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Abstract
CD8+ T cell activation via immune checkpoint blockade (ICB) is successful in microsatellite instable (MSI) colorectal
cancer (CRC) patients. By comparison, the success of immunotherapy against microsatellite stable (MSS) CRC is limited.
Little is known about the most critical features of CRC CD8+ T cells that together determine the diverse immune
landscapes and contrasting ICB responses. Hence, we pursued a deep single cell mapping of CRC CD8+ T cells on
transcriptomic and T cell receptor (TCR) repertoire levels in a diverse patient cohort, with additional surface proteome
validation. This revealed that CRC CD8+ T cell dynamics are underscored by complex interactions between interferon-γ
signaling, tumor reactivity, TCR repertoire, (predicted) TCR antigen-specificities, and environmental cues like gut
microbiome or colon tissue-specific ‘self-like’ features. MSI CRC CD8+ T cells showed tumor-specific activation
reminiscent of canonical ‘T cell hot’ tumors, whereas the MSS CRC CD8+ T cells exhibited tumor unspecific or bystander-
like features. This was accompanied by inflammation reminiscent of ‘pseudo-T cell hot’ tumors. Consequently, MSI and
MSS CRC CD8+ T cells showed overlapping phenotypic features that differed dramatically in their TCR antigen-
specificities. Given their high discriminating potential for CD8+ T cell features/specificities, we used the single cell tumor-
reactive signaling modules in CD8+ T cells to build a bulk tumor transcriptome classification for CRC patients. This
“Immune Subtype Classification” (ISC) successfully distinguished various tumoral immune landscapes that showed
prognostic value and predicted immunotherapy responses in CRC patients. Thus, we deliver a unique map of CRC CD8+

T cells that drives a novel tumor immune landscape classification, with relevance for immunotherapy decision-making.

Introduction
Colorectal cancer (CRC) has two immunologically dis-

tinct tumor subtypes with microsatellite instability (MSI)
phenotype associated with high mutational burden and
high T cell infiltrates, vs tumors with microsatellite sta-
bility (MSS) exhibiting lower mutational burden and low T
cell infiltrates1–3. Thus, these subtypes also exhibit distinct
responses to immune checkpoint blockade (ICB)3,4.
ICBs typically induce tumor regression by ‘reinvigorat-

ing’ effector/cytotoxic functions of tumor-reactive CD8+

T cells5–8. This can overcome CD8+ T cell exhaustion
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induced by antigens and the microenvironment5,6,8. MSI
CRC enriches for neoantigen-reactive CD8+ T cells and
hence proficiently responds to programmed cell death 1
(PD-1) blockade3,9. However, MSS CRC has drastically
lower neoantigen-enrichment thereby causing failure of
PD-1 blockade3. Surprisingly, some MSS CRC patients
can respond to PD-1 and cytotoxic T-lymphocyte asso-
ciated protein 4 (CTLA4) co-blockade10. But this unex-
pected immuno-susceptibility is not sufficiently explained
by the well-known low antigenic or ‘cold’ tumor labels
applied to most MSS CRC tumors2,4,11. This exposes a
major gap in our understanding of the clinico-
immunological diversity underlying MSS CRC.
Transcriptomic analyses have classified CRC into var-

ious subtypes with immunological implications, e.g.,
consensus molecular subtype (CMS) or its refine-
ments12–14 and various related frameworks capturing
quantitative measurements for T cells in MSI/MSS
CRC1–3,15,16. Latter frameworks often culminate into
MSI-like MSS CD8+ T cell features. While these
approaches have captured some prognostic impact of T
cell infiltrates, they are yet to reliably predict the
responses of specific MSS CRC patients to multimodal
ICB regimens3,10. Also, their performance has been
lackluster when differentiating durable responders to PD-
1 blockade from non-responders in MSI CRC3,9,17.
To overcome these limitations, a biologically deep single

cell dissection of CRC CD8+ T cells is required. Such
dissection needs to be spearheaded by a systematic
characterization of CD8+ T cell states and TCR repertoire
between and within MSI and MSS CRC, to account for
clinico-immunological heterogeneity. Recently, various
pan-tumor single cell studies have highlighted the het-
erogeneity of tumor-reactive CRC CD8+ T cells12,18–21.
However, many of these studies have either not deeply
compared MSI to MSS CD8+ T cell profiles or have only
revealed subtle differences in CD8+ T cell features that do
not properly align with vast clinical and immunother-
apeutic differences between MSI and MSS CRC. Thus,
there is an urgent need to uncover differentiating features
of CD8+ T cell states that properly align with clinically
relevant immune diversity in CRC patients.
To address this unmet need, we pursued a deep analysis

of CRC CD8+ T cells on the levels of transcriptome
(single cell RNA-sequencing (scRNA-seq)) and TCR
repertoire (single cell TCR-sequencing (scTCR-seq)) fol-
lowed by validation with proteomic mass cytometry by
time-of-flight (CyTOF). Herein, single cell transcriptomes
of 28,773 CD8+ T cells from 60 patients (11,420 CD8+

T cells from 22 MSI CRC patients and 17,353 CD8+

T cells from 41 MSS CRC patients) across five cohorts
from Korea, Belgium, and Singapore, were integrated to
create one of the largest CD8+ T cell single cell datasets
with balanced coverage for MSI/MSS CRC (Fig. 1a). High

quality TCR profiling (10X VDJ sequencing) was procured
for 10,169 tumoral CD8+ T cells. Established CD8+ T cell
features were interrogated on the levels of subpopulation
phenotypes, interferon (IFN)-γ signaling, tumor-reactive
signaling modules, TCR vs bystander activation, and TCR
repertoire dynamics or epitope specificities (Fig. 1a). This
revealed that MSI and MSS CRC had highly distinct
tumor-reactive signaling and TCR specificities within the
IFNG+CD8+ T cell compartment. Herein, we cross-
connected the CD8+ T cell transcriptomic features with
their predicted TCR antigen specificities, thereby reveal-
ing distinct tumor-reactive vs tumor irrelevant char-
acteristics of CD8+ T cells infiltrating the MSI and MSS
CRC tumors, respectively. Importantly, we also used the
MSI/MSS-specific tumor-reactive signaling modules at
the bulk tumor transcriptome level to create a manifold
space, in which we aggregated MSI and MSS CRC
patients in distinct subtypes with agglomerative cluster-
ing, using The Cancer Genome Atlas (TCGA) CRC
dataset (Fig. 1a). This resulted in a novel immune classi-
fication system with seven subtypes, which could be
predicted with ensemble machine learning. Our subtype
classification framework identified two distinct MSI CRC
patient groups (driven by stem-like signaling module) and
two major MSS CRC patient groups (driven by inflamed
memory-like module), which could be further divided in
five heterogenous subgroups. The prognostic and immu-
notherapy response-predictive impact of this novel clas-
sification was also examined on independent clinical
cohorts (Fig. 1a). Altogether, we highlight the ability of
single cell CD8+ T cell-features to predict diverse tumor
immune landscapes and differential immunotherapy-
responses in CRC.

Results
A comprehensive map of CD8+ T cell subpopulations in
MSI and MSS CRC
The single cell profiles for CD8+ T cells were extracted

from scRNA-seq data of tumor tissue (28,773 CD8+

T cells) or normal-adjacent colon tissue (9825 CD8+

T cells) from five patient cohorts (Fig. 1a). These cohorts
consisted of both newly generated (SMC5) and publicly
available (CRC16, SMC, KUL3, KUL5) datasets (Fig. 1a).
Samples were profiled via droplet-based scRNA-seq (10x
technology) (see Supplementary Table S1 for patient
details). These expression profiles were integrated and
batch-corrected using Combat algorithm (Fig. 1a), and
visual assessments revealed that the cells were sufficiently
harmonized per cohort/dataset-level (Supplementary Fig.
S1a, b). Of note, the performance of Combat was either
similar to other popular batch correction methods
(BBKNN, Harmony, Scanorama) or more stable than
some (MNN correct, Regress Out) (Supplementary
Fig. S1c, d). Importantly, unlike other studies, we batch
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Fig. 1 (See legend on next page.)
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corrected MSI or MSS CRC CD8+ T cells independently
rather than jointly because we observed that while joint or
independent batch correction didn’t affect the expression
profile of MSS CRC CD8+ T cells yet joint batch cor-
rection significantly shifted the profile of MSI CRC CD8+

T cells closer to MSS CRC CD8+ T cells thereby ren-
dering these cells more MSS-like in an artificial manner
(Supplementary Fig. S1e). Hence, to uphold meaningful
biological variation over mathematical imputations22 we
continued with independent batch correction. In addition,
cells were filtered to retain only high-quality cells and
exclude doublets (see Materials and methods).
Next, subclusters of CD8+ T cells were identified using

Leiden clustering, which resulted in 12 subclusters for
MSI CRC CD8+ T cells (Fig. 1b) and 13 subclusters for
MSS CRC CD8+ T cells (Fig. 1c). A comprehensive CD8+

T cell subpopulation annotation was performed based on
well-known markers6,8,23–25 (Supplementary Table S2 and
Fig. S2a–d). Annotations of the conventional CD8+

T cells used established markers of naive/progenitor,
memory, exhaustion, or effector/activation profiles (Sup-
plementary Table S2 and Fig. S2a–d). Some ‘unconven-
tional or invariant’ subpopulation annotations were based
on CD8A/B expression (Supplementary Fig. S2a, b),
including cells with CD8A+CD8BLOW (thus, CD8A >
CD8B) profiles that were annotated as CD8+ mucosal
associated invariant T cells (MAIT), as compared to
CD8AHIGHCD8B+/MED/HIGH profiles of the other con-
ventional CD8+ T cells26,27 (Supplementary Fig. S2a, b).
Indeed, we cross-validated that more cells in the MAIT-
annotated or MAIT-like groups highly expressed a
MAIT-specific genetic signature than those in the con-
ventional CD8+ T cell cluster28,29 (Supplementary Fig.
S2e and Table S3). Cells with CD8ALOWCD8BLOW pro-
files were annotated as immature/progenitor (IL7RHIGH 25)
or invariant natural killer-T (iNKT) cells (IL2RBHIGH)30

(Supplementary Fig. S2c, d). Finally, cells with negligible

expression of CD8A/B were annotated as low quality
(Supplementary Fig. S2d). Altogether, we assembled a
comprehensive annotation of CRC-CD8+ T cells that
spanned across tumor subtype pathology (MSI vs MSS),
patient geographical origin (3 countries across two con-
tinents) and dataset heterogeneity (5 cohorts).

Subpopulation phenotypes of CD8+ T cells overlap
between MSI and MSS CRC
When comparing the CD8+ T cell subpopulation phe-

notypes between MSI and MSS CRC, the top 5 most
enriched subpopulations in MSI CRC were EOME-
SHIGHCD8+ T memory-exhausted, CD8+ T central-mem-
ory, CD8+ T exhausted, CD8+ T partially activated and
MAIT-like (Fig. 1d), aligning with the established tendency
of MSI CRC to enrich memory/exhaustion signaling1,18.
The top 5 most enriched subpopulations in MSS CRC
were CD8+ T central-memory, CD8+ T naive-inflamed,
IL17AHIGH MAITs, TOXHIGHCD8+ T memory-exhausted
and MAIT-like activated (Fig. 1d), aligning with the known
mixed inflammatory phenotypes of MSS CRC1,18. Never-
theless, both MSI and MSS CRC CD8+ T cell sub-
populations showed variable overlaps for the following
states: effector/activated (IFNG, TNF, PRF1, CCL5 and/or
GZMA/B/K), memory-exhausted (TOX, EOMES), or
exhaustion (immune-inhibitory receptor (IR) genes:
HAVCR2, ENTPD1, CTLA4, LAG3, TIGIT, and/or
PDCD1) (Supplementary Table S2 and Fig. S2c, d). Since
such effector/activated, memory-exhausted, exhaustion
states are surrogate markers of tumor reactivity in ICB
responsive tumors, like melanoma or lung cancer8,25,31, the
above overlaps between MSI and MSS CRC subpopulation
phenotypes were unexpected1,32. In addition, MSS CRC
enriched for more EOMESMED/HIGHCD8+ T cells than
MSI CRC (Supplementary Fig. S2c, d). While this can be a
sign of tumor reactivity33, it can also imply long-lived
memory cells specific for tumor irrelevant antigens

