are essential for cell cycle arrest and p53
family-dependent differentiation of oligodendrocyte pre-
cursor cells (OPCs)48. Prrx1 induces stem cell quiescence
in human and mouse OPCs49. In the late stage, coherent
gene module networks of epigenetic genes drive the
maturation of oligodendrocytes. Oligodendrocyte lineage
determinants Sox10 and Myrf recognize the regulatory
regions of Klf13 to promote the expression of myelin
genes50. Joint maintaining of Nkx2.2 and Olig2 is targeted
by Sox10 during premyelinating of oligodendrocyte51.
Tcf4 is a preferred heterodimerization partner of Olig2 in
oligodendrocyte differentiation52. Other late stage-
enriched TFs, such as Prox1 and Dicer1, are required for
oligodendrocyte differentiation in different manner53,54.
Reconstruction of gene expression data also arranged
OPCs and oligodendrocytes in another independent
pseudotime trajectory (Fig. 3b; Supplementary Fig. S7a).
In summary, chromatin remodeling marks the transition
of oligodendrogenesis. The cell differentiation trajectory
could be successfully reconstructed by chromatin acces-
sibility regulator analysis integrated with gene expression
data.
We then used single-cell regulatory network inference

and clustering plus (SCENIC+ )55 to infer the gene reg-
ulatory network (GRN) in the whole mouse brain. SCE-
NIC+ integrates chromatin accessibility and gene
expression data to improve the accuracy of TF binding
site predictions. We recovered cell type-specific enhancer
regulons of astrocytes (Dbx2, Rfx4), endothelial cells (Ets1,
Osr1 and Klf4), microglia (Runx1, Irf8), oligodendrocytes
(Zeb2, Sox10, Nfe2l3) and different neuron subtypes
(Neurod1, Lhx5, Bcl11a, Nfib and Nfic) (Supplementary
Fig. S7b). Synergistic binding patterns were not observed
among the cell type-specific TFs (Fig. 3c). Scaled
expression of TFs in the SCENIC+ results allowed the
classification of activated TFs that have positive correla-
tions with target region accessibility and target gene
expression (Fig. 3d). In this case, the combination of
multimodal data and suitable GRN tools accurately
detected key regulators. These results could be used to
further infer the cooperativity between TFs and
enhancers.

(see figure on previous page)
Fig. 3 GRN analysis of normal mouse brain. a Heatmap of scaled expression scores and chromatin accessibility of representative TFs along the
oligodendrocyte pseudotime trajectory. b Pseudotime analyses of the oligodendrocytes and OPCs. c Heatmap showing the overlap between target
regions of cell type-specific regulons. The overlap is divided by the number of target regions of each regulon (row). The TF overlap is evaluated by
calculating the Jaccard index. d Heatmap and dot plot showing the expression of the inferred activator regulons. The expression level is color-coded.
The cell type specificity (RSS) of the regulons is coded by dot size.
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Identification of malignant cells in spontaneous lung
tumors from aged mice
Single-cell sequencing has been used to clarify the cancer

cell heterogeneity in patients after treatment56. However,
substantial variations in cell type-specific chromatin acces-
sibility have not been fully linked to the intratumoral state of
parenchymal cells57. To explore the scenarios in which our
method could be applied to assist with clinical diagnosis, for
example, tumor classification, we performed Microwell-seq3
to identify malignant cells in spontaneous lung tumor from
aged mice (Fig. 4a). Age-related tumorigenesis in humans is
partially reproduced in spontaneous tumors in wild-type
aged mice58. The single-cell chromatin accessibility data of
spontaneous lung tumor, tumor-adjacent tissue from an aged
mouse were integrated with normal lung data. Classification
of snATAC-seq clusters revealed a comprehensive set of cell
types, including alveolar type I cells (AT1 cells), alveolar type
II cells (AT2 cells), Clara cells (club cells), mesothelial cells,
fibroblasts, endothelial cells and pericytes, B cells and T cells,
macrophages and alveolar macrophages (Fig. 4b). Notably,
we observed a cluster of tumor-specific epithelial cells with
transitional identity between alveolar epithelial cells and
mesenchymal cells (Fig. 4c). To identify malignant cells in
tumor tissue, we estimated CNVs from snATAC-seq data
using Copy-scAT59 and Alleloscope60. These two indepen-
dent methods were used to infer potential global genome
alterations in tumor tissues (Supplementary Fig. S8a, b, d).
The predicted malignant cells were also enriched in tumor-
specific cluster (Fig. 4c; Supplementary Fig. S8c). The ATAC-
seq signals in tumor-specific clusters showed amplification of
regions on chromosomes 8, 16 and 17. Malignant cells with
loss of regions on chromosomes 4, 5 and 11 were enriched in
tumor and tumor-adjacent tissues (Fig. 4d). We also eval-
uated CNVs in paired snRNA-seq data using inferCNV61.
Consistently, we observed loss of regions on chromosomes 4,
5, 11 and amplification of regions on chromosomes 8, 10, 12,
16 and 18–19 (Supplementary Fig. S9a). At chromosome
level, duplication and deletion patterns (see Materials and
methods) in RNA-seq data also correlated well with ATAC-
seq data (Fig. 5a) (Supplementary Table S5). The CNV score
for each cell in tumor and tumor-adjacent tissues was clas-
sified into different levels to define malignant cells (Supple-
mentary Fig. S9b). We observed cell state transitions (from
normal to malignant) of epithelial cells based on the number
of cells in the predicted state and CNV scores, among which
myoepithelial cells and AT2 cells constituted a majority of
malignant cells. Malignant cells in the myoepithelial cell and
AT2 cluster also exhibited a significant high CNV score
(Supplementary Fig. S9e).
We next identified activated TFs in predicted malignant

cells. The tumor tissue-derived epithelial cell cluster
exhibited high activity of the AT2 cell marker Nkx2-1 (Fig.
4e). Compared with cells derived from normal tissue, cells
derived from tumor and tumor-adjacent tissues exhibited

