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Spatial transcriptomics delineates molecular
features and cellular plasticity in lung
adenocarcinoma progression
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Bin Dong4, Huajing Teng 5, Dongmei Lin3, Qimin Zhan 1,6,7,8,9,10✉ and Nan Wu2✉

Abstract
Indolent (lepidic) and aggressive (micropapillary, solid, and poorly differentiated acinar) histologic subtypes often
coexist within a tumor tissue of lung adenocarcinoma (LUAD), but the molecular features associated with different
subtypes and their transitions remain elusive. Here, we combine spatial transcriptomics and multiplex
immunohistochemistry to elucidate molecular characteristics and cellular plasticity of distinct histologic subtypes of
LUAD. We delineate transcriptional reprogramming and dynamic cell signaling that determine subtype progression,
especially hypoxia-induced regulatory network. Different histologic subtypes exhibit heterogeneity in dedifferentiation
states. Additionally, our results show that macrophages are the most abundant cell type in LUAD, and identify different
tumor-associated macrophage subpopulations that are unique to each histologic subtype, which might contribute to
an immunosuppressive microenvironment. Our results provide a systematic landscape of molecular profiles that drive
LUAD subtype progression, and demonstrate potentially novel therapeutic strategies and targets for invasive lung
adenocarcinoma.

Introduction
Tumor progression is characterized by dynamic mole-

cular and phenotypic changes of tumor cells, referred to
as cellular plasticity, and is associated with dediffer-
entiated states concomitant with therapy resistance and
poor clinical outcomes1. Intrinsic and extrinsic factors,
such as genetic alterations, epigenetic modifications,
transcriptional changes, and treatment-induced selective
pressures sculpt cancer cell plasticity, therefore con-
tributing to inter- and intra-tumor heterogeneities2. Cell

fate transitions, including epithelial-to-mesenchymal
transition (EMT) and mesenchymal-to-epithelial transi-
tion (MET), are multi-faceted and fundamental processes
in cell reprogramming and tumor metastasis3,4. Cellular
plasticity is usually related to a poorly differentiated
phenotype5, which can be mediated by transcription fac-
tors and microRNAs that modulate cell polarity, adhesion
and motility6.
Lung adenocarcinoma (LUAD), one of the most pre-

valent and lethal malignancies, is prominently character-
ized by histologic heterogeneity, as well as cellular and
molecular heterogeneities7,8. Multiple histologic subtypes
often coexist in a tumor mass. Some of these subtypes
(micropapillary, solid and complex glandular) are highly
invasive, but others (lepidic) show indolent growth9.
Although extensive genetic and epigenetic heterogeneities
in LUAD have been demonstrated10, the molecular
characteristics and biological interactions facilitating the
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transition of histologic subtypes during LUAD progres-
sion remain elusive.
Bulk RNA-seq homogenizes tissue context, and yields

an averaged expression profile of diverse types of cells,
such as epithelial, endothelial, stromal and immune cells,
in a given tissue. The advent of single-cell RNA-sequen-
cing (scRNA-seq) facilitates comprehensive profiling of
transcriptional heterogeneity at single-cell resolution, and
allows to decode intercellular signaling networks in tumor
microenvironment (TME)11–20. For example, subsolid
nodules of LUAD exhibit abundant cytotoxic nature
killer/T cells that play a vital role in immuno-
surveillance21. Additionally, comprehensive characteriza-
tions of tumor infiltrating lymphocytes revealed the
dynamics of functional states of T cells in non-small cell
lung cancer22. Recently, a systematic investigation of lung
tissue compartments revealed rare cell types in lung
tumors23, which provides molecular insights into cell state
transitions during tumor evolution and progression24.
Nonetheless, spatial localization information of individual
cells is lacking in scRNA-seq analyses, thus preventing a
deeper understanding of in situ intercellular commu-
nications as well as spatial niches that orchestrate devel-
opment and tissue homeostasis25. Decoding molecular
underpinnings of subtype-specific tumor progress is cri-
tical for therapeutic implications, but largely unexplored
for LUAD. Recent advances in spatially resolved tran-
scriptomics, including in situ hybridization and spatial
barcoding, can complement the limitations of scRNA-seq
by charting unbiased transcriptomic maps of entire tissue
sections26. In addition, multiplex Immunohistochemistry/
Immunofluorescence (mIHC/IF) techniques, such as
chromogenic, metal-based, fluorescence-based, DNA
barcoding-based platforms, also provide new options to
investigate spatial distribution of diverse cells via simul-
taneous detection of multiple markers in a tissue
section27.
Here, by applying spatial transcriptomics (ST) and

mIHC to primary invasive LUAD, we elucidate molecular
features and TME driving cancer subtype progression. We
investigate spatial cellular composition, cell signaling
heterogeneity, dedifferentiation states, and immune
landscape, especially spatial heterogeneity of macrophages
from indolent to aggressive histologic subtypes. Further-
more, we validate our findings in a public cohort. Overall,
these results provide molecular characteristics underlying
subtype transitions in LUAD progression, and might
provide new insights into novel therapeutic strategies.

Results
Spatial transcriptomics reveal intratumor heterogeneity of
LUAD
Based on histologic features, LUAD can be classified

into five major subtypes, including lepidic (Lep), papillary

(P), acinar (A), micropapillary (MP) and solid (S) sub-
types, which is a predictor of recurrence and therapeutic
resistance9,28. Most LUADs exhibit multiple histologic
subtypes within a tissue. To elucidate cellular composition
in different histologic subtypes, we performed ST on
invasive LUAD samples from five patients (Supplemen-
tary Fig. S1) undergoing radical resection using 10× Vis-
ium platform (Fig. 1a; Supplementary Table S1).
Transcriptomes from 18,475 spots were obtained with a
median of 3690 genes (Supplementary Fig. S2) and 8178
unique molecular identifiers (Supplementary Table S2).
Samples were annotated as distinct histologic subtypes
(Fig. 1b) by thoracic pathologists. Clustering of tran-
scriptional signatures of ST spots was determined by a
shared nearest neighbor (SNN) modularity optimization,
then Uniform Manifold Approximation and Projection
(UMAP) was performed for dimensionality reduction29

(Fig. 1c; Supplementary Table S3). For example, ST_P5
tumor section that comprised MP, poorly differentiated
acinar (PA) and S subtypes could be divided into ten
clusters (Supplementary Fig. S3) based on differentially
expressed genes (Supplementary Fig. S4 and Table S4),
suggesting intra-tumor spatial heterogeneity (Fig. 1d, e).
Using a comprehensive single-cell dataset of the human

lung as a reference23, we performed anchors analysis (see
Materials and methods) to estimate cell type composition
and proportions of the mixture of cells within each spot
(Supplementary Tables S3 and S5). Intriguingly, macro-
phages were the most abundant cell type in LUAD,
accounting for 13.39% of all cells (Fig. 2a). Alveolar
macrophages play an important role in the immune
response to tissue infections, inflammation, and the
maintenance of lung homeostasis30. The proportion of
alveolar epithelial type II (AT2) (7.82%) in LUAD was
larger than alveolar epithelial type I (AT1) (3.18%). AT2
cells secret pulmonary surfactant that reduces alveolar
surface tension, and the dysfunction of surfactant leads to
alveolar collapse31. We also observed a substantial num-
ber of club cells (7.2%), which were responsible for
bronchiolar repair and regeneration32. Club cells drove
tumorigenesis under environmental exposure to carci-
nogenic agents in adult mice, as described previously33.
Furthermore, two capillary cell types, general capillary
cells (vasomotor regulation and progenitor cells) and
capillary aerocytes (gas exchange and leukocyte