(see figure on previous page)
Fig. 1 Multi-omics characterization of CD8+ T cell landscape for immune subtype classification. a Schematic overview of our computational
CD8+ T workflow to differentiate tumor immune-induced responsiveness in CRC patients. 5’ 10X scRNA-seq datasets from Singapore, Belgium, and
South Korea, spanning 11,420 CD8+ T cells across 22 MSI CRC patients and 17,353 CD8+ T cells across 41 MSS CRC patients. scRNA-seq profiles for
CRC16 cohort, SMC, KUL3 and KUL5 (16,163 cells after quality filtering and doublet removal) have been previously published12,18 (4214 MSI, 11,949
MSS). Newly obtained data for this study include transcriptomes for 8,633 CD8+ T cells (7206 MSI, 1427 MSS) from the SMC5 cohort. Moreover, new
single-cell TCR sequencing for the KUL5, SMC and SMC5 cohorts was added, covering 10,369 cells (5455 MSI, 4714 MSS) in 28 patients (16 MSI, 12
MSS). scRNA-seq expression modules were identified and subsequently translated to the TCGA bulk RNA-seq (374 patients retained with primary
tumors, 57 MSI, 317 MSS) to obtain a novel CD8+ T cell-centric classification of CRC patients. This novel immune subtype classification (ISC) was
validated for MSI and MSS CRC with regards to prognosis (TCGA, SIDRA-LUMC). Validations on ICB predictiveness were limited due to available data.
MSI was verified in Keynote-177 (27 patients)17 and a public single cell dataset with pre- and post-ICB patient gene expression. The MSS situation was
briefly assessed using public data from Parikh et al., which contains 8 pre-therapy CRC samples in a total of 24 CRC samples103. b, c UMAP
representations of the CD8+ T cell population in MSI (b) and MSS (c). Groups were annotated after Leiden clustering post initial pre-processing
control (filtering of low quality and doublet cells using Scanpy single cell analysis modules). d Relative abundance of CD8+ T cell populations per
patient, sorted by median for both MSI and MSS CRC. e–h Top 30 highly expressed genes for MSI (e) and MSS (f) CRC as well as the top 13 variable
genes for MSI (g) and MSS (h) CRC, sorted by gene variance, which highlight the elevated level of overlap of similar high expressed genes and
variable genes between the MSI and MSS datasets.
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(e.g., self/viral antigens) or bystander memory pheno-
types34,35. Interestingly, some unconventional/invariant
CD8+ T cell subpopulations were mainly present in MSS
CRC (i.e., IL17A+ MAITs, iNKT cells, or immature cells)
(Fig. 1d; Supplementary Fig. S2a, b).
Next, we wondered if these overlaps also existed for

the top expressed or most variable genetic modules.
Across CD8+ T cells, in both MSI and MSS CRC, there
were similar highly expressed genes, relevant for
antigen-presentation or activation (B2M, HLA-A/B/C/E,
CD74), effector activity (CCL5, NKG7, SRGN) or
inflammation (JUN, IL32) (Fig. 1e, f). Even for the most
variable genes across CD8+ T cells, there was con-
siderable overlap between these CRC subtypes for genes
relevant for cytolytic activity (GNLY, GZMB, GZMK) or
inflammation (CCL4, CCL4L2, FOS, JUN) (Fig. 1g, h).
Thus, despite well-established antigenic distinctions
between MSI and MSS CRC and their independent
batch correction to uphold biological variation, there
was a substantial overlap in conventional subpopulation
phenotypes and broad expression modules of their
CD8+ T cells.

IFNG+CD8+ T cells and per cell IFNG expression show
contrasting patterns in CRC subtypes
In the above transcriptomic overlaps, IFN-γ signaling was

missing, despite its critical role in effector function,
including synergizing with TCR stimulation to sustain IR
expression and exhaustion36. Moreover, some biomarkers
centered on IFN-γ+ T cells are amongst the most consistent
predictors of ICB-responses in multiple cancers37. There-
fore, we pursued a deep dissection of the IFN-γ signaling.
We divided the total CD8+ T cells for both MSI and

MSS CRC into IFNG+ and IFNG–subpopulations based
on their transcript expression (threshold of 0.2 log2-nor-
malized CPM). This threshold efficiently distinguished
CD8+ T cells with not too low IFNG expression from
CD8+ T cells with clear expression of IFNG (Supple-
mentary Fig. S3a). We took along IFNG+CD8+ T cells
from normal-adjacent colon tissue for peri-tumoral
comparison. Expectedly, MSI CRC had the highest
amounts of IFNG+CD8+ T cells compared to both
normal-adjacent tissue and MSS CRC (Fig. 2a). MSS CRC
also did not show a higher proportion of IFNG+CD8+

T cells than its normal-adjacent tissue (Fig. 2a). However,
the total distribution of IFNG expression per CD8+

T cells was similar between MSI and MSS CRC (Fig. 2b).
Accordingly, there was a very marginal difference in
downstream IFN-γ response signature38 in these MSI/
MSS CRC IFNG+CD8+ T cells (Supplementary Fig. S3b).
Thus, the lower numbers of IFNG+CD8+ T cells in MSS
CRC exhibited similar IFNG output as well as down-
stream IFN-γ signaling, as the somewhat higher numbers
of IFNG+CD8+ T cells in MSI CRC.

MSI and MSS CRC show contrasting tumor-reactive
signaling in IFNG+CD8+ T cells
Increased IFN-γ signaling is a hallmark of heightened

tumor reactivity39, and thus above similarities between
MSI and MSS CRC were surprising. This highlighted a
need for comprehensive analyses of various genes relevant
for tumor-reactive signaling, including exhaustion, to
understand the immunodynamics of IFN-γ signaling.
Hence, we analyzed major genes relevant for tumor-
reactive CD8+ T cell exhaustion (TIGIT, PDCD1, LAG3,
CTLA4, HAVCR2, ENTPD1, TCF7, TOX, EOMES,
CXCL10, CXCL9, CXCL13, CXCR5, ICOS, IL18R1,
IL15RA, IL18RAP, KLRG1, KLRK1, BCL6, SLAMF6)40

(Supplementary Table S3), and critical cytokine or TCR
signaling related components as well as transcription
factors (TFs) upstream of exhaustion-relevant IR-coding
genes (IL2, CD28, TNF, SMAD3, SMAD4, SMAD2,
NFATC1, NFATC3, NFATC2, MAF, STAT2, STAT1,
JAK3, PRDM1, TBX21, YY1, NFIL3)36. To validate the
ability of these genes to mark tumor-reactive exhaustion,
we performed an unbiased pathway overrepresentation
analyses41. Indeed these genes together enriched for var-
ious pathways relevant for tumor-reactive exhaustion or
multi-factorial tumoral inflammation7,31,42,43 including
nuclear factor of activated T cells (NFAT) signaling, IFNG
signaling, various IL-based pathways including IL2/IL15,
TGFβ signaling, and various T cell-relevant transcrip-
tional pathways (Supplementary Fig. S3c).
Quantitatively, these genes were mostly expressed in

IFNG+CD8+ T cells in both MSI and MSS CRC (Sup-
plementary Fig. S3d). For several key regulators coding for
exhaustion-relevant IRs/TFs, the gene expressions
between MSI and MSS CRC IFNG+CD8+ T cells were
not different, e.g., NFATC3, STAT2, PRDM1, STAT1,
TIGIT, PDCD1, TBX21, TOX (Supplementary Fig. S3d).
However, other genes showed higher expression in MSI
CRC, e.g., LAG3, CTLA4, CXCL13, HAVCR2, ENTPD1,
YY1, NFATC2, JAK3 (Supplementary Fig. S3d). This
indicated a relatively higher tumor reactivity in MSI CD8+

T cells, as documented recently for CXCL13+CD8+

T cells in MSI CRC1.
This, however, did not clarify the tumor reactivity

situation for MSS CRC. Hence, we pursued a qualitative
analysis of the above genes, along with IFNG, i.e., the
tendency of these genes to sub-cluster IFNG+CD8+ T cell
populations in MSI vs MSS CRC. Using correlation
matrices and hierarchical clustering with Spearman cor-
relation, we were able to better identify contrasting pat-
terns in MSI and MSS CRC. More elaborate discussion on
how different modules based on same genes were differ-
ently labeled between MSI and MSS CRC was shown in
Supplementary Table S4. MSI CRC IFNG+CD8+ T cells
showed 5 clusters with distinct signaling modules: stem-
like progenitor (distinguished by TCF7, IL2, CD28)40,

Borràs et al. Cell Discovery           (2023) 9:114 Page 5 of 30



Fig. 2 (See legend on next page.)
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inflamed follicular-like (CXCR5, BCL6, ICOS)44, long-
term immunosurveillance (EOMES, TBX21, PRDM1,
KLRK1, KLRG1)45,46, tumor-reactive exhaustion (IFNG,
LAG3, PDCD1, CTLA4, TIGIT, ENTPD1, HAVCR2,
CXCL13, NFATC2)8,24,47 and memory differentiation
(TOX, IL15RA, NFATC3, NFIL3, STAT1/2)36,40 (Fig. 2c;
Supplementary Fig. S3e and Table S3). The memory dif-
ferentiation module was fully integrated within the
broader tumor-reactive exhaustion module (Fig. 2c; Sup-
plementary Fig. S3e). The stem-like progenitor module
had the most distinct existence in MSI CRC (Fig. 2c;
Supplementary Fig. S3e), in line with observations in
melanoma48.
MSS CRC IFNG+CD8+ T cells showed 5 subclusters

(Fig. 2d; Supplementary Fig. S3f): long-term immuno-
surveillance (EOMES, PRDM1, KLRK1, KLRG1, IL2,
TNF)45,46, inflamed follicular-like (CXCR5, BCL6,
CD28)44, inflamed memory-like (TOX, PDCD1, CTLA4,
NFATC2/3, SMAD2/3/4, STAT1/2, IL15RA, IL18RAP),
IFN-γ-associated dysfunctional (positive correlations with
IFN-γ-related genes like TBX21, YY1, NFIL3, CXCL9,
CXCL10 but negative correlations with other functional
genes like IL2, TNF, KLRK1)49 and tolerogenic c-Maf
signaling (MAF, ICOS, LAG3, TIGIT, ENTPD1,
HAVCR2)50 (Supplementary Table S3). Unlike the tumor-
reactive exhaustion module in MSI CRC, none of the
specific subclusters of IFNG+CD8+ T cells in MSS CRC
recruited IFNG (Fig. 2d; Supplementary Fig. S3f), possibly
indicating a lack of immunological orientation for IFNG51.
In addition, the only two clusters that showed some
overlap between MSS and MSI CRC (Fig. 2c, d; Supple-
mentary Fig. S3e, f) also showed varied sizes in MSS CRC
in terms of number of genes: long-term immuno-
surveillance was bigger and inflamed follicular-like was
smaller. We did not identify a distinct tumor-reactive
exhaustion cluster in MSS CRC. Instead, the IR-coding
genes and TOX, co-markers of tumor-reactive exhaus-
tion52,53 were split across two distinct clusters, inflamed
memory-like and tolerogenic c-Maf signaling (Fig. 2d;

Supplementary Fig. S3f). The fragmentation of exhaustion
markers across subpopulations, rather than co-associa-
tion, is considered a marker of ICB non-responsive
tumors with bystander CD8+ T cells34,54. In addition,
c-Maf signaling specifically distinguished MSS CRC CD8+

T cells (Fig. 2d; Supplementary Fig. S3f). This is of sig-
nificance because c-Maf signaling in CD8+ T cells
associates with tolerogenic/non-inflammatory functions,
involved in tumor immune-escape50, which is particularly
pertinent for colonic surfaces where c-Maf signaling
facilitates tolerogenicity towards gut microbiome50. Of
note, there was some but not extremely high genetic
overlaps between the above 5 MSI and 5 MSS CRC sig-
naling modules (Supplementary Fig. S3g). Altogether, we
observed that MSI CRC IFNG+CD8+ T cells have tumor-
reactive exhaustion and stem-like progenitor signaling,
while MSS CRC IFNG+CD8+ T cells showed hetero-
geneous inflammatory or tolerogenic features.