high enrichment scores for Foxc2, Nkx3-1, Foxm1, Tp63
and Zeb1, while Tp53 activity was relatively enriched in
normal tissue. Consistent CNV and gene expression
patterns of those TFs were detected in gene expression
data (Supplementary Fig. S9c, d). Foxc2, which is located
on chromosome 8, regulates the epithelial-mesenchymal
transition process during metastasis62. The transient
expression pattern of Nkx3.1 in the mesenchyme cells
regulates stemness of transitional malignant epithelial
cells during metastasis63. SCRIP analysis was utilized to
construct a potential target gene network of major reg-
ulators in malignant cells (Fig. 4f). One of those hub genes
was the common tumor suppressor Cdh1, which is cor-
related with the self-renewal of lung cancer cells and
promotes mesenchymal-to-epithelial transition during the
colonization phase64. Gene ontology enrichment analysis
of the target genes of the key regulatory hubs such as
Foxc2 and Nkx3.1 showed enrichment of cell adhesion,
epithelial and endothelial cell migration, protein kinase
activity and cell migration (Fig. 4g; Supplementary Table
S4). Thus, malignant epithelial cells in spontaneous lung
tumors demonstrated stemness characteristics of AT2
cells and a transitional state between mesenchymal cells
and alveolar epithelial cells. Gene set variation analysis
(GSVA) of tumor tissue-derived myoepithelial cells also
showed transitional function enrichment state of tumor
associated signaling pathways (Supplementary Fig. S9f),
indicating the distinct transitional process in the malig-
nant cells. Furthermore, hematoxylin and eosin (HE)
staining showed malignant morphology of cells in tumor
samples. Immunohistochemistry (IHC) and immuno-
fluorescence (IF) stainings also indicated upregulation of
lung tumor-associated markers including Ki67 and p63 in
the tumor tissues compared to the tumor-adjacent and
normal tissues (Fig. 5b). These results suggested the
potential application of Microwell-seq3 to elucidate the
characteristics of malignant cells in tumor samples.

Discussion
Commercialized single-cell multi-omics platforms

accelerated our study of different molecular and cellular
layers in the biological systems65. The limitations of
expensive microfluidic devices cumber their application in
different labs. Other commercialized microfluidics-free
methods (Parse Bioscience and Fluent Bioscience, PIP-
seq66) provided alternatives with no requirement of spe-
cialized devices. We previously reported another
instrument-free agarose microwell plate methods for
single-cell sequencing with high cost efficiency and cell
type compatibility22,36. Here, we report Microwell-seq3
for both snRNA-seq or snATAC-seq. In this version, we
adopted a penetrable designed chip-in-a-tube microwell
to greatly simplify the loading step (manual manipulation
time of each chip < 1min) (Supplementary Methods).
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Fig. 4 (See legend on next page.)
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Combining preindexing and bead barcoding strategies,
our method provides large-scale barcode combinations to
tag different samples in one experiment.
The compelling potential advantages of this method also

include the ability for multiple rounds of reagent loading.
The penetrable well traps the reagents and cells, as surface
liquid can be evaporated in the incubator during the
reaction (or using a desktop vacuum pump to accelerate
the process). Thus, compared with the sealed microfluidics
system, Microwell-seq3 shows flexible ability and is tai-
lored to other omics study designs that require multiple
reaction steps after single-cell isolation. To take advantage
of this exclusive feature, one can perform extended
antibody-labeling-based applications such as ChIP-seq,
CUT&Tag67 and CITE-seq13 in a reagent-saving manner.
Non-commercial single-cell sequencing methods based on
combinatorial indexing have provided instrument-free
strategies for RNA-seq (sci-RNA-seq25,26, SPLiT-seq24),
ATAC-seq (sci-ATAC-seq68, s3-ATAC42) and multi-
omics (sci-CAR69, Paired-seq70, SNARE-seq271,
CoTECH72). Nevertheless, the stability and validity of the
time-consuming combinatorial indexing methods depend
on experimental skills (or using an automated benchtop
pipettor). Microwell-seq3 only adopts one round of pre-
indexing to improve throughput and label different sam-
ples. This method greatly simplifies the loading step
compared with microfluidic system or other microwell
platforms. Thus, Microwell-seq3 is a low-cost, time-saving
and extendable platform for single-cell omics profiling.
High-sensitivity single-cell chromatin accessibility data

are suitable for recently developed GRN construction
tools including SCRIP47 and SCENIC+ 55. Furthermore,
we revealed the ability for the identification of malignant
cells in spontaneous lung tumors using Microwell-seq3
multi-omics data. GRN construction based on single-cell
chromatin accessibility data demonstrated better regulon
enrichment performance than gene expression data. One
limitation of the current Microwell-seq3 RNA-seq pro-
tocol is the low proportion of immune cells due to the
combination of single nucleus preparation and fixation
strategy73. The potential solution for immune cells-
enriched tissues such as spleen and bone marrow, and
peripheral blood mononuclear cells is to use the reversible
fixation of single cells rather than nuclei in the pre-
indexing step74. Thus, the simple and rapid workflow of

our method has the potential to be used for clinical
diagnosis with small frozen or fresh samples. No special
equipment is required for any part of the process, and the
process can be performed in different laboratories or
institutions in an efficient manner.

Materials and methods
Cell lines and culture
Mouse NIH3T3 (RRID: CVCL_0594) and human

HEK293T (RRID: CVCL_0063) cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Gibco)
supplemented with 10% fetal bovine serum (FBS, Thermo
Fisher) and 1% penicillin-streptomycin (Thermo Fisher).
Cells were passaged every 2 days and cultured in 6-well
culture plates. Cells were harvested by trypsinization
(0.25%, Thermo Fisher) treatment followed by pelleting by
centrifugation at 300× g for 5 min. After aspiration of the
supernatant, the pellet was washed twice using cold PBS.
Finally, the cells were resuspended in cold 1× PBS and
counted for further nuclear extraction.