MSI and MSS CRC are composed of highly distinct CD8+ T
cell signaling hubs
Next, we created an alignment map of subpopulation

annotations of CD8+ T cells with the tumor-reactive
signaling modules, to uncover putative CD8+ T cell sig-
naling hubs1. This was meant to highlight how CD8+ T
cell sub-populations diverge (negative or null correlation)
or converge (positive correlation) with respect to signaling
signatures thereby revealing cross-connected CD8+ T
cell hubs.
In MSI CRC, tumor-reactive exhaustion and memory

differentiation aligned with TOXHIGHCD8+ T memory-
exhausted, CD8+ T exhausted and CD8+ T resident-
memory cells (Fig. 2e), whereas the stem-like progenitor
module aligned primarily with CD8+ T central-memory
and CD8+ T naive cells (Fig. 2e). This was in line with
stem-like memory cells’ known tendency to show both
naive and central memory T cell markers55,56. Finally, the
inflamed follicular-like module57 broadly aligned with
multiple CD8+ T cell subpopulations while the long-term

(see figure on previous page)
Fig. 2 IFNG+CD8+ T cells, IFNG expression and tumor-reactive signaling. a Proportion of total CD8+ T cells positive for IFNG expression per
patient. 1958 CD8+ T cells in normal tissue adjacent to MSI (green), 7867 CD8+ T cells in normal tissue adjacent to MSS CRC (light blue), 11,420
tumoral MSI CD8+ T cells (orange) and 17,353 tumoral CD8+ T cells (blue) were analyzed. Median (line) quartile 2 and 3 (box), as well as quartiles 1
and 4 (whiskers) are indicated. Pairwise contrasts were calculated with Welch’s two-sided t-test (P < 0.05). b Density plot indicating the distribution of
CD8+ T cells over the expression level of IFNG in CD8+ T cells present in MSI (11,420 cells) and MSS (17,353 cells) tumors. c, d Genetic signaling of co-
expression correlation matrices, visualized as unrooted hierarchical distance for MSI (c) and MSS (d), highlighting the different modules characterizing
IFNG+CD8+ T cells. e, f Activation map (binarized expression) for tumor-reactive signaling modules (Supplementary Table S2) for each sub-population
of IFNG+CD8+ T cells in MSI (e) and MSS (f). g Dot plot of IFNG+ MAIT cells in MSI and MSS. These cells are a source of TCR-dependent and
independent, activation, tissue residency and inflammation genetic signal. h Bar charts of average local alignment identity of TCR alpha and beta
chains as well as binarized count of IL17+ cells and binarized counts of IFNG+ cells (statistical significance calculated using two-sample independent
t-test, P value threshold < 0.05). i Joint topographical density plot between TCR activation signaling (y axis) and bystander activation signaling (x axis)
for IFNG+CD8+ T cells including normal MSI (orange left), tumor MSI (orange right), normal MSS (blue left), and tumor MSS (blue right) with arrows
indicating the population drifts from normal tissue mean population center (x). Quadrants defined as vertical and horizontal lines were used to
calculate Welch test statistical cell quantification differences between MSI and MSS tumor samples (P value threshold < 0.05).
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immunosurveillance only aligned with EOMESHIGHCD8+

T memory-exhausted cells (Fig. 2e). These alignments
were representative of CD8+ T cell-states and signaling
orientations observed in ICB-responsive tumors8,31,47.
MSS CRC, however, had a completely different align-

ment structure. Long-term immunosurveillance pro-
miscuously aligned with almost all CD8+ T cell
subpopulations (Fig. 2f). Over-representation of EOMES-
signaling, which was indeed associated with the long-term
immunosurveillance module here, can potentially limit
stem-like phenotype and promote dysregulated exhaus-
tion in CD8+ T cells58,59. Indeed, we failed to see any clear
stem-like module, but we did observe fragmented IR-
coding genes’ distributions in MSS CRC IFNG+CD8+

T cells. The inflamed memory-like and tolerogenic c-Maf
signaling co-aligned with EOMESMEDTOXMEDCD8+ T
memory-exhausted and TOXHIGHCD8+ T memory-
exhausted cells (Fig. 2f). This indicated that CD8+ T
memory-exhausted cells in MSS CRC might have a more
mixed inflammatory/tolerogenic orientation than MSI
CRC. In addition, all the signaling modules in MSS CRC
aligned with a specific IL17AHIGH MAIT subset, sug-
gesting their dominant activity in MSS CRC. In conclu-
sion, CD8+ T cell signaling hubs in MSI CRC were
reminiscent of an ICB-responsive tumor8,31,47 whereas
those in MSS CRC were largely skewed towards either
EOMES-dominant signaling or IL17AHIGH MAITs, toge-
ther with mixed inflamed/tolerogenic CD8+ T memory-
exhausted cells.

IL17AHIGH MAITs in MSS CRC show TCR reactivity toward
microbial riboflavin
MAITs have epitope-specificity restricted to riboflavin

intermediates derived from microbes like bacteria,
mycobacteria and/or yeasts60. MAITs with riboflavin
intermediates specific TCR signaling secrete cytokines
like IL17 (non-exclusively accompanied by TNF)60. Fre-
quently, this is accompanied by wound healing or tissue
repair markers like FURIN, HMGB1/2. In contrast,
MAITs activated in a non-TCR specific fashion, favorably
secrete IFN-γ and cytolytic factors (PRF1, GZMB,
FASLG)60. Only in MSS CRC, IL17A+ MAITs were
enriched with the above markers of riboflavin
intermediate-specific TCR signaling and tissue repair
without general inflammation markers (TGFB1, NFKB1)
(Fig. 2g). Contrastingly, MSI CRC-associated MAITs only
showed features of non-TCR specific activation, accom-
panied by general inflammation markers (Fig. 2g).
Above results, although interesting, originated from

transcriptomic signaling and were not confirmatory for
the real TCR-specificities. To address this, we used
scTCR-seq profiles of these MAITs to directly quantify
the TCR-specificity toward riboflavin intermediates.
Herein, we accessed published, functionally validated,

MAIT-associated TCR α/β-chain sequences specific for
riboflavin intermediates61 that were then aligned with
scTCR sequences of MAITs derived from MSI (Supple-
mentary Fig. S4a, c) or MSS (Supplementary Fig. S4b, d)
CRC patients. As hypothesized, the IL17AHIGH MAITs
from MSS CRC patients had the highest alignment scores
for riboflavin intermediate-specific TCR sequences
(Fig. 2h), but this was not the case for IFNGHIGH MAITs
in MSI CRC (Fig. 2h). MSS CRC clearly showed pre-
ference for IL17AHIGH MAITs specific for microbe-
derived riboflavin intermediates.

MSI and MSS CRC IFNG+CD8+ T cells show contrasting TCR
vs bystander activation
MSS CRC CD8+ T cells showed EOMES-dominant sig-

naling with mixed inflamed/tolerogenic phenotype which
could be indicative of either bystander-activation or TCR-
activation62–64. To objectively delineate which activation
type was applicable to MSI and MSS CRC, we utilized the
previously published genetic signatures for TCR-activation
and bystander-activation in T cells65 (Supplementary Table
S3). We visualized the Spearman’s correlation density dis-
tributions of IFNG+CD8+ T cells with bystander-activation
signature on the x axis and TCR-activation signature on the
y axis (Fig. 2i). Then, we used the normal-adjacent colon
tissue-associated IFNG+CD8+ T cells to create a spatial
reference point for the population’s distribution center
(marked as ‘x’) as well as a 4-quadrant system for differential
signature orientation (Fig. 2i). This allowed us to investigate
the non-tumoral vs tumoral orientation of the bystander and
TCR-activation signatures. Relative to the reference point,
MSI CRC IFNG+CD8+ T cells split into two distinct sub-
populations: TCR-activationLOWbystander-activationLOW

and TCR-activationHIGHbystander-activationLOW (Fig. 2i).
Whereas in case of MSS CRC, IFNG+CD8+ T cells split into
three mixed subpopulations: TCR-activationLOWbystander-
activationLOW, TCR-activationHIGHbystander-activationLOW

and TCR-activationLOWbystander-activationHIGH (Fig. 2i).
However, the TCR-activationHIGHbystander-activationLOW

subpopulation was higher in MSI CRC, while the TCR-
activationLOWbystander-activationHIGH subpopulation was
higher in MSS CRC (Fig. 2i).
To validate this, we pursued gene-set enrichment ana-

lysis (GSEA) on REACTOME pathways of the TCR-
activationHIGH and/or bystander-activationHIGH sub-
populations of IFNG+CD8+ T cells. In line with above
observations, MSI CRC IFNG+CD8+ T cells enriched for
pathways related to TCR activation coupled with IFN-γ/
PD-1 signaling, TCR signaling supportive activation-cas-
cade, memory/progenitor-like metabolic profile
(OXPHOS/TCA cycle)66, and immuno-regulatory signal-
ing (Supplementary Fig. S4e). Conversely, MSS CRC
IFNG+CD8+ T cells enriched for a huge diversity of
pathways including mixed inflammatory (multi-faceted
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NFkB signaling, IL1 signaling)67 or tolerogenic (TGFβ
signaling)68 phenotypes along with TCR signaling,
immuno-regulation, type I/II IFN-signaling, PD-1-signal-
ing, proliferative metabolism (glycolysis)66 and cellular
stress (Supplementary Fig. S4f). Two bystander-like sig-
naling pathways were also observed, i.e., antiviral
responses and mycobacterium infection (Supplementary
Fig. S4d)34,64,69. Thus, MSI CRC IFNG+CD8+ T cells
showed higher TCR-activation while MSS CRC
IFNG+CD8+ T cells showed heterogeneous inflammatory
and tolerogenic characteristics along with higher
bystander-like activation.

TCR repertoire of IFNG+CD8+ T cells in MSS CRC shows low
diversity and viral specificity
To ‘functionally’ validate the above transcriptomic

observations on the level of TCR repertoire we used a
customized Scirpy computational workflow70 to perform
repertoire mapping as well as antigen-specificity predic-
tions on scTCR-seq profiles of CRC CD8+ T cells. We
defined TCR clonotypes based on shared CDR3 sequen-
ces, to delineate clusters of T cells with identical epitope
or antigen-specificities. These analyses identified a con-
siderable diversity of TCR clonotype clusters in both MSI
(Supplementary Fig. S5a) and MSS (Supplementary Fig.
S5b) CRC. We used these TCR sequences to query The
Immune Epitope Database (IEDB) and annotated them
for their predicted epitope specificities using pairwise
sequence alignments of CDR3 amino acid sequences.
IEDB hosts experimentally validated data on pairs of
human TCR sequences and their known antigen or epi-
tope specificities71. These efforts culminated into a cate-
gorization of predicted antigen-specificities into broad
‘TCR families’ based on existing IEDB annotations71 or
annotations from biomedical literature72. Such families
included viral antigens, shared-cancer antigens, self-anti-
gens, and bacterial antigens (a full list of predicted epitope
identities were shown in Supplementary Table S5).
Moreover, there were several tumoral TCRs that could
not be mapped to any epitope in IEDB, but they showed
tumor specificity on account of extremely low overlaps
with normal adjacent tissue associated TCRs (Supple-
mentary Fig. S5c). Hence, we annotated these as ‘tumor
exclusive TCRs’.
IFNG+CD8+ T cells accounted for almost all the TCR

clonotype expansion (defined as the number of CD8+

T cells per TCR clonotype) in MSI/MSS CRC, rather than
IFNG−CD8+ T cells (Fig. 3a), thereby supporting our
IFNG+CD8+ T cell-centric approach. MSS CRC
IFNG+CD8+ T cells showed higher clonotype expansion
than MSI CRC IFNG+CD8+ T cells (Fig. 3a). However,
TCR polyclonality or diversity (using Chao1 richness
estimator for TCR Richness)73,74 was relatively higher in
MSI CRC IFNG+CD8+ T cells, albeit non-significant

(Fig. 3b). High TCR expansion despite low TCR diversity
in MSS CRC IFNG+CD8+ T cells could be indicative of
low tumoral antigenic diversity75.
To better establish this, we categorized TCR clonotype

expanders based on TCR families of predicted antigen-
specificities. The majority of clonotype expanders were
composed of TCRs predicted to recognize viral anti-
gens76,77 (Fig. 3c) followed by exclusive TCRs (Fig. 3c).
This was in line with previous analyses where most
human tumor-associated TCRs had viral-specificities76.
Remarkably, almost all the TCR clonotype expanders
amongst MSS CRC IFNG+CD8+ T cells showed specifi-
city to viral antigens (Fig. 3c). In addition, TCR specificity
to another type of bystander antigens such as bacterial
antigens (of mycobacterial-origin; Supplementary Table
S5), was also predicted exclusively in MSS CRC (Supple-
mentary Fig. S5d), albeit for few clones of IFNG−CD8+ T
cell-state only. A significant amount of TCR clonotype
expanders in MSI CRC IFNG+CD8+ T cells possessed
exclusive TCRs (Fig. 3c). However, due to the extremely
sparse number of CD8+ T cells annotated for shared or
self-antigens, strong conclusions cannot be drawn about
their physiological roles.
Considering the high neoantigen load in MSI CRC3, we

wondered if these T cells could possess neoantigen-
reactivity. Hence, we analyzed a previously published
neoantigen-reactive TCR-activation signature for CD8+

T cells (NeoTCR8)78. Amongst CD8+ T cells with
exclusive TCRs, MSI CRC IFNG+CD8+ T cells showed a
higher NeoTCR8-signature, significantly more than their
MSS CRC counterparts (Fig. 3d). Finally, few
IFNG+CD8+ T cells were predicted to possess shared-
cancer antigen (Fig. 3c) or self-antigen specific (Fig. 3c)
TCRs, showing a higher expansion in MSS CRC or MSI
CRC respectively, albeit non-significant. Thus, MSS CRC
CD8+ T cells showed low TCR diversity and largely viral
TCRs, whereas MSI CRC CD8+ T cells showed high TCR
diversity and superior enrichment of exclusive TCRs with
putative neoantigen-reactive genetic footprint.

MSI CRC CD8+ T cells with exclusive TCRs show
immunogenic features and TOXHIGH memory-exhaustion,
which contrasts with MSS CRC
Next, we aligned the TCR antigen/epitope-specificity

predictions with subpopulation phenotypes in
IFNG+CD8+ T cells. In MSI CRC, the exclusive TCRs
were dominantly expressed by TOXHIGHCD8+ T
memory-exhausted cells (Fig. 3e). MSI CRC CD8+ T cells
with predicted viral TCR were a mixture of several sub-
populations (Fig. 3e). Finally, TCRs predicted to bind self-
antigens or shared-cancer antigens were dominant in
CD8+ T low-functional or CD8+ T central-memory cells,
respectively (Fig. 3e), although this may be inconclusive
due to the sparse number of cells. In MSS CRC, the
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exclusive TCRs as well as TCRs predicted to bind self-
antigens or shared cancer antigens were linked to a
mixture of CD8+ T subpopulations (Fig. 3f), albeit with
extremely sparse numbers. However, the TCRs predicted
to bind viral antigens in MSS CRC were primarily present
in TOXHIGHCD8+ T memory-exhausted cells (Fig. 3f).
Thus, depending on MSI or MSS status, TOXHIGHCD8+

T memory-exhausted cells showed different TCR-
specificities such as exclusive TCRs in MSI vs viral
TCRs in MSS.
To understand if the exclusive TCRs associated with

tumor-reactive exhaustion markers, we analyzed the
population sizes of all cells with expression of known IR-
coding genes. IR-coding genes were prioritized because
low expression of at least one IR, CD39 (coded by
ENTPD1) in CRC CD8+ T cells defined a lack of tumor-
relevant chronic antigen stimulation and bystander-like
phenotype77. IFNG+CD8+ T cells with exclusive TCRs
had larger populations of cells with expression of almost
all IR-coding genes in MSI, rather than MSS, CRC
(Supplementary Fig. S5e). MSS CRC IFNG+CD8+ T cells
with exclusive TCRs had an extremely low number of
cells positive for ENTPD1 as well as a very small number
of both PDCD1+HAVCR2 ‘pre-exhausted’ and
PDCD1+HAVCR2+ ‘exhausted’ profiles, compared to MSI
CRC (Supplementary Fig. S5e). This implied that exclu-
sive TCRs in MSS CRC did not create a typical chronic
exhaustion profile. There were no notable differences in
IR-coding gene-positive populations between MSI and
MSS CRC for IFNG+CD8+ T cells with TCRs predicted to
bind viral antigens (Supplementary Fig. S5e).
Finally, we did an IFNG+ vs IFNG–CD8+ T cells’ GSEA

using REACTOME pathway terms per TCR antigen-
specificity family. MSI CRC IFNG+CD8+ T cells with
exclusive TCRs enriched for various immunogenic path-
ways related to IFN signaling, antigen presentation, and
antiviral immune response (Fig. 3g). Contrastingly, in
MSS CRC, IFNG+CD8+ T cells with exclusive TCRs
enriched for pathways related to either immunoregula-
tion, wound healing (i.e., FGFR1 signaling79) or cellular
stress/senescence (Fig. 3h). IFNG+CD8+ T cells

possessing viral TCRs also had relatively distinct features
(Fig. 3g, h), i.e., while MSI CRC cells with viral TCRs
enriched for largely metabolic pathways yet MSS CRC
cells with viral TCRs enriched for either immunogenic
pathways like IFN signaling, antigen presentation or IL4/
IL13 immunosuppression. MSS or MSI IFNG+CD8+

T cells with self-antigen or shared cancer-antigen orien-
ted TCRs did not show any dominant immunological
pathways although self-antigen oriented TCRs showed
some tendency to enrich anti-microbial/anti-parasitic
pathways (Fig. 3g, h). In conclusion, MSI CRC CD8+

T cells with exclusive TCRs showed chronic exhaustion
and pro-immunogenic features and connected to TOX-
HIGHCD8+ T memory-exhausted cells. However, MSS
CRC CD8+ T cells showed less tumor-reactive exhaustion
and more immunoregulatory/pro-stress responses in
exclusive TCR context.

CD8+ T cell features exhibit contrasting multi-layered
clustering in MSI vs MSS CRC
The above analyses emphasized the importance of at

least four transcriptomic features across CRC CD8+

T cells, i.e., CD8+ T cell sub-populations, IFNG expres-
sion, predicted TCR antigen-specificities and tumor-
reactive signaling modules. However, the above analyses
were supervised as reductionist approaches. Hence, we
wondered if (and how) these transcriptomic features
cross-arranged as de novo clusters in an unsupervised
space. To address this, we performed a de novo unsu-
pervised clustering analysis between the above four fea-
tures with a multiple correspondence analysis (MCA)
using categorical values from CD8+ T cell sub-popula-
tions, IFNG expression, predicted TCR antigen-groups,
and tumor-reactive signaling modules. This projection
arranged CD8+ T cells from MSI CRC and MSS CRC into
several distinct groups that were covered by five clusters
(Fig. 4a) and six clusters, respectively using K Means (Fig.
4b). Intriguingly, the composition of these clusters con-
formed to the above observations. For instance, in MSI
CRC the exclusive TCRs co-clustered with memory dif-
ferentiation module and TOXHIGHCD8+ T memory-

(see figure on previous page)
Fig. 3 Single-cell TCR sequencing analysis. a Boxplots indicating clonotype expansion of the 1753 clonotypes in 7842 CD8+ T cells MSI (IFNG+:
2338 CD8+ T cells, IFNG–: 2171 CD8+ T cells) and MSS (IFNG+: 1611 CD8+ T cells, IFNG–: 1722 CD8+ T cells) across IFNG positivity status. Statistical
testing computed using independent t-test, P value threshold < 0.05). b Clonal richness (Chao1 richness estimate) (y axis) of the IFNG+CD8+ T cells in
these MSI and MSS samples (statistical testing computed using independent t-test, P value threshold < 0.05). c Clonal expansion of IFNG+CD8+ T cells
(y axis) grouped by predicted antigen epitope groups for viral (MSI: 1865, MSS: 1474), exclusive (MSI: 468, MSS: 130), self (MSI: 4, MSS: 3), and shared
cancer antigens (MSI: 1, MSS: 4) (statistical significance calculated using two-sample independent t-test, P value threshold < 0.05). d Mean of binarized
expression of NeoTCR8 signature (Supplementary Table S3) genes (y axis) for the 3949 IFNG+CD8+ T cells for clonotypes annotated as exclusive based
on predicted antigen epitope (statistical significance calculated using independent t-test, P value threshold < 0.05). e, f Proportional counts of single
cell cluster annotations (see color legend) for IFNG+CD8+ T cells (x axis), aggregated by their respective predicted antigen epitope group (y axis) in
MSI (e) and MSS (f) CRC samples. g, h Bar plots visualizing the top pathway terms found to be enriched using GSEA using the Reactome database for
each predicted antigen epitope group in MSI (g) and MSS (h). Terms are sorted based on descending normalized enrichment score.
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exhausted cells (Fig. 4a), while viral TCRs were aligned
with more long-term immunosurveillance and low func-
tional or partially activated CD8+ T cells. IFNG+ status
was associated with exhaustion or resident memory-
characteristics whereas IFNG– status associated with self/
shared-cancer TCRs or naive/un-activated status of CD8+

T cells. Stem-like progenitor and inflamed follicular-like
modules showed distinct co-clustering.
Contrastingly, in MSS CRC, the exclusive TCRs simul-

taneously co-clustered with IFNG– status and naive,
inflamed, or exhausted CD8+ T cell-features as well as
EOMESHIGHCD8+ T memory-exhausted cells (Fig. 4b).
The functionally crucial IFNG+ status preferably co-
clustered with viral TCRs, TOXHIGH or EOMESMED-

TOXMEDCD8+ T memory-exhausted cells, and inflamed
memory-like or tolerogenic c-Maf signaling. Interestingly,
the long-term immunosurveillance module that domi-
nated the MSS CRC CD8+ T cells, preferably co-clustered
with self TCRs. In conclusion, CD8+ T cells in MSI CRC
and MSS CRC show highly distinct ‘multi-layered’ clus-
tering of their functionally crucial transcriptomic features.

MSI CRC CD8+ T cells show distinct proteomic effector
memory features
Since our study largely hinged upon single cell tran-

scriptomic data, we felt it was essential to validate our
observations on proteomic level. To this end, we accessed
a publicly available CyTOF dataset of CD8+ T cells
(1,547,841 cells total, with 39,457 CD8+ T cells remaining
after quality control) derived from 8 MSI and 22 MSS
patients (some patients were excluded due to quality
control)80. On this dataset, we performed a trajectory
analysis which exposed either a largely exclusive trajectory
for MSI CRC CD8+ T cells or an overlapping trajectory
between MSI and MSS CRC CD8+ T cells (Fig. 4c, d).
Herein, an MSI vs MSS CRC analyses for differential
surface marker enrichment (Fig. 4e, f) showed that MSI
CRC CD8+ T cells pre-dominantly exposed markers of
memory phenotype (CD12781), effector memory or poly-
clonal TCR phenotype (CD2582), immunoregulation (PD-
L183), T cell activation (CD5684), and cytokine signaling
(CD12385) (Fig. 4e, g). In contrast, MSS CRC CD8+ T cells

exposed a lot more contradictory inflammatory markers,
i.e., immuno-regulation (PD-131), suppressor of T cell
activity (CD3886), T cell activation (CD28, CD4487,88) and
unconventional T cells (NKp4689) (Fig. 4f, h). Altogether,
we observed that MSI CRC CD8+ T cells expose more
effector memory-like surface markers, while MSS CRC
CD8+ T cells show heterogeneous or contradictory surface
markers of inflammation.

CD8+ T cell dynamics operate as patient-dependent strata
within MSI and MSS CRC
The tumor-reactive signaling modules were particularly

proficient at capturing the contrasting CD8+ T cell-
dynamics in MSI vs MSS CRC. However, considering how
immunotherapy responses operate90, these dynamics were
most likely not limited to MSI or MSS CRC contexts, but
extendable to patient-dependent variations (Supplemen-
tary Table S1). Hence, we investigated if the 22 MSI CRC
and 38 MSS CRC patients (due to thresholding) can be
broadly stratified on the tumor-reactive signaling modules
(using hierarchical clustering of per patient means of the
tumor-reactive modules), and how such stratification
aligns with other annotations like CD8+ T cell sub-
populations, TCR-to-bystander activation status, and IRs-
coding genes’ expression.
In MSI CRC, the tumor-reactive signaling modules

stratified the patients into two clusters (Fig. 5a). The cluster
#1 preferentially showed stem-like progenitor module,
alone or together with long-term immunosurveillance (Fig.
5a). Cluster #2 captured patients with mixed inflammatory
status, led by either tumor-reactive exhaustion and/or
inflamed follicular-like modules (Fig. 5a). To get an idea of
how TCR activation and bystander activation trended, we
used 3 signatures available from MSIGDB (GSE13738):
TCR_VS_BYSTANDER_ACTIVATED_CD4_TCELL_DN
(signature #1), RESTING_VS_BYSTANDER_ ACTIVA-
TED_CD4_TCELL_DN (signature #2) and RESTING_-
VS_TCR_ACTIVATED_CD4_TCELL _DN (signature #3).
We then calculated the Spearman correlations between
signature #1 and #2 (RSPB, marking bystander activation),
as well as between signature #1 and signature #3 (RSPA,
marking TCR activation). The difference of the median

(see figure on previous page)
Fig. 4 Multiple correspondence analysis and CyTOF validation. a, b Multiple Correspondence Analysis (MCA) on the various annotations for
CD8+ T cells produced in this study for MSI (a) and MSS (b). K-Means graphical distance clustering was used (circles). Unlabelled data points show the
low signal categories of binarized factors (color) (see Supplementary Material & Methods). c, d UMAP representation of 39,457 CD8+ T cells
(1,547,841 cells total) in a publicly available CyTOF dataset (FR-FCM-Z24H) spanning 30 CRC patients post quality control (31 prior to filtering). Results
for the 8 MSI (c) and 22 MSS (d) patients are shown, covering 35,354 and 3410 CD8+ T cells respectively. e, f Differential gene expression analysis
using Scanpy’s ‘rank_genes_groups’, indicating genes upregulated in MSI vs MSS (e) or MSS vs MSI (f), using two-sided t-tests with Benjamini-
Hochberg correction for multiple testing (significance threshold P < 0.05). g, h Trajectory inference using scFates on the CyTOF object, post loading
and pre-processing with Pytometry (https://github.com/buettnerlab/pytometry) and Scanpy. Diffusion maps were generated using Palantir.
Expression of the top 5 most discriminative genes in MSI vs MSS (g) and MSS vs MSI (h) along the trajectory are shown. The UMAP space is identical
to panels (c) and (d) in this figure.
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values of RSPA and RSPB was the measure used as repre-
sentative of directionality between TCR activation vs
bystander activation. We found that this directionality
metric was increased in cluster #1 when compared to
cluster #2 (Fig. 5a).
For MSS CRC, the situation was more complex. The

tumor-reactive signaling modules achieved an hetero-
genous division of the patients into three clusters
(Fig. 5b). Cluster #1 showed a mixed inflammatory status,
led by largely overlapping co-enrichments of IFN-γ-
associated dysfunctional, inflamed memory-like and tol-
erogenic c-Maf signaling modules (Fig. 5b). Cluster #2
demonstrated long-term immunosurveillance, while
cluster #3 showed signs of ‘immune silence’, as it showed
low signal in most of the modules (Fig. 5b). The direc-
tionality score between TCR activation and bystander
activation per patient was consistently higher in cluster #2
rather than cluster #1 while it was non-directional in
cluster #3 (difference < 0.2) (Fig. 5b). The pattern for the
ratio of TCR-to-bystander activation signature did not
align with IR-coding gene’s e.g., cluster #1 which showed
high TCR-to-bystander activation signature ratio but a
lower number of cells positive for IR-coding gene
expression when compared to clusters #2 or #3 (Fig. 5b).
Various patients in cluster #1 showed strong signal for
TOXHIGHCD8+ T memory-exhausted cells, a trait that
they share with cluster #3 (Fig. 5b). Overall, there was a
sizable patient-to-patient variation in MSI or MSS CRC
for CD8+ T cell features. MSI CRC patients bifurcated
into more homogeneous clusters with relatively consistent
CD8+ T cell dynamics, whereas MSS CRC patients
exhibited heterogeneous clusters with contradictory
CD8+ T cell dynamics.