Mice
Wild-type C57BL/6 J mice (8-week-old as young and

18-month-old as aged) were ordered from Beijing Vital
River Laboratory Animal Technology Co., Ltd. All mice
were housed at the Zhejiang University Laboratory Ani-
mal Center in a specific pathogen-free facility in indivi-
dual ventilated cages. The room had controlled
temperature (20–22 °C), humidity (30%–70%) and light
(12 h light-dark cycle) conditions. Mice were provided ad
libitum access to a regular rodent chow diet. All tissues
were freshly collected before nuclear extraction. Tumors
and tumor-adjacent tissue were harvested from male
mice. All the animal experiments performed in this study
were approved by the animal ethics committee of the First
Affiliated Hospital, Zhejiang University School of Medi-
cine (approval number: 2023 No.72). All experiments
conformed to the relevant regulatory standards of Zhe-
jiang University Laboratory Animal Center.

Nucleus preparation
For cell lines, single cells were resuspended in cold

1× PBS and pelleted by centrifugation at 300× g for 5 min.
The cell pellet was lysed in 1mL of ice-cold lysis buffer
(for RNA assays: 10 mM Tris-HCl (pH 7.4), 10 mM NaCl,

(see figure on previous page)
Fig. 4 Analysis of spontaneous lung tumors in aged mice. a Workflow for analysis of spontaneous lung tumors in mouse using Microwell-seq3.
b UMAP plot of cell types from paired normal lung tissue, spontaneous lung tumor tissue and tumor-adjacent tissue. c UMAP plot showing the
distributions of tissue type (upper) and predicted malignant cells. d UMAP plot showing the gain and loss of specific chromosomes in tumor tissues.
The gray bar represents the nonsignificant range. e UMAP plot of the enrichment scores for the most specific TFs in tumor tissues. f Network showing
the correlations between the most specific TFs and their target genes. Selected TFs are labeled pink. The color depth of the target genes represents
the node degree. The node size represents the number of the connected genes. g Gene ontology enrichment analysis of the target genes of Foxc2
and Nkx3.1 in the predicted malignant cells.
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3mMMgCl2, 0.1% Tween 20, 1% Murine RNase Inhibitor
(Vazyme Biotech), 0.1% IGEPAL CA-630, 1 mM DTT; for
ATAC-seq: 10 mM Tris-HCl (pH 8.0), 10 mM NaCl,
3 mM MgCl2, 0.1% Tween 20, 0.1% IGEPAL CA-630,
0.01% digitonin (Promega), 1× protease inhibitor (Sangon
Biotech)) and incubated on ice for 2 min. Then, 5 mL of
ice-cold RSBT buffer (10mM Tris-HCl (pH 7.4), 10 mM
NaCl, 3 mM MgCl2, 0.1% Tween 20) was added to ter-
minate the lysis reaction. The medium was then filtered
using a 40-μm strainer. Nuclei were centrifuged at 500× g
for 5 min at 4 °C and washed with 1mL of cold RSBT
buffer. For RNA assays, nuclei were resuspended in
100 µL of RSBT buffer, and 10 mL of ice-cold 4% paraf-
ormaldehyde was then added carefully. Nuclei were fixed
at 4 °C for 15 min, and 1.5 mL of 2.5M glycine (Sangon
Biotech) was added to quench the fixative. Fixed nuclei
were washed twice with 1 mL of RSBT buffer (by cen-
trifugation at 500× g for 5 min at 4 °C). To freeze nuclei,
fresh or fixed nuclei were resuspended in cold freezing
buffer (50 mM Tris-HCl (pH 8.0), 25% glycerin, 5 mM
magnesium acetate, 0.1 mM EDTA) and stored at –80 °C.
Fresh mouse tissues were cut and ground in liquid
nitrogen using a stainless-steel blender. The cold tissue
powders were rapidly transferred into a 1.5-mL centrifuge
tube. The nucleus isolation step was the same for cells
from cell lines and tissues. Nuclei isolated from tissues
were centrifuged at 800× g for 5 min in all centrifugation

steps. For counting of nuclei, 9 µL of nuclear suspension
was mixed with 1 µL of 10× Ultra GelRed (Vazyme Bio-
tech, cat# GR501) and loaded into the cell counting
chamber.

Microwell-seq3-RNA: in situ reverse transcription
The protocols for reverse transcription of RNA from

fixed nuclei were similar to those for preindexing of the
cytoplasmic transcriptome75. Nuclei were resuspended in
reverse transcription buffer mix (each well: 0.5 µL 10mM
dNTPs, 0.5 µL 10% Triton X-100, 1.5 µL PEG8000
(Sigma-Aldrich), 3.6 µL of fixed nuclei (10,000 nuclei) in
RSB buffer without Tween-20) and partitioned into one or
more (up to 4) 96-well plates. Then, a 1 µL volume con-
taining a 10 µM concentration of 384 barcoded random
primers (Supplementary Table S1) was added to each
well. The plates were incubated at 55 °C for 5 min and
immediately placed on ice. Then, 3 µL of reverse tran-
scription enzyme mix (2 µL of 5× RT buffer (31 mM Tris-
HCl (pH 8.0), 37.5 mM NaCl, 3.1 mM MgCl2, 10 mM
DTT), 0.5 µL of Murine RNase Inhibitor, 0.5 µL of Max-
ima H Minus RTase (Thermo Fisher)) was added into
each well. The in situ reverse transcription reaction was
performed as follows: ten cycles of 8 °C for 12 s, 15 °C for
30 s, 20 °C for 45 s, 25 °C for 1 min, 30 °C for 1 min, and
42 °C for 2 min; followed by a final extension step at 42 °C
for 30min.

Fig. 5 CNV correlation analysis and validation of the malignant signatures. a Correlation analysis of chromosome level CNV results between
RNA-seq and ATAC-seq data. Only duplication effects (dup effect) and deletion effects (del effect) in overlapped the cytobands (chromosome region,
see Materials and methods) were included for correlation analysis. Cytobands with inconsistent trend across different methods were labeled as “not
correlated”. b Representative images of HE, IHC and IF staining results of tumor specific markers in tumor, tumor-adjacent tissue (Adj) and normal
tissue sections. Scale bars, 100 μm.
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Microwell-seq3-RNA: exonuclease I treatment
After reverse transcription, the 96-well plates were

placed on ice for 2 min to stop the reaction. Then, 3 µL of
Exonuclease I mix (1.3 µL of 10× Exonuclease I Reaction
Buffer (NEB), 1.5 µL of nuclease-free water, 0.2 µL of
Exonuclease I (NEB)) was added into each well. The plates
were slowly rotated at 37 °C for 30min in an incubator.