CD8+ T single cell-derived tumor-reactive signaling
modules can stratify MSI and MSS CRC patients’ bulk
tumor transcriptomes
We wondered if the tumor-reactive signaling modules

could also stratify CRC patients into a prognostic or
predictive immune subtype classification (ISC) system.

Such a prognostic or predictive biomarker framework on
the single cell level is currently almost irrelevant, as
datasets integrating clinical patient survival or ICB-
responses are still mainly comprised of bulk tumor tran-
scriptomes. Interestingly, a network topology-based ana-
lysis for network expansion (WEB-based Gene SeT
AnaLysis Toolkit)41 showed that the genes constituting
the tumor-reactive signaling modules on single cell CD8+

T cell level, also pre-dominantly connected to lympho-
cytes or T cell-relevant pathways in TCGA CRC dataset’s
bulk tumor transcriptomes (Supplementary Fig. S6a).
Hence, we investigated if the ten tumor-reactive sig-

naling modules can stratify 374 TCGA MSIHIGH or MSS
(MSI-L and MSS) CRC patients, using agglomerative
clustering in the MSI or MSS manifold space defined by
these modules (Fig. 6a, b). MSIHIGH CRC patients (ISC1)
bifurcated into two clusters (ISC1a and ISC1b) (Fig. 6a);
wherein ISC1a highlighted specific enrichment of the
stem-like progenitor module while ISC1b showed a
mixed inflammatory status led by tumor-reactive
exhaustion (Fig. 6c). Contrastingly, the MSS CRC
patients were distributed over five clusters (ISC2a/2b/2c
or ISC3a/3b) (Fig. 6b). Herein, ISC2a, 2b and 2c showed
variable enrichment for all modules, thereby signifying a
mixed inflammatory status. We therefore labeled ISC2 as
mixed inflamed (Fig. 6d). ISC2a/2b were distinguished
from ISC2c by the former’s stronger enrichment for the
long-lived immunosurveillance module (Fig. 6d). Con-
trastingly, ISC3a/3b showed a more ‘immune-silent’
phenotype owing to either extremely low (ISC3a) or
altogether negligible presence (ISC3b) of all modules
(Fig. 6d). Moreover, the ISC framework represented a
unique classification of CRC patients, rather than repe-
tition of other existing systems, because the ISC clusters
did not consistently align with any of the widely used
epithelial-driven CMS subgroups (Supplementary Fig.
S6b). Thus, the CD8+ T cells’ transcriptome-derived
tumor-reactive signaling modules proficiently stratified
CRC patients’ bulk tumor transcriptomes within a new
ISC framework.

(see figure on previous page)
Fig. 5 Stratification of MSI and MSS CRC patients based on scRNA-seq signaling modules. a, b Visual representation of single cell patient
subgroup detection. CD8+ T cell population counts per patient are shown as relative proportions (stacked bar plots). For each patient, the ratio of
bystander activation signature expression to TCR activation expression is represented as a dot at the basis of an arrow (Supplementary Table S3).
Arrows indicated the difference in median correlation between TCR activation and bystander activation when compared to the corresponding
resting state. Dot plots on the right-hand side indicated the number of cells positive for expression of important immune-inhibitory receptor (IR)
genes when compared to a threshold value. Vertical lines “|” in gene names indicate double positive cells for the genes indicated. The size of the dots
represents the proportion of this population compared to the total CD8+ T cell pool. Heatmaps represent the expression of the tumor-reactive
signaling modules. a MSI CRC patients were stratified into roughly two tumor-associated clusters (indicated on the right-hand side with a number,
containing six patients for group 1 and 16 for group 2) using hierarchical clustering on the tumor-reactive signaling module scores (central heatmap).
b MSS CRC patients were roughly stratified into three tumor-associated clusters using hierarchical clustering on the expression of the tumor-reactive
signaling modules (heatmap), as indicated on the right-hand side with a number; 1: 14 patients, 2: 10 patients, 3: 14 patients. Data for three patients
was not available due to thresholding.
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ISC clusters show distinct tumor immune landscape across
MSI vs MSS CRC
To benchmark this classification system on pan-tumor

level, we examined the clinico-immunological features of
ISC clusters. We performed normalized scoring across
TCGA ISC clusters (Supplementary Table S6) for tran-
scriptomic vs pathological image-based immune features:
immune cell quantification from immune-deconvolution
(quanTIseq)91, antigenicity parameters (Indel/SNV
neoantigens, TCR/BCR Richness; TCGA data)73, and
immune-landscape signatures (TCGA data) vs hematox-
ylin and eosin (H&E) tumor image-derived deep learning
metrics describing behavior of tumor-infiltrating lym-
phocytes (TILs; TCGA data)92. In MSIHIGH CRC patients,
ISC1a is associated with almost all immunological fea-
tures, including TCR Richness (Fig. 6e). ISC1b showed an
increased multi-factorial wound healing pathway31,73

together with mixed myeloid-lymphoid features and InDel
neoantigens (Fig. 6e). In MSS CRC patients, the ISC2
showed higher immunological features, whereas ISC3
(similar to ISC1b in MSIHIGH CRC) mainly showed
wound healing and some lymphocytic parameters (Fig.
6f). But, ISC2 had high heterogeneity amongst its three
clusters such that ISC2a had the highest signal for the
above features followed by ISC2b and ISC2c (Fig. 6f).
ISC3a and ISC3b were remarkably similar in their
immune-silent phenotype (Fig. 6f).
Interestingly, in MSIHIGH CRC, the ratio for TCR-to-

bystander activation signature was significantly higher in
ISC1a than ISC1b (Fig. 6g); while in MSS CRC, this ratio
was highest in ISC2a and from thereon kept decreasing
like a gradient until it reached the lowest points in ISC3a/
3b (Fig. 6h). On single cell level, we frequently observed
quantitative vs qualitative disconnect between CD8+ T
cell features, especially for TCR-relevant signaling in MSS
CRC. Hence, we did a qualitative analysis of TCR diversity
(TCR Richness metric) which was correlated to various
published immunogenicity-related genetic signatures of
neoantigen-reactive CD4+ T cells (NeoTCR4) or CD8+

T cells (NeoTCR8)78, TCR or bystander activation sig-
natures65 and a T cell-inflamed gene expression profile
signature (GEP)93 in bulk TCGA transcriptomes. In
MSIHIGH CRC, ISC1a showed more correlation than
ISC1b between these signatures and TCR Richness
(Supplementary Fig. S6c). However, for MSS CRC, ISC2c
showed the highest correlation between the above sig-
natures and TCR Richness (Supplementary Fig. S6c).
Above data exposed the high heterogeneity and quali-

tative vs quantitative disconnections in TCR-relevant
features of MSS CRC. Based on our single cell data, we
wondered if this indicated a more bystander or tumor-
unspecific origin for ISCs in MSS CRC, i.e., driven by
tumoral (gut) microbiome and/or colon tissue-specific
‘self’ features94. For tumoral microbiome analyses, we
used the viral or bacterial call-outs predicted from non-
human reads in TCGA CRC data via KRAKEN95. How-
ever, these tumoral virome and bacteriome features did
not reliably predict the ISCs (Supplementary Fig. S7a, b).
This indicated that the ISCs were probably not driven by
tumoral microbiome. Instead, we found that these tumor
microbiome features strongly discriminated between MSI
and MSS CRC (Supplementary Fig. S7c). Within the top
ranked features herein, we found several bacterial genera
that are suggested to associate with CRC pathogenesis,
e.g., Fusobacterium96, Paeniclostridium97, Bartonella98

and viruses such as alpha-papillomavirus99 (Supplemen-
tary Fig. S7d).
Finally, to investigate the role of colon tissue-specific

‘self’ features, we performed ISC prediction on a joint
batch-corrected TCGA-GTEx (Genotype-Tissue Expres-
sion) dataset comprising of GTEx-derived normal or non-
diseased colon tissue’s transcriptome and TCGA’s CRC
tumor transcriptomes for comparison100 (Fig. 6i; Sup-
plementary Fig. S7e, f). Remarkably, most of the normal
tissue was predicted to be ISC2a or ISC2b, while all other
types were more evenly recovered in the tumor tissue
(Fig. 6i). Accordingly, the overall classification probability
of a normal colon tissue indicated an overwhelming

(see figure on previous page)
Fig. 6 Stratification of MSI and MSS CRC patients’ bulk tumor transcriptomes. a, b Density maps for 57 MSI (a) and 317 MSS (b) primary
colorectal tumor samples in TCGA. Patients were aggregated in clusters using agglomerative clustering on patients in the manifold space into two
and three groups for MSI and MSS, respectively. The manifold space was defined by patient scores across each of the individual single cell-derived
tumor-reactive signaling modules. The resulting two MSI and MSS bulk RNA-seq clusters were then referred to as ISC (immune subtype classification)
clusters. c, d L1-normalised expression per patient of metagenes representing the tumor-reactive signaling modules (y axis) for each ISC cluster (x
axis) in the TCGA MSI (c) and MSS (d) patient cohorts. e, f Z-score normalized scores of immune parameters or gene signature expression across the
ISC clusters (x axis) in TCGA. Cell populations were inferred using the quanTIseq deconvolution. Other antigenicity parameters (Indel/SNV
neoantigens, TCR/BCR Richness), immune-landscape signatures and H&E tumor image-based deep learning parameters for tumor-infiltrating
lymphocytes (TILs) (y axis) are also represented. g, h Ratio of TCR activation to bystander activation signature expression in the 374 primary CRC
samples in TCGA across ISC clusters for MSI (g) and MSS (h). i Barplots indicating number of normal samples per ISC category (363 normal samples in
total) as called by the ISC classifier (exact numbers listed above bar). ISC1a was not called as the most likely label in any of the normal samples.
j, k Kaplan–Meier curves indicating progression-free interval in TCGA for MSI (ISC1a: 24 patients, ISC1b: 33 patients) (j) and MSS (Inflammatory: 187
patients, Immune silent: 130 patients) (k) respectively. l, m Kaplan–Meier curves illustrating progression-free survival in the independent SIDRA-LUMC
cohort for MSI (ISC1a: 11 patients, ISC1b: 46 patients) (l) and MSS (Inflammatory: 131, Immune silent: 93) (m).
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tendency for normal samples to be scored as ISC2a or 2b
(Fig. 6i). This suggested that within MSS CRC, the most
inflammatory clusters (ISC2a, ISC2b) may not be entirely
tumor specific. Thus, our results suggest that ‘self-like’
bystander signals could be highly prevalent in highly
inflammatory ISC classes of MSS CRC.

ISC clusters show prognostic impact in MSI or MSS CRC
patients
Next, we pursued prognostic analyses for these ISC

clusters in the TCGA CRC cohort. In MSIHIGH CRC,
ISC1a showed a non-significant trend toward higher
progression-free survival (PFS) than ISC1b (Fig. 6j). In
MSS CRC, the ISC2 cluster showed significantly pro-
longed PFS compared to ISC3 (Fig. 6k). To validate our
findings in an independent CRC patient cohort, we tested
the prognostic impact of ISC in the recently published
SIDRA-LUMC CRC cohort, containing 348 patients (57
MSI and 224 MSS CRC)101. Herein, we recovered either
better or similar trends for PFS as in TCGA, i.e., ISC1a
MSI CRC patients survived significantly better than ISC1b
patients (Fig. 6l). Similarly, ISC2 MSS CRC patients also
survived significantly longer than ISC3 MSS CRC patients
(Fig. 6m).
We further compared the prognostic impact of ISC and

CMS systems with a multi-variate Cox Proportional
Hazard regression model in both TCGA (Supplementary
Fig. S8a) and SIDRA-LUMC (Supplementary Fig. S8b).
Here, depending on the availability, we accounted for co-
variates like age, gender/sex, and tumor purity. For MSI
CRC, ISC1a trended toward positive prognostic impact
(primarily in SIDRA-LUMC), however, this was insignif-
icant (P= 0.09). For CMS, no clear pattern was visible. In
MSS CRC, the differences were noticeably different. ISC2
is associated with significantly better patient prognosis in
TCGA (HR= 0.56, P= 0.02), with a similar positive trend
in SIDRA-LUMC (HR= 0.63, P= 0.05). For CMS, CMS2
is associated with significantly better patient prognosis in
TCGA (P= 0.01), with a similar positive trend in SIDRA-
LUMC cohort (P= 0.08). However, CMS3 or CMS4 did
not significantly predict PFS trends although the latter
mostly linked with worse PFS. These trends for prognostic
impact of CMS are in-line with published literature102 but
do not necessarily align with CRC immunogenicity, i.e.,
while CMS2/4 are supposed to be poorly immunogenic
with higher affinity for innate immune responses or
general inflammation yet CMS3 is supposed to be highly
immunogenic with better adaptive immune responses102.
Yet, CMS3 does not show clear prognostic impact
whereas CMS2/4 show opposite prognostic trends. On
the contrary, the ISC2 clearly captures CRC patients with
high T cell infiltrates and high inflammation, and these
survive better than immune-silent ISC3. Thus, the ISC
framework shows promising prognostic value in CRC

patients and aligns the CRC T cell infiltration patterns
better with prognosis than the CMS framework.

ISC scoring predicts immunotherapy responses in CRC
patients on bulk tumor level
We evaluated if the ISC clusters can show predictive

impact for immunotherapy responsiveness. Based on
these TCGA ISC subtypes, we built a Random Forest
classification model to predict the ISC subtype labels
from bulk transcriptome profiles of MSI or MSS CRC
patients. We assessed this classification approach in
clinical trials, treated with anti-PD-1 and/or anti-CTLA4
ICBs. In the publicly accessible record, there were only 2
clinical trials available with ICB-treatments, tumor tran-
scriptome, and clinical objective response-rates (one each
for MSI or MSS CRC)17,103. In case of MSS CRC, we
pursued a conventional responder (complete response
(CR) + partial response (PR)) vs non-responder (stable
disease (SD) + progressive disease (PD) together) com-
parison. In MSI CRC we compared durable responder
(CR) vs the rest (PR, SD, PD), because there was a ten-
dency for PR to become PD over time, which was not the
case for CR17.
In MSI CRC patients treated with anti-PD-1 ICB

(KEYNOTE-177 clinical trial), durable responders had
significantly higher probability to be called as ISC1a than
PR/non-responders (Fig. 7a), whereas for the latter
patients the pattern was completely opposite (Fig. 7b).
This confirmed that the ISC1a is associated with durable
response or CR to anti-PD1 ICB in MSI CRC patients. Of
note, in this cohort, multiple regions were tran-
scriptomically profiled per tumor/patient17. Although we
considered a pooled ISC score per patient, there was some
degree of heterogeneity in ISC scores depending on dif-
ferent intra-tumoral regions for the same patient. This
was particularly the case for ISC1b (Supplementary Fig.
S8c). For samples from MSS CRC patients treated with
anti-PD-1 + anti-CTLA4 ICBs together with radiotherapy
(NCT03104439)103, the only partially responding CRC
patient (PR) with tumor transcriptomic data had higher
ISC2 score than ISC3, whereas in non-responders (SD+
PD) there was no clear trend (Supplementary Fig. S8d).
Due to lack of sufficient power, statistical analyses of this
MSS CRC cohort were not feasible. This confirmed that
our novel CRC ISC framework can be applied as a scoring
system to delineate immunotherapy responders, at least in
MSI CRC. For MSS CRC, better powered cohorts are
urgently needed.

ISC signaling modules in CD8+ T cells predict
immunotherapy responses in MSI CRC
The ISCs were driven by CD8+ T cell-derived signaling

module signatures. To this end, we wondered whether
like the ISC scoring, also these signaling modules had the
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ability to predict immunotherapy responses in CRC
patients thereby connecting the ISC concept across both
bulk tumor and single cell resolutions. To address this, we
accessed single cell profiles of tumoral CD8+ T cells from
a recently published scRNAseq dataset of 19 MSI CRC
patients (GSE205506)104 (Fig. 7c), that were either
untreated, treated with anti-PD-1 ICB or a combination of
anti-PD-1 ICB and celecoxib (NCT03926338) (Fig. 7d).
Herein, we compared durable responder (CR) vs the rest
(non-CR) (Fig. 7e).
Compared to CD8+ T cells from untreated MSI CRC,

only the long-term immunosurveillance signaling module
showed significant increase in CD8+ T cells from anti-
PD-1-treated MSI CRC (Fig. 7d). Other modules either
remained unchanged or showed mild reductions (Fig. 7d).
The most interesting patterns were visible when com-
paring immunotherapy responder vs non-responder MSI
CRC patients. Here, stem-like progenitor and inflamed
follicular-like signaling modules were significantly
increased in CD8+ T cells from immunotherapy respon-
der MSI CRC patients (Fig. 7e). Curiously, increased
tumor-reactive exhaustion in CD8+ T cells was sig-
nificantly associated with immunotherapy non-responsive
MSI CRC patients, whereas others showed mild differ-
ences (Fig. 7e). In conclusion, the stem-like progenitor
and inflamed follicular-like signaling modules in CD8+

T cells predict durable immunotherapy responses in MSI
CRC patients.

Discussion
Our study shows that CRC CD8+ T cells are organized

into different layers of subpopulation complexities
depending on phenotypic features, IFN-γ signaling, and
tumor-reactive signaling modules. The integration of these
layers into homogeneous tumor-reactive signaling (in MSI
CRC) vs heterogenous inflammatory/tolerogenic signaling
(in MSS CRC) is principally driven by TCR diversity and
their antigenic/epitope specificities together with complex
environmental cues like gut microbiome or colon tissue-
specific ‘self-like’ features. Such environmental cues seemed

to influence CD8+ T cell subpopulation dynamics toward
bystander-like activation in low-antigenic milieu like MSS
CRC. On the contrary, an antigenic milieu in MSI CRC
facilitated dominance of TCR-activation thereby pre-
priming the tumor for immunotherapy responsiveness.
In general, while our results did quantitatively align with

previously reported differences between MSI and MSS
CRC (e.g. quantities of IFNG+ or CXC13+CD8+ T cells1,
subtle exhaustion phenotypes18), these were too subtle to
account for the very big clinico-immunological differ-
ences between these subtypes. Instead, we could better
highlight these differences on the level of signaling con-
texts and predicted TCR specificities. For instance, MSI
CRC enriched more IFNG+CD8+ T cells than MSS CRC,
however, the smaller amounts of IFNG+CD8+ T cells in
MSS CRC managed to match the overall IFNG (and
associated signaling) output in MSI CRC. This brought
into focus the origins and contexts of IFN-γ signaling.
TCR repertoire analyses showed that, in fact, MSS CRC
IFNG+CD8+ T cells had low TCR diversity and possessed
largely viral TCRs. This was accompanied by hetero-
geneous inflammatory or tolerogenic features. Contrast-
ingly, the MSI CRC IFNG+CD8+ T cells showed high
TCR diversity and higher exclusive TCRs which asso-
ciated with a higher neoantigen-reactive signature score.
Accordingly, this was accompanied by higher tumor-
reactive exhaustion and stem-like progenitor features as
well as a TCR-activation signature. This emphasized that
identical phenotypic orientations of CD8+ T cells may
associate with completely different origins and context
depending on the antigenic make-up of the tumors. This
point was specifically captured on the level of TOX-
HIGHCD8+ T memory-exhausted cells, which showed dif-
ferent predicted TCR-specificities depending on CRC
subtype. This highlighted how CD8+ T cells with TCRs
predicted to bind non-tumor antigens in MSS CRC may
resemble phenotypes of more tumor-relevant CD8+

T cells in MSI CRC, thus creating an ambiguous
impression of ‘pseudo-hot’ MSS (MSI-like MSS)54. Hence,
multi-dimensional deep dissection of CD8+ T cell

(see figure on previous page)
Fig. 7 Validation in CRC immuno-oncology clinical trials. a, b Analysis of the Keynote-177 trial in which MSI CRC patients were treated with anti-
PD-1 ICB, using a random forest classifier. Classification probabilities were assigned to the Keynote-177 samples by MSI-specific prediction model that
used the TCGA bulk RNA-seq labels and corresponding ISC labels as training input. Results are shown for the 40 samples associated with the five
durable responder patients (a) and the 33 samples associated with the 11 non-durable responders (b). Statistical significance was assessed with
Welch’s t-test (significance: P < 0.05). c–e Analysis of a longitudinal single cell dataset with 155,397 cells from 19 MSI CRC patients, profiled pre vs post
treatment with anti-PD-1 ICB (10 patients) or anti-PD-1+celecoxib (9 patients). Of these 155,397 cells, 3260 could be confidently identified as CD8+

T cells, which we subsequently analyzed. c UMAP of the individual patients. d Analysis of the treatment effects, with UMAP representation and
boxplots illustrating metagene expression of the tumor-reactive modules per treatment regimen. e Comparison of response categories (pathological
complete response or pCR vs non-pCR), with UMAP representation and boxplots illustrating metagene expression of the tumor-reactive modules per
patient response. Here, 15 patients showed pCR and 4 patients showed non-pCR. f A schematic overview of our study’s approach from single cell
data to tumor-reactive signaling modules and how this resulted in the novel Immune Subtype Classification (ISC) system for colorectal cancer (see
discussion for details).
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transcriptomes, together with TCR repertoire, is needed
to differentiate ‘pseudo-hot’ MSS from tumor-reactive
‘hot’ MSI tumors.
Although the TCR specificities were computationally

predicted, the CD8+ T cell transcriptomes did associate
with them in a manner consistent with published litera-
ture. For instance, MSI CRC CD8+ T cells with exclusive
TCRs showed chronic exhaustion, and pro-immunogenic
features. Such features associate with neoantigen-specific
CD8+ T cells in high mutational burden tumors48. Simi-
larly, tumors with low mutational burden have poor
neoantigen-reactive CD8+ T cells. Accordingly, in MSS
CRC, CD8+ T cells with exclusive TCRs showed less
tumor-reactive exhaustion—an indication of heightened
CD8+ T cell inactivation or absence of neoantigen-
reactivity. Finally, terminal differentiation or long-term
immunosurveillance characteristics have been connected
to tumor irrelevant antigens34,63,64,77, a point sub-
stantiated in our data for TCRs predicted to bind self or
viral-antigens. These transcriptomic results were vali-
dated on surface proteomic level with MSI CRC CD8+

T cells showing more effector memory phenotype than
MSS CRC CD8+ T cells.
Apart from viral antigens, the gut microbiome can also

be a dominant source of bystander activation34,64. Only in
MSS CRC, the IL17A+ MAITs were particularly active
and enriched for TCRs with predicted specificity against
microbial riboflavin intermediates. A large diversity of
microbes, including mycobacterium species can produce
such intermediates60,105. The latter is interesting because,
only in MSS CRC, we also observed mycobacterium
infection-pathways as well as TCRs predicted to bind
mycobacterium-derived epitopes in the IFNG+CD8+ T
cell subset. This aligns with instances of mycobacterium
infections in CRC patients106. It is likely that there are
more bacterial epitope-specific TCRs in CRC, but these
could not be captured due to their poor annotations in
public databases. Finally, it still needs to be studied
whether these microbial specificities are unique for MSS
CRC or simply over-represented due to lower enrichment
of tumor reactive CD8+ T cells.
Interestingly, we observed that the above tumor-reactive

signaling modules could stratify MSI and MSS CRC
TCGA patients, despite obvious imbalance in cellular
resolution. Here, MSI CRC bifurcated into two clusters
(ISC1a/1b) with highly contrasting immune landscapes
and cohort-dependent prognostic differences. Contrast-
ingly, MSS CRC bifurcated into two major clusters (ISC2/
3; further composed of five subclusters i.e., ISC2a/2b/2c vs
ISC3a/3b), which showed highly heterogeneous immune
landscapes but with significant cohort-independent
prognostic differences. We have summarized the key
characteristics of the ISC system in Fig. 7f. More impor-
tantly, the ISC framework showed early potential as a

machine learning-based score to differentiate ICB-
immunotherapy responders from non-responders
(at least in MSI CRC, with MSS CRC requiring more
high-powered validation). This was also applicable at
single cell resolution for signaling modules behind ISCs.
Although promising, these results still require compre-
hensive validation in better powered cohorts applying
immunotherapy in CRC patients. Indeed, a lack of suffi-
ciently powered CRC patient cohort with immunotherapy
interventions is a major limitation of our study. Beyond
that more ex vivo functional T cell assays linked to TCR
specificities of CRC patients need to be executed to vali-
date our TCR repertoire conclusions.
Finally, our findings provide a preliminary explanation

for why MSS CRC responds less favorably to PD-1
blockade but does respond to PD-1 and CTLA4 co-
blockade. It is established that the efficacy of PD-1
blockade relies on pre-existing tumor-specific (neoanti-
gen-reactive) TCRs107. However, this may not be the case
for CTLA4 blockade, which induces diversification of
TCR repertoire that is indiscriminate for its specificities.
Hence, patients responding to CTLA4 blockade pre-
ferentially maintain high frequency of viral antigen-
specific TCR clonotypes107,108. Such CD8+ T cells with
tumor irrelevant specificities can induce antitumor
immunity via at least two mechanisms: (I) they may
respond to ICB-induced inflammation and elicit off-target
antitumor activity via cytokines or cytolytic factors109 or
(II) by possessing TCRs that cross-react with both viral/
microbial antigens and tumor-relevant antigens110,111,
thereby allowing initiation of collateral antigen-specific
immunity. Interestingly, the latter type of cells show
higher EOMES and KLRG1 expression110, which were
indeed associated with long-term immunosurveillance in
our MSS CRC patients. Such possibilities require con-
firmation in a prospective clinical trial.
Our study provides a rich dataset of CD8+ T cell-states,

TCR repertoire, transcriptional programs, and their
immunotherapy relevance in a relatively large cohort of
CRC patients. We provide a novel approach that orga-
nizes a heterogeneous set of transcriptional states and
TCR specificities into ordered structures of mechan-
istically relevant subpopulations. Understanding the
molecular mechanisms underlying these subpopulations
and their association to immunotherapy response will be
critical for advancing anti-CRC therapies112. Finally, our
ISC classification system can guide the design of patient
pre-selection strategies for applying innovative immu-
notherapy, especially for MSS CRC.