Microwell-seq3-RNA: poly(A) tailing
After Exonuclease I treatment, nuclei were pooled and

washed twice with RSBT. Then, nuclei were resuspended
in poly(A) tailing mix (20 µL of nuclei in RSB buffer, 56 µL
of nuclease-free water, 2 µL of Murine RNase Inhibitor,
10 µL of 10× terminal transferase reaction buffer (NEB),
10 µL of 10×;CoCl2 (NEB), 5 µL of 100mM dATP (San-
gon Biotech), 1 µL of terminal transferase (NEB)). The
tube was slowly rotated at 37 °C for 15min in an incu-
bator. After the dA-tailing reaction, the nuclei were
washed with 1mL of 3× SSC-T (3× SSC, 0.05% Tween 20)
and twice with 1 mL of RSB buffer. The nuclei were
resuspended in RSB buffer before loading on the chips.

Microwell-seq3-ATAC: Tn5 transposase complex assembly
For Tn5 transposase complex assembly, Tn5_primer_A,

384 barcoded Tn5_P5primer_B and Tn5_P7primer_C
with MGI adapter (Supplementary Table S1) were dis-
solved in TE buffer (10 mM Tris-HCl, 0.1 mM EDTA;
pH8.0) to a final concentration of 100 μM. Next,
Tn5_primer_A, barcoded Tn5_P5primer_B and
Tn5_P7primer_C were mixed at ratio of 2:1:1 in four 96-
well plates. The plates were placed in thermocyclers and
oligos were annealed as follows: 95 °C for 2 min, followed
by slow cooling to 20 °C with a temperature ramp of
–0.1 °C/s. The annealed mixture was diluted to a final
concentration of 1.4 μM in each well. Then, 3.75 µL of
Tn5 transposase mix (10 µL of Tn5 (Vazyme Biotech, cat#
S111), 33 µL of coupling buffer (Vazyme Biotech, cat#
S111), 332 µL of dilution buffer (Vazyme Biotech, cat#
S111)) and a 1.25 µL volume containing 1.4 μM con-
centration of the annealed mixture were added to four 96-
well plates. The plates were incubated at 25 °C for 1 h. The
final Tn5 transposase-containing plates were stored at
–20 °C.

Microwell-seq3-ATAC: tagmentation
Nuclei were washed with RSBT buffer and counted.

Then, 2× TD buffer (20 mM Tris-HCl (pH7.4), 10 mM
MgCl2, 20% dimethylformamide (Sigma-Aldrich)) was
prepared and stored at 4 °C before tagmentation. Then,
nuclei were resuspended in tagmentation mix (25 µL for
each well: 12.5 µL of 2× TD buffer, 8 µL of 1× PBS, 0.25 µL
of 10% Tween 20, 0.25 µL of 1% digitonin, 2 µL of the
assembled Tn5, 2 µL of nuclease-free water) and parti-
tioned into four 96-well plates (10,000 nuclei in each

well). Tagmentation was performed at 55 °C for 30min.
The plates were then placed on ice for 5 min to stop the
reaction. Nuclei were pooled and washed twice with RSB
buffer before loading on the chips.

Microwell-seq3: microwell chips and synthesis of
barcoded beads
Microwell chips were obtained from Clarity™ Digital

PCR system (JN Medsys, cat# 12007, agent by Neoline
Technology Co., Ltd.), and custom microwell chips were
fabricated based on ZZ-Bio Digital PCR System chips
(ZHENZHUN Biotechnology Co., Ltd.). Every chip in the
0.2 mL tube contained 10,000 partitions. The total reac-
tion volume in one chip was ~15 µL. The diagonal length
of a hexagonal partition is 60 µm. The 20 µm carboxyl
modified magnetic beads (50mg/mL) were obtained from
SuZhou KBsphere Co., Ltd. (cat# MagCOOH-20190911).
The three-step protocol for the synthesis of the oligo
barcoded magnetic beads was the same as that used in
Microwell-seq 1.022. The 96 beads_primer_A oligos con-
tained the first part of the cell barcode and the uracil base
modification (Supplementary Table S1). The 96 bead-
s_primer_B oligos contained the second part of the cell
barcode. The 96 RNA_beads_primer_C oligos contained
the third part of the cell barcode, the UMI and a ploy(T)
tail to capture poly(A) tailed transcripts. The 96
ATAC_beads_primer_C oligos contained the third part of
the cell barcode and a tagmentation hybridization linker
to capture DNA fragments.

Microwell-seq3-RNA: chip loading and library
preamplification
Approximately 20,000 nuclei and 20,000 barcoded

beads were loaded onto one chip. The beads were washed
twice with RSB buffer before use. The nuclei and beads
were resuspended in loading mix, and 11 µL aliquots of
loading mix with nuclei and beads (6 µL of nuclease-free
water, 5 µL of KAPA HiFi HotStart ReadyMix (Roche))
were generated. The chip was taken out from the tube
using a flat tip tweezers. The loading mix with nuclei and
beads was pipetted a few times and quickly added to the
chip surface using a flat end pipette tip. After all the liquid
was inhaled into the chip (5–10 s), another 5 µL of loading
enzyme mix (0.8 µL of Bsu DNA Polymerase, Large
Fragment (NEB); 0.6 µL of RNase H (NEB); 0.6 µL of
USER enzyme (NEB); 3 µL of KAPA HiFi HotStart
ReadyMix) was added into the chip. Next, 150 µL of
sealing oil was carefully added along the tube wall to seal
the chip. The bead oligo cleavage and linear amplification
reactions were performed in the chip under the following
conditions: 37 °C for 1 h, 72 °C for 30min, and 98 °C for
10min; ten cycles of 98 °C for 3 min, 55 °C for 3 min, and
72 °C for 4 min; followed by a final incubation step at
72 °C for 30min.
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Microwell-seq3-ATAC: chip loading and library
preamplification
The loading procedures for ATAC-seq were the same as

those for RNA-seq. Loading mix with nuclei and beads:
2 µL of 5× KAPA HiFi Fidelity Buffer (Roche, cat#
KB2500), 1 µL of 10mM KAPA dNTP mix, 7 µL of
50mM EDTA, 3.7 µL of RSB buffer with nuclei and beads,
0.3 µL of 100 µM ATAC_SpikeIn_oligos (Supplementary
Table S1). After all the liquid was inhaled into the chips
(5–10 s), the chips were put back into the tubes, and the
tube lids were covered. The tubes were placed into a 50 °C
incubator for 30min to release the DNA fragments from
the nuclei. Then, another 6.6 µL of loading enzyme mix
(2 µL of 5× KAPA HiFi Fidelity Buffer, 1 µL of nuclease-
free water, 1 µL of 1U/µL KAPA HiFi HotStart DNA
Polymerase (Roche, cat# KE2502), 2 µL of 400mM
MgCl2, 0.6 µL of USER enzyme) was added into the chip.
The procedures for oil sealing and the subsequent linear
amplification reaction in the chip were the same as those
used in the RNA-seq protocol.

Microwell-seq3: final library amplification
For both RNA-seq and ATAC-seq, the sealing oil was

gently removed after the preamplification step. Then,
80 µL of nuclease-free water with 6× DNA loading dye
(Thermo Fisher) was directly added into the chip. The
tubes containing the chips were put into a high-speed
bench top centrifuge and centrifuged for 5 min to collect
all the liquid in the chips. The liquid with loading dye
was separated and transferred to another new PCR tube
strip. The tubes were placed on a magnetic stand to
remove all the beads. For each chip, the preamplified
library was purified using 1.5× VANTS DNA cleaning
beads (Vazyme Biotech). Then, 18 µL of the purified
preamplified library was mixed with 1 µL of MGI_P5_-
primer (Supplementary Table S1), 1 µL of MGI_P7_pri-
mer and 20 µL of KAPA HiFi HotStart ReadyMix. PCR
was performed with the following thermal cycling pro-
gram: 72 °C for 5 min; 98 °C for 3 min; twelve cycles of
98 °C for 20 s, 60 °C for 30 s, and 72 °C for 1 min; 72 °C
for 5 min; and holding at 10 °C. The final RNA library
was purified using 1.2× VAHTS DNA cleaning beads.
The final ATAC-seq library was purified using two
rounds of size selection: 0.55× VAHTS DNA cleaning
beads was used for the first round, and the supernatant
was collected; 1.0× VAHTS DNA cleaning beads was
used for the second round.

MGI library preparation and sequencing
The concentration of the final library was determined

with a Qubit 3.0 fluorometer (Invitrogen). The purified
linear DNA library was circularized to generate a single-
stranded DNA (ssDNA) library using a VAHTS Circu-
larization Kit for MGI (Vazyme Biotech). The ssDNA

library was amplified using a DNBSEQ DNB preparation
kit (MGI). Amplified DNA nanoballs were sequenced on
the MGI DNBSEQ-T7 platform using paired-end 150 bp
mode. Custom TM (Tn5 modified) sequencing primers
were adopted (Supplementary Table S1).

Preprocessing of Microwell-seq3 data
Raw reads were preprocessed with custom scripts. The

6-nt UMI and 18-nt cell-specific barcodes in each Read1
and the 10-nt preindex barcodes in each Read2 were
extracted using umi-tools (version 1.1.2)76. In RNA-seq,
we used STAR (version 2.5.2a)77 with default parameters
to align reads from HEK293T cells and NIH3T3 cells to
the designed hg38-mm39 reference genome, and reads
from mice were aligned to the GRCm38-mm10 reference
genome. Paired GTF annotation files were used to tag
aligned reads. A list of cell barcode oligo sequences were
used to correct the cellular barcodes extracted from each
Read1. Finally, digital expression matrices were obtained
using Drop-seq tools (version 2.5.1)19. In the species-
mixing experiments, after low-quality cells with < 500
transcripts were discarded, cells with a percentage of
reads (over 80% of the UMIs) uniquely mapped to the
genome of either species were regarded as species specific,
while the remaining cells were labeled collisions. In the
quality control step for data from tumor samples, tumor-
derived cells with < 300 genes were discarded, and cells
from tumor-adjacent tissues were retained. Doublets were
identified by the R package scDblFinder with the filter
ratio set to 0.1.
For snATAC-seq, reads from mice were converted to

fastq format and aligned to the mm10 reference genome
using bwa (version 0.7.15)78. Then, the 18-nt cell-specific
barcodes and 10-nt preindexes were directly extracted
from each Read1. One mismatched barcode in the align-
ment was corrected by the same list of barcode oligo
sequences used in the RNA processing procedure. Frag-
ments were obtained from aligned BAM files by Snap-
Tools (version 1.4.8)79 and custom Python scripts. To save
time and space, we retained only the 20,000 barcodes (10,
000 for primary tumor samples) with the highest number
of unique fragments for downstream analysis. In the
species-mixing experiments, HEK293T cells and NIH3T3
cells were mapped to the hg38-mm39 reference genome
using bwa. Cells with < 3000 reads were defined as low-
quality cells, and cells with >80% of reads uniquely
mapped to either genome were regarded as species-
specific cells, while the remaining cells were labeled col-
lisions. For each fragment file, a cell-bin matrix with a
trunk size of 5000 was generated using ArchR (version
1.0.2)80 for dimension reduction and UMAP visualization.
For tumor samples, cells with < 800 unique fragments and
a TSS enrichment score < 4 along with the potential
doublets were removed.
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Identification of “cell-containing wells with beads” in a
chip
We adopted a published method to determine the “Cell-