Materials and methods
CRC patient cohorts
For this study we have incorporated previously unpub-

lished CRC patient samples (23 patients from SMC5) to
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complement the previously published datasets of CRC
patients (40 patients in CRC16, KUL3, KUL5 and SMC) to
be integrated in downstream analyses. We included data
from all datasets12 previously published and approved by
the local institutional review boards of Singhealth
(2018–2795 and 2018–2376) for CRC-SG1 and CRC-SG2,
Samsung Medical Center (approval no. SMC2017-07-131)
for the SMC and Commissie Medische Ethiek UZ KU
Leuven/Onderzoek (approval no. S50887-ML4707) for
the KUL3 and KUL5 datasets, respectively. Of note, all
research involving human participants, human material,
and human data, was performed in accordance with the
Declaration of Helsinki. Also, for all relevant human
participants, informed consent to participate in the study
was obtained in accordance with relevant institutional
guidelines.
Survival information and other metadata features were

updated for previous 21 SMC and SMC5 cohort patients
according to the approved Institutional Review Board of
Samsung Medical Center protocols (no. SMC 2017-07-
131). Further details on the patient selection criteria for
the patients in the other CRC16, SMC, KUL3 and KUL5
cohorts were published elsewhere12,18. All mentioned
datasets/studies were conducted in accordance with
ethical guidelines and all patients provided written,
informed consent. A final list of included patients in this
study can be found in Supplementary Table S1.
After resection, samples from both tumor and non-

malignant colon tissues were collected and immediately
transferred for tissue preparation. Tissues were subjected
to single cell isolation, AllPrep DNA/RNA Mini Kit
(QIAGEN) for DNA analysis and transcriptome
sequencing.

ScRNA-seq sample preparation
For the novel SMC5 samples, tissue dissociation was

performed using a Tumor Dissociation Kit (Miltenyi
Biotec) according to the manufacturer’s instructions.
Briefly, tissues were cut into 2–4mm-long pieces and
transferred to C tubes containing an enzyme mix
(enzymes H, R and A in Roswell Park Memorial Institute
(RPMI) 1640 medium). Gentle MACS programs
(h_tumor_01, 02 and 03) were run in a MACSmix Tube
Rotator (Miltenyi) with two 30-min incubation periods at
37 °C between each run. The digested samples were fil-
tered through a 70-µm strainer, purified using a Ficoll
Paque PLUS (GE Healthcare) gradient and cryopreserved
in CELLBANKER 1 (Zenoaq Pharma) before scRNA-seq.
The cryopreserved single cell dissociates were rapidly
thawed, washed and loaded into the Chromium system
(10x Genomics) targeting 5000 cells. Following the man-
ufacturer’s instructions, barcoded sequencing libraries
were generated using Chromium Next GEM Single Cell 5′
v1.1 Reagent Kits and sequenced on a NovaSeq 6000

platform. Results were mapped to the GRCh38 human
reference genome using CellRanger (10x Genomics, v3).
An additional enrichment of T cells was performed for

two patients (SC040 and SC044) of the KUL5 dataset
using and the REAlease® CD4/CD8 (TIL) MicroBead Kit
(Miltenyi Biotec), prior to scRNA-seq similar to Joanito
et al.12.

CD8+ T cell single cell analysis
Single cell expression raw count data from CD8+ T cells

from the five different single cell datasets (CRC16, KUL3,
KUL5, SMC, SMC5) were stored in annotated data
objects113 containing the raw count expression and the
patient metadata table. These were further processed with
Scanpy114 1.8.1. Gene expression data were filtered to
remove genes with zero count expression in all cells and
non-protein coding genes. Mitochondrial and ribosomal
genes were removed. Only cells with more than 200 genes
expressed and more than 1000 reads per cell were
retained. Single cell data for tumor MSI and MSS CRC
cells were normalized using the “normalize_total” func-
tion from Scanpy114 with default parameters, except for
“exclude_highly_variable=True” and log2-transformed.
After reduction of technical variation with per-cell nor-
malization, expression data for each scRNAseq dataset
was batch corrected using pycombat115 to regress out
technical variation attributed to the source dataset.

Comparison of batch correction methods
The previous batch-corrected dataset with Combat115 as

described previously was used as reference. Subsequently,
datasets were batch-corrected independently with repre-
sentative examples of the various batch correction
methods, such as ReCombat116, BBKNN117, Harmony118,
Scanorama119, MNN_correct120, and Scanpy’s regress_-
out114. Gene expression for the genes defining the CD8+

T cell populations between the original Combat batch-
corrected and the alternative batch-correction methods
was compared as Spearman correlations. We opted to
show the correlation in expression for 58 genes that are
used for CD8+ T cell subtyping and immuno-regulation:
AHR, BATF, BCL6, BTLA, CCL3, CCL4, CCL5, CCR4,
CCR5, CCR6, CCR7, CD27, CD28, CD4, CD44, PTPRC,
CD8A, CD8B, CTLA4, CXCR3, CXCR4, CXCR5, CXCR6,
ENTPD1, EOMES, FOXP3, GATA3, GZMA, GZMB,
GZMK, ICOS, IFNG, IKZF2, IL10, IL21R, IL2RA, IL2RB,
IL7R, ITGAE, KLF2, KLRB1, KLRG1, LAG3, MAF,
PDCD1, PRF1, REL, SELL, STAT1, STAT3, STAT4,
STAT6, TBX21, TIGIT, TNF, TNFRSF18, TNFRSF9, TOX.

Comparison of joint vs independent batch correction
Datasets were batch corrected with Combat either joint

(MSI and MSS) or separately. The agreement in full
transcriptomics profiles differing only by computational
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correction was shown as a Spearman correlation. Spear-
man correlations were calculated with SciPy121 1.11.1.

Comprehensive CD8+ T cell map and subpopulation
phenotypes
Following CD8+ T cell clustering for the CD8+ T cell

populations for MSI and MSS CRC integrated datasets,
dimensionality reduction (UMAP) was performed to
obtain CD8+ T cell subpopulation clusters after Leiden
clustering, 12 for MSI and 13 for MSS. Annotations of the
conventional CD8+ T cells were performed using an
expression-based scaling of gene expression signal within
each population against previous knowledge of estab-
lished markers of naive/progenitor, memory, exhaustion
or effector/activation profiles (Supplementary Table S2).
This was achieved at the level of gene expression visua-
lization using Scanpy’s “dotplot” function with default
parameters except for “standard_scale” = “var”. Similarly,
for unconventional or invariant subpopulations we uti-
lized CD8A/B expression instead as well as non-exclusive
markers such as LTA and previously reported signatures
such as Mucosal associated invariant T cells annotation
that was further validated using MAIT specific signature
expression quantification vs conventional CD8+ T cells29.

IFNG+CD8+ T cells IFNG expression
Selection of IFNG+CD8+ T cells per patient was per-

formed using a binarization approach of low expression
values to high expression values using the average lowest
expression between the two peaks (threshold 0.2) based on a
density distribution of single cell expression of IFNG for each
MSI, MSS, normal tissue adjacent to MSI tumor (NMSI) and
normal tissue adjacent to MSS tumor (NMSS) dataset.

Tumor-reactive signaling and NeoTCR signature
quantifications
Identification of tumor-reactive signaling modules
Tumor-reactive signaling modules were identified based

on co-expression correlation using distance matrices
(Euclidean) and grouped by hierarchical distances of
IFNG+CD8+ T cells, using the transcriptome.

Expression quantification of tumor-reactive signaling
modules
Like the determination of IFNG+ cell state with

thresholding, we calculated the activation map of the
tumor-reactive signaling modules for each subpopulation
annotation of IFNG+CD8+ T cell as average signal of
binarized expression for MSI and MSS IFNG+CD8+

T cells respectively.

NeoTCR signature expression
The evaluation of signature expression for the

NeoTCR8 signature78 was also computed as the mean of

binarized expression per cell of NeoTCR signature genes
(Supplementary Table S3) for IFNG+CD8+ T cells.

Tumor-reactive signaling module overlap
For each of the 39 genes defining the tumor-reactive

signaling modules, presence, or absence of the gene in the
signature was marked with a black square (presence) or
white (absence). Overlaps were visualized with seaborn122

0.11.1 and matplotlib123 3.5.1 and clustered using the
Jaccard similarity index.

Overrepresentation analysis of tumor-reactive signatures
The 39 genes were submitted to Webgestalt41 on 28/05/

2023 and subjected to the standard overrepresentation
analysis in the Reactome pathway database, for which we
selected the protein-coding genome as reference back-
ground. All other default settings were maintained.

TCR activation and bystander activation signaling
TCR activation signaling and bystander activation sig-

naling for IFNG+CD8+ T cells were calculated on normal
MSI, tumor MSI, normal MSS and tumor MSS cells
independently. Signature quantification was performed on
CD4-derived signatures from a study65 describing TCR-
associated activation and bystander activation based on
differential expression (resting vs activated) that was
published on the MSIGDB124 v.7.2 (GMT’s c7 all,
GSE13738). The TCR activation signal and the bystander
activation signal were then calculated as the Spearman
correlation values to the average expression of the pub-
lished expression data from GSE13738 corresponding to
experimental TCR and Bystander activation. The final
signal represents the Spearman correlation score for each
cell and for each TCR activation and bystander activation
gene expression signature. The difference in these corre-
lation scores was used as a measure of directionality
between TCR activation and bystander activation score.
Finally, after defining TCR and Bystander-activation high
and low, four quadrants were defined crossing high and
low areas to perform a Welch test statistical cell quanti-
fication difference between MSI and MSS tumor
quadrants.

DE of TCR activationHI cells
Differential expression of single cell genes was then

performed between quadrants to identify gene expression
changes to the TCRLOWBystanderLOW quadrant popula-
tion using Scanpy’s “rank_genes_groups” function. Top
DE genes filtered by P value < 0.05 in the TCR activation
comparison as well as log2FC > 0 were further selected for
a Reactome pathway analysis using Cytoscape 3.8.2 with
the ClueGo24 2.5.8 plug-in. Reactome pathways were
grouped by pathway gene overlaps and gene networks
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extended to show all genes included in the analysis as well
as important genes for each pathway.

Single-cell VDJ sequencing
For both KUL5 and SMC5, V(D)J enriched libraries

were sequenced on an Illumina HiSeq4000 and TCR
alignment and annotation was achieved with CellRanger
VDJ (10x Genomics).

ScTCR sequencing analysis
Raw TCR sequencing data from 12 CRC MSS and 16

CRC MSI patients were loaded into Scirpy70 0.10.1 for a
TCR analysis. Scirpy is an extension of Scanpy for ana-
lyzing single cell immune-cell receptor sequencing data
(Pandas 1.3.3, Scanpy 1.8.1, Anndata 0.7.6, SciPy 1.5.1,
Seaborn 0.10.1, Matplotlib 3.5.1, Statannot 0.2.3).
TCR relevant information, such as TCR type, CDR3

nucleotide sequences, CDR3 amino acid sequences, CDR3
read counts, VDJ genes and chain productivity were
extracted and transformed into AirrCell objects, which
represent the community standard AIRR rearrangement
schema. Transformation into this format was performed
based on the Scirpy documentation. AirrCell objects were
subsequently transformed into an annotated data object
with the “scirpy.from_airr_cells” function built into
Scirpy. Sample ID, tissue, MSI status, patient ID, cell
annotation, cell annotation subtype, IFNG status and
bystander status were added as observation data to the
AnnData object.
To search for potential matches with already known

TCR–antigen interactions, the CDR3 sequences were
queried against the epitope databases IEDB71. IEDB epi-
tope data were externally retrieved from the IEDB website
under (https://www.iedb.org/database_export_v3.php),
contained in the file “receptor_full_v3.zip”. Downloaded
IEDB data was turned into AirrCell objects and then to
AnnData objects in the same manner as the CRC TCR.
The AnnData data contain the database’s specific antigen
information; IEDB reports the antigen organism, as well
as info on the specific antigen.
After the IEDB AnnData objects were created, annota-

tion of TCRs was performed with Scirpy’s “scirpy.tl.ir_-
query_annotate” function, using the “alignment”metric, so
certain mismatches were allowed. We used the “most-
frequent” strategy, where the most frequent match is
reported. If a tie occurs, the TCR preference is labeled as
“ambiguous”. If no match was found, the antigen was
labeled as “Unknown”. To make comparisons and visua-
lization easier, matched IEDB antigen organisms were
divided into several major groups: viral, bacterial, self,
exclusive, shared, and unknown. For further steps, the
annotated TCRs were split into two groups: patients with
MSI status and patients with MSS status. All the following
procedures were performed for MSI and MSS individually.