containing wells with beads” marked by single or multiple
beads and at least one nucleus11. In the published work,
this method was aim to identify the overloaded bead
which belongs the same droplet. Here in our study, the
first step was also to exclude the empty wells without a
bead and arrange the beads into different “Cell-containing
wells with beads”. Bead barcodes sharing a noticeable
overlap of random oligonucleotides would be barcodes
from two beads contained in the same well. In snRNA-seq
data, we directly used the 17-base (10-base UMIs and
7-base random oligonucleotide) sequence in RNA-seq
library as marked random oligonucleotides. In snATAC-
seq data, we introduced the spike-in library containing a
14-base random oligonucleotide (Supplementary Table
S1). We used these random oligonucleotides to compute
the Jaccard index over the reads that shared the same
feature sequences for the top 20,000 barcodes (BC#1 and
BC#2) ranked by reads-UMIs (RNA-seq) and reads-
fragments (ATAC-seq) in matrix files. Then a knee-
calling algorithm (bap2) was performed to establish a
threshold to determine bead pairs that were likely origi-
nated from the same well based on the Jaccard index. We
further removed wells with >6 bead barcodes, reasoning
that these represented technical confounders. Filtered
bead pairs were looped over to assign the same bead
barcode (BC#2). After beads merging, the second step was
to restore the reads in each single nucleus because there
may also have multiple nuclei in the same well. Reads
from the bead barcodes were simply assigned to different
RT barcodes or Tn5 barcodes (BC#1). These merged
barcodes (processed BC#1 with assigned BC#2) were the
final single-cell barcodes. Processed bam files with
merged barcodes were used to generate digital expression
matrix files (RNA-seq) or fragment files (ATAC-seq) for
downstream analysis.

Microwell-seq3 RNA data analysis
The gene expression UMI matrix was log-normalized

and scaled with a scale factor of 10,000 following the
Seurat package’s standard workflow. Principal component
analysis was used for dimensional reduction of the data,
and the first 50 dimensions were retained to identify the
cell clusters by the Louvain clustering method. UMAP
was used to visualize the clustering results. Markers from
each cluster were identified by the ‘FindAllMarkers’
function with default parameters. We annotated each
cluster based on canonical marker genes in other single-
cell studies and datasets22,81,82. Similar processes were
performed with adapted parameters for analysis of each
tissue.

Microwell-seq3 ATAC data analysis
Cell-bin matrices with a trunk size of 5000 from dif-

ferent chips were merged and analyzed uniformly with the
standard workflow of ArchR. For data from wild-type
mice, cells with a TSS enrichment score < 7 or < 1000
unique fragments were removed from the analysis, along
with potential doublets. In the quality control step for
data from primary mouse tumor, doublets and cells with <
1000 unique fragments were discarded. We applied an
iterative LSI dimensionality reduction technique to obtain
a low dimensional representation of single-cell ATAC
datasets. Clustering was then performed using the
‘addClusters’ function, and a UMAP plot was generated
using ‘addUMAP’ (minDist= 0.4). Markers from each
cluster were identified by a wrapped function using gene
scores generated by ArchR with threshold criteria of
FDR < 0.1 and |log2FC| > 1. In addition to annotating cell
types by identified marker genes in previous studies, we
performed label transfer with our ATAC-seq data and
RNA-seq data from Microwell-seq3 RNA-seq and the
Mouse Cell Atlas to ensure the accuracy of our annota-
tions. In the species-mixing experiments, fragments from
HEK293T cells and NIH3T3 cells were separated by
chromosome names and peak calling was performed on
the aggregated reads using MACS2 (version 2.2.7.1)83.
Peaks were annotated by the ChIPseeker package (version
1.26.2)84 with a TSS region set between TSS downstream
3000 and upstream 3000.

Benchmarking, gene body coverage and gene biotype
analysis
We used Smart-seq3 (E-MTAB-8735), VASA-plate

(GSE176588), FLASH-seq (Sequence Read Archive,
PRJNA816486), Smart-seq-total (GSE151334), 10X
Genomics (10x Genomics official website), Microwell-
seq2 (GSE175413) and Drop-seq (GSE63269) data for
benchmarking. All the raw data were mapped to the hg38-
mm39 genome using STAR (version 2.5.2) with default
parameters after trimming of homopolymers and the
extraction of beads barcodes and UMIs. The generated
single-cell aligned bam files were merged using SAMtools
(version 1.15)85. For the gene detection assay, only cells
that had been sequenced to the highest numbers of reads
were retained (15,000 reads for the saturation curve).
Down-sampling was carried out using the aligned bam
files. Only reads that mapped to coding and intronic
regions were counted. The gene body coverage across the
technologies was quantified by the geneBody_coverage.py
module in the RSeQC package (version 4.0.0)86. Reads
were trimmed to 5000 per cell and 500,000 per sample. To
acquire the type of transcript, we used TagReadWith-
GeneFunction implemented in Drop-seq tools to annotate
reads to mapped genes according to the corresponding
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GTF file. Reads mapped to multiple genes simultaneously
were defined as ‘Multi’.

Comparison between Microwell-seq3 RNA-seq and other 3′
end scRNA-seq data
To illustrate the properties of total RNA-seq, we

quantified similarities and differences between RNA-seq
data in Microwell-seq3, VASA-seq and 10X Genomics.
Genes identified as expressed by all technologies were
retained, and RNA counts were uniformly normalized to
TPM. The correlation between Microwell-seq3 data and
data obtained by other technologies was assessed by the
Pearson correlation coefficient. We further compared the
gene expression pattern in mouse brain between 10X
Genomics and Microwell-seq3. We obtained external 10X
Genomics scRNA-seq data of mouse whole brain
(GSM6617915), 10X Genomics snRNA-seq of mouse
cortex (GSE140511), 10X Genomics snRNA-seq of mouse
cerebellum (GSE165371). 10X Genomics snRNA-seq data
of mouse heart, kidney and liver are available on the
official website. As for the comparison with 10X Geno-
mics whole brain scRNA-seq data, only genes expressed
in both technologies were used. The counts of genes were
normalized to TPM. The DEGs were defined by a two-
sided Student’s t-test with the threshold of |logFC| > 2
and p-value < 0.01. As for the comparison with 10X
Genomics snRNA-seq data, only cells that had been
sequenced to at least 1000 reads in coding and intronic
regions were used to down-sampling. R package dscBlast
(version 1.0.3) was then employed to assign cell types to
the clusters identified in the integrated datasets of 10X
Genomics mouse cortex and cerebellum. Genes with < 5
counts across all the cells were removed. Finally, the dif-
ferential expression assay was carried out in 4 common
cell types (interneurons, Purkinje neurons, astrocytes and
oligodendrocytes). Wilcoxin test was used on cell counts
and the DEGs were defined following the same threshold
(|logFC| > 2 and P-value < 0.01). The enrichment of DEGs
compared to those identified by 10X Genomics sequen-
cing (|log2FC| > 2 and p-value < 0.01) in specific gene
ontology terms was determined using clusterProfiler
(version 3.18.1)87. We annotated gene biotypes to the
mm10 genome Ensembl GTF (version 88).

TF network construction and pseudotime trajectory
analysis
We used SCRIP47 for TF enrichment network con-

struction and pseudotime trajectory analysis. For analysis
of brain and other tissues, cell clusters without distinct
markers (set as ‘Unannotated’ in snATAC-seq data) were
discarded, and the remaining cell-bin matrix was extracted
from an ArchRProject and preprocessed by custom scripts.
We followed SCRIP’s standard workflow and employed
the ‘enrich’ function to compute the TF activities of each

cell based on the overlap of its accessible regions with
reference ChIP-seq data. The significance of TF enrich-
ment was determined by a BH-adjusted p-value of < 0.01
and log2FC of >2. We manually set an upper threshold of
minus log2 BH-adjusted p-value= 300 if the p-value itself
was computed as zero for a better visualization. We
adapted a previously described method in Trevino et al. 88.
To obtain a paired pseudotime trajectory. For oligoden-
drocytes in our RNA data, we reclustered these cells and
used Monocle289 to construct a pseudotime trajectory
from precursors to mature glial cells. Then, gene scores
produced by ArchR was log-normalized and scaled as
surrogates for gene expression in the cells profiled by
snATAC-seq. To integrate the two independent omics
datasets, the union of 2000 most variable genes in each
modality was used as input to the FindTransferAnchors’
function in Seurat with reduction method ‘cca’ and para-
meter ‘k.anchor= 30’. We employed the FNN algorithm to
match cells profiled in snATAC-seq by the gene scores
produced by ArchR with their nearest 50 RNA-seq
neighbors in the common CCA space, and each ATAC-
seq cell-mapped pseudotime value was defined as the
average of those of its RNA-seq neighbors. Based on the
mapping relationship determined by FNN, corresponding
RNA-seq pseudobulk transcriptomes were also con-
structed to reduce sparsity and for computational con-
venience. The dynamics of aggregate gene expression and
TF activities computed by SCRIP as described above were
visualized side-by-side along the trajectory.

Gene regulatory network construction
To further investigate TF–gene interaction patterns, we

followed the SCENIC+ 55 (version 0.1) workflow to
identify possible activators and repressors enriched in
neurons, glial cells and nonneuronal cell types. First, we
used a cell-bin matrix constructed from our ATAC-seq
data as input and preprocessed it with custom scripts. The
pycisTopic module (version 1.0.1) in SCENIC+ with
default parameters was used to discriminate different
chromatin accessibility states in each cell, and 15 cis-
regulatory topics determined by the CGS model were
assigned in this step. The pycisTarget module (version
1.0.1) in SCENIC+ was then used to mine underlying
motifs based on the cis-regulatory topics found by
pycisTopic and differentially accessible regions between
each cell type, which could also be obtained through the
standard workflow of pycisTopic. We used the mm10
motif database as a reference. Finally, SCENIC+ was
employed to pair ATAC-seq data with RNA-seq data to
jointly predict regulatory TFs based on the concordance
among the accessible TF binding site, TF expression, and
target gene expression. TFs with a TF-region and TF-gene
correlation of > 0.5 were retained for further analysis and
visualization.
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CNV analysis
Construction of pseudobulks for snRNA-seq and snATAC-
seq data
To reduce the effects of sparsity and heterogeneity at

the single-cell level, a similarity-based method was carried
out to group the cells from different modalities and cell
types into pseudobulks. First, cells were grouped by the
sample source (from tumor, tumor-adjacent tissue, or
wild-type normal tissue) and cell type. Groups with fewer
cells (fewer than the number of pseudobulks) were dis-
carded. The number of pseudobulks for each group was
assigned manually. Pseudobulks were constructed by
clustering the Euclidean distances between the counts of
cells (counts of genes for RNA-seq; counts at each bin
across the genome for ATAC-seq). Counts of each
pseudobulk were the cumulative sum of cells and were
normalized to 10e6.

Construction of normal references for snRNA-seq
R package inferCNV (version 1.14.0) and iterative

hierarchical clustering were employed to infer normal and
malignant cells in snRNA-seq data. We performed this
analysis on the hypothesis that there were normal or
malignant cells in tumor and tumor-adjacent tissues in
reality. Initial CNVs for each region were estimated by
inferCNV R package with tumor-adjacent tissues as
reference. We adopted a published method to calculate
the CNV score of each cell90. For each sample, gene
expression level of pseudobulks was renormalized. Gene
expression values were scaled to a range from –1 to 1. We
calculated the CNV score of each pseudobulk as the
quadratic sum of the CNV region. The mean CNV score
of each tissue, denoting as “normal expectation” (defined
by the tumor-adjacent tissue) and “malignant expecta-
tion” (defined by the tumor), was calculated as the mean
value of all corresponding pseudobulks. Those results
were corrected by removing pseudobulks with outliers
(CNV scores ≥malignant expectation in the tumor-
adjacent tissue or ≤ normal expectation in the tumor).
Hierarchical clustering was then employed to group
pseudobulks into k clusters (k= 50). The mean CNV
score per cluster was compared as follows:
1. mean CNV score ≤ normal expectation, defined as

“normal”;
2. mean CNV score ≥malignant expectation, defined as

“malignant”;
3. mean CNV scores > normal expectation and <

malignant expectation, defined as “intermediate”;
For all the pseudobulks which were defined as “inter-

mediate” temporarily, a new round of clustering was
performed to group these pseudobulks into k-clusters
(k= 50). The CNV score of each cluster was recalculated.
The clusters were further assigned to “normal” or
“malignant” group. This iterative step would stop until no

more “normal” or “malignant” clusters were generated, or
reached the preset maximum recursion number. Finally,
inferCNV was performed to calculate the CNV regions in
the “normal” clusters with default setting. The prediction
of cells in UMAP embedding was determined by the state
of the pseudobulks.