Next, the clonotypes and clonotype clusters were defined.
Clonotypes are a collection of cells that bear the same
adaptive immune receptors and therefore recognize the
same epitopes, while clonotype clusters connect clonotypes
having similar immune receptors. First, “scripy.pp.ir_dist”
was used to calculate the distances between CDR3
nucleotide or amino acid sequences, based on sequence
identity for clonotypes, or similarity for clonotype clusters,
respectively. We calculated similarity between clonotypes,
using pairwise sequence alignment as part of the Biopy-
thon125 library with the distance defined by the
BLOSUM62 substitution matrix. For the similarity calcu-
lation, the options, metric= ”alignment”, sequence= ”aa”
were added and a score cut-off = 15 was set. Then we
defined the clonotypes using “scirpy.tl.define_clonotypes”.
The Scirpy function “scirpy.tl.clonotype_network” is

used to compute the network layout. All cells with a
distance between their CDR3 sequences lower than the
cut-off will be connected to clonotype clusters. Visuali-
zation is achieved with “scirpy.pl.clonotype_network”,
clonotypes are colored by the various observation col-
umns, e.g., “color = Organism” or “color = MSI”. The
alpha diversity of clonotypes within antigen organisms
from IEDB, as well as within the groups (viral, bacterial,
exclusive, shared cancer, self) was computed with the
function “scirpy.tl.alpha_diversity”, using the default
“normalized_shannon_entropy” as metric. Also, the rich-
ness and evenness were calculated within organism and
combined groups, providing scikit-bio’s “chao1” as metric
for richness and “heip_e” for evenness (skbio.diversity.al-
pha). A table matching epitopes and epitope targets is
provided in the supplementary materials (Supplementary
Table S5).

TCR groups DE and GSEA
Differential expression for cells within each antigen

epitope group was performed using Scanpy’s “rank_gen-
es_groups” using logistic regression method with addi-
tional parameters such as penalty = “elasticnet’, l1_ratio
= 0, max_iter = 1000, solver = “saga”, corr_method =
“bonferroni”. Pathway enrichments were calculated with
Gseapy126 1.0.4, using the Reactome terms included in the
MSIGDB v.7.2 release, using the pre-ranked method using
the Scanpy scores as ranking criterion. 2000 iterations
were used for FDR estimation.

Exclusive TCR map to normal adjacent TCRs
Exclusive TCR mapping between normal adjacent tissue

and MSI and MSS CRC TCRs was performed on beta
chains map score using their amino acid aa sequences as
local alignment identity in percentage to the query aa
sequences of tumor cells. For that we first calculated the
maximum alignment score for each tumor sequence using
“pairwise2” from Biopython, using Blosum62 as substitution
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matrix. Default parameters were used, except for op=−4
and ep=−4. The final query TCR sequence score was
calculated as a proportion to the tumor TCR maximum
score for each of the tumor TCR sequences against the
normal adjacent tissue TCR sequences using the same AA
local alignment parameters. Similar or different TCR
sequences were quantified with a percentage-based pairwise
alignment score threshold of 80% identity.

Single-cell MAIT TCR sequencing analysis
Sequences of MAIT TCR alpha and beta chains were

scored using their amino acid sequences as local align-
ment identity (%) to the known aa sequences of
MAIT cells61. To this end, we first calculated the max-
imum alignment score for each known sequence using
“pairwise2” from Biopython with the substitution matrix
Blosum62 and default parameters, except for op = –4 and
ep = –4. The final query TCR sequence score was cal-
culated as a proportion to the known maximum score for
each of the known MAIT TCR sequences against the
query TCR sequence using the same AA local alignment
parameters as the known TCR sequences. Finally, we
multiplied the identity score results for the alpha and beta
chains for each cell and selected only the highest score as
final representation of maximum possible MAIT TCR aa
sequence alignment for each cell.

Multiple factor annotation analysis
The overlap analysis of multiple layers of per cell

annotation as factors was performed using the package
FactoMineR127 in R. The four layers of annotation inte-
grated in the form of a multiple correspondence analysis
including the binarized IFNG expression (see methods),
the CD8+ T cell subpopulations, the TCR predicted epi-
tope groups and the binarized tumor-reactive signaling
modules. The later was performed dividing the score per
cell for each signaling modules between <= 0.5 or > 0.5.

CyTOF analysis
Datasets were downloaded from FlowRepository acces-

sion FR-FCM-Z24H80 and processed with Pytometry 0.1.3
(BioRXiv, https://doi.org/10.1101/2022.10.10.511546).
Values were arcsinh transformed with cofactor 5. Only
live cells were retained and further selected for positivity
of CD3 and CD8. Subsequently, cells expressing CD4,
CD86, CD115 or CD163 were filtered out. For the
remaining cells, UMAPs were calculated using Scanpy
1.9.3, with the neighbors defined by the diffusion maps
from Palantir128 1.2, using random seed 770 and 30
neighbors and calculated with Scanpy’s “sc.pp.neighbors”.
Leiden clustering was performed with resolution 0.03.
Trajectories were inferred with scFates129, using principal
tree inference settings that specified 200 nodes, random
seed 1, ppt_lambda as 200, ppt_sigma as 0.2 and

ppt_nsteps defined as 100. Pseudotime was inferred with
n_map 100 and random seed 770. Node 60 was defined as
the root. Values for several proteomics markers were
overlaid on the trajectory using scFates’ “scf.pl.trajectory”.

Stratification of MSI and MSS CRC patients based on
scRNA-seq signaling modules
The tumor-reactive signaling modules as binarized

genetic signatures for each single cell were used to stratify
the patients depending on their signaling activation by using
a hierarchical clustering of per patient mean values of each
tumor-reactive signaling module on IFNG+CD8+ T cells.
These patient averages for MSI CRC patients were stratified
into two clusters, whereas MSS CRC patients were stratified
into five clusters by using a hierarchical clustering
approach, visualized with Seaborn’s “clustermap” function
with method = “complete” and metric = “Euclidean”.

Stratification of bulk primary tumor transcriptomes for MSI
and MSS CRC patients
CRC immune subclassification
Single IFNG+CD8+ T cells and their derived sub-

population phenotypes were used to define select genes
(e.g., IFNG, LAG3, JAK3) associated with each of these
phenotypes. Due to the prior decision based on differ-
ences in disease type, MSI and MSS were treated sepa-
rately. For each phenotype signature, pairwise distances
between patients were calculated as the Spearman cor-
relation over the vector defined by the expression of the
genes in this signature. Distances between patients were
then averaged over the signatures, to obtain a two-
dimensional space, in which agglomerative clustering was
used to define the number of groups, with n maximally set
as 5 groups. Datasets were processed with Pandas 1.2.4
and SciPy 1.6.3. Clustering was performed with scikit-
learn130 0.24.1. Resulting patient-to-patient distances and
corresponding ISC labels are provided as supplementary
material (Supplementary Table S6) and can be used as
templates to train machine learning classifiers for the ISC
classification system.

Cell deconvolutions and signature quantifications of TCGA
patients
The signal quantification of such signaling modules was

calculated for each ISC cluster previously identified for MSI
and MSS patient samples and normalized across all TCGA
ISC clusters including immune cell quantification (QUAN-
TISEQ immune-deconvolution)131, antigenicity parameters
(Indel/SNV neoantigens, TCR/BCR Richness)73, immune-
landscape signatures73 and H&E tumor image-based deep
learning results92 for tumor-infiltrating lymphocytes (TILs).
Immune deconvolutions for TCGA were obtained from
TIMER 2.0 (http://timer.cistrome.org). H&E-derived obser-
vations92 and processed data from the Immune landscape of
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cancer were downloaded from their corresponding GDC
webpages (https://gdc.cancer.gov/). Results were averaged
using the arithmetic mean and compared with Welch
t-tests (P < 0.05) using SciPy 1.6.2.

TCR activation and bystander activation of TCGA patients
TCR activation signaling to bystander activation sig-

naling ratio for each of the ISC clusters from TCGA MSI
and MSS patient data was calculated as the ratio of the
metagenes (average gene expression in the signature) for
the CD4 TCR activation and bystander activation sig-
natures per patient. These were then statistically com-
pared per ISC category using a Welch two-sample t-test
(P < 0.05) with SciPy 1.6.2.

Machine learning for ISC label prediction on GTex and
Keynote-177
Clinical trial information for MSI (Keynote-177)17 was

obtained from the original authors per request. Gene
expression data from TCGA were obtained from the Toil-
recompute hub on Xena132. Per trial, datasets were L1-
normalized and collated to the L1-normalized TCGAMSI
or MSS dataset depending on the respective situation.
Patients listed as MSI-H in the TCGA classification were
allocated to the MSI subtype. MSI-L and MSS TCGA
labels were added to MSS, as evidence for the former’s
state as MSI is contested. Batch correction was performed
using pyCombat. Models were trained and tested using a
repeated fivefold cross-validation approach (random for-
est wrapper133) to derive top-ranking genes associated
with ISC label prediction. Top ranks were determined
using the averaged feature importance (mean impurity
decrease) in the random forest classification models,
which was essential to prevent overfitting. Using the most
important genes (threshold: score > 0.001), a new model
was trained on the full MSI or MSS TCGA training set
using only these genes and then applied to the clinical
trial dataset. Immune deconvolutions for the clinical trials
were calculated with TIMER 2.0. CMS subtypes were
calculated with CMSCaller134 0.99.2 in R 4.1.1. Statistical
significance was evaluated using the Welch two-sample t-
test implemented in SciPy 1.6.2, with significance
threshold of 0.05. The random forest classification model
was based on the implementation in scikit-learn 0.24.1.
Sankey diagrams linking ISC to CMS labels were created
with Plotly 5.14.1.
For the TCGA to Gtex comparison, samples were

batch-corrected with Combat using only the normal
TCGA samples. This transformation matrix was after-
wards also applied to the TCGA tumor samples for the
UMAP representation. We then applied the TCGA ISC
Random Forest classifier (random_state = 12, n_estima-
tors = 5000, class_weight = balanced) to the TCGA and
Gtex normal samples. Normal sample calls and tumor

samples were present in a single UMAP with UMAP-
learn 0.5.3 using all genes and seed 770. For Keynote-177,
only TCGA MSI-H samples were used and batch-
corrected with the Keynote-177 MSI patient samples.

Survival analysis for TCGA and SIDRA-LUMC
TCGA expression data and survival information were

obtained from Xena. Survival data for the SIDRA-LUMC
cohort101, as well the expression profiles were provided
with the referenced study. For both cohorts, progression-
free survival information was used (TCGA: progression-
free interval, PFI; SIDRA-LUMC: progression-free survi-
val, PFS). Survival statistics were computed with lifelines
0.27.4 using Kaplan–Meyer curves using default settings.
All patient samples were used for survival information
was available. Patients were aggregated in inflammatory
(ISC2) and non-inflammatory/desert-like (ISC3) subtypes.
Statistical significance in survival between these two
groups was tested using the log rank test, with P < 0.05 as
significance threshold. Multivariate analyses (CoxPH)
were also performed for both TCGA (correcting for age,
gender, and tumor purity), as well as SIDRA-LUMC
(correcting for age and gender). All samples for which
these metrics were available were used. CMS and MSI
calls were used as provided by the original authors. The
Cox Proportional Hazards models were created using
lifelines 0.27.4.

Microbiome predictions
Microbiome counts were downloaded from the FTP site

associated with the Poore et al. Nature study95, in which
thousands of viral and bacterial genomes were aligned to a
database with Kraken. In the CRC TCGA patient cohort,
84% of reads were viral, 9% viral and 7% had a fungal
origin. An XGBoost135 machine learning classifier was
trained with scikit-learn 1.2.2 and XGBoost 1.7.6. The
objective function was set as binary:logistic. Hyperpara-
meters were tuned using a grid search for balanced
accuracy, which ended up selecting n_estimaters as 75.
Other settings were kept as default, other than the ran-
dom seed, which was defined as 770. Classifier validity was
tested with 5-fold cross-validation. The calculated metrics
were precision, recall, F1-score, and Matthews correlation
coefficient. ROC curves were plotted using the function
“RocCurveDisplay.from_predictions”. Corresponding
Shapley feature importance values from the final model
were obtained using Shapley values calculated with Shap
0.42.1.

Single-cell MSI analysis for tumor-reactive landscape
components
A single cell dataset104 containing 19 MSI patients

(GSE205506) was downloaded from the Gene Expression
Omnibus and processed with BioTuring 3. Z-scores
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representing normalized gene expression in the CD8+ T
cell compartment were aggregated to create metagenes
(average normalized expression for all genes in set) for the
tumor-reactive signaling modules. Signature expression
scores split per treatment category (untreated, anti-PD-1,
anti-PD-1+celecoxib) or per response group (pCR, non-
pCR) were represented as boxplots using Seaborn 0.12.2
and Matplotlib 3.7.1. UMAPs representing patient, treat-
ment or response distribution were created based on
signaling module expression with UMAP-learn 0.5.3 (seed
= 770).
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