Discern copy number alterations in snATAC-seq data
We employed the R package Copy-scAT59 (version

0.3.0) to discern large-scale copy number alterations and
distinguish normal cells from malignant cells in snATAC-
seq data. In order to make this method available for the
mm10 genome, we downloaded the Cytoband and
cpgIsland files from the UCSC Genome Browser. The
whole genome was partitioned into windows of 1 million
base pairs in length to summarize the total coverage from
the pseudobulks fragment files. We incorporated normal
mouse lung data to help distinguish the normal cells. A
modified nonnegative matrix factorization algorithm and
hierarchical clustering method implemented in the
package (‘identifyNonNeoplastic’ function) were used to
cluster the pseudobulks into k-clusters (k= 4) based on
the shared CNV patterns in different chromosome cyto-
bands (chromosome regions). We manually denoted all
pseudobulks of wild-type mouse-derived cells as normal
and labeled clusters with a ratio of wild-type pseudobulks
above 80% as the normal cluster. Copy number alterations
were then inferred in each pseudobulk using ‘identi-
fyCNVCluster’ function with parameters minMix setting
to 0.001, propDummy setting to 0.4, and median Quan-
tileCutoff setting to –1. Likely unaltered chromosomes
were removed by the ‘annotateCNV4’ function before
visualization. To validate the results of Copy-scAT, we
used another R package, Alleloscope60 (version 1.0.1) to
infer gains and losses at the chromosome scale. We fol-
lowed its recommended tutorials for snATAC-seq: SNPs
were called in merged bam files by bcftools (version 1.9)
and further processed by vatrix (1.1.22). Finally, ‘plot_s-
cATAC_snv’ implemented in Alleloscope was used to
illustrate the copy number alterations based on the
computed reference allele and alternative allele count
matrices with default parameters.

Correlation analysis of CNV prediction results between
snRNA-seq and snATAC-seq
A correlation-based method was adopted to validate the

CNV prediction results in two modalities91. Gene
expression-level and bin-level CNV score matrices gen-
erated by inferCNV and Alleloscope were normalized
with values scaled to a range from –2 to 2. We calculated
the average value of total CNV scores for genes/bins
contained in each region and assigned the results to the
cytobands (different annotated chromosome regions).
The extent of deletion and duplication effects on
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cytobands was determined as the mean CNV scores
defined by malignant pseudobulks minus the mean CNV
scores calculated by normal pseudobulks. The cytoband-
level CNV score matrix generated by Copy-scAT was
scaled to the same range and corrected following the same
procedure. Spearman correlation coefficients were then
calculated between the corrected CNV scores in
inferCNV and Copy-scAT across 42 overlapped cyto-
bands (43 overlapped cytobands for Alleloscope and
Copy-scAT). Cytobands were labeled as del effects or dup
effects only when results in all the methods (inferCNV,
Alleloscope, Copy-scAT) showed the same trend (Sup-
plementary Table S5).

Infer the changes of GRNs
SCRIP was used to obtain the potential downstream

target genes of TFs of interest. We filtered low-quality
target genes and enriched possibly influenced pathways
using ClusterProfiler with p-value and q-value setting to
0.1. We identified 21 common regulatory pathways in
Gene Ontology’s enrichment results. We further found 49
genes which occurred in single or multiple pathways with
higher frequency. Those genes were selected and denoted
as key genes. Interaction information of those genes was
acquired by online database STRING92 and visualized by
software Cytoscape (version 3.9)93. Outlier proteins were
manually removed. For differentially expressed target
gene in normal and malignant cells (avg.logFC > 0.25 &
BH-adjusted p-value < 0.05), the enrichment analysis was
performed in a similar way.

GSVA enrichment
GSVA of RNA-seq data was performed at pseudobulk

level. We used the R package msigdbr (version 7.5.1) to
download the tumor hallmark gene modules from the
MSigDB database. Pseudobulks were classified into three
categories before mean gene expression analysis (‘Aver-
ageExpression’ module in Seurat). We computed the
GSVA enrichment scores of these gene modules by ‘gsva’
function in R package GSVA (version 1.42.0) and the
results were visualized by heatmap.

H&E, IHC and IF stainings
Tumor samples, tumor-adjacent tissue samples and

normal lung tissue samples were fixed in 4% paraf-
ormaldehyde for 48 h and then embedded in paraffin.
Paraffin blocks were cut into 5-μm sections and subjected
to HE, IHC, or IF staining.
For IHC, slides were deparaffinized through graded

xylenes (45 min) and graded ethanol (20 min), and then
antigen retrieval was performed using citrate buffer at pH
6.0 (G1202, Servicebio) for 3 min. Slide were then washed
in PBS (pH 7.4) for 15min with moderate rotation. After
washing, slides were blocked with 0.3% H2O2 (25min).

After PBS washing, slides were then blocked with 3% BSA
(30 min), followed by staining with primary antibody at
4 °C overnight (VIM, cat# GB111308; KI67, cat#
GB111141; TP63, cat# GB11396-1; Servicebio). After PBS
washing, slides were incubated with HRP-conjugated
Goat Anti-Rabbit IgG (H+ L) (cat# GB23303, Service-
bio) at room temperature for 50min, followed by using
Dako REAL™ DAB+ Chromogen and Dako REAL™
Substrate Buffer (cat# K5007, DAKO) to visualize staining
signals under light microscopy (cat# XSP-C204, CIC),
finally counterstained using hematoxylin solution for
3 min. Stained slides were scanned using MIDI
(Pannoramic).
For IF, procedures before primary antibody incubation

were the same as IHC, except for antigen retrieval step
(EDTA at pH 9.0 for 15min). Slides were incubated with
primary antibody at 4 °C overnight (KI67, cat# GB111141;
Servicebio), followed by secondary antibodies. Next, the
slides were counterstained with DAPI (DAPI, cat# G1012;
Servicebio) for 10min and then mounted. Images were
taken with ECLIPSE C1 confocal microscope (DS-U3,
NIKON).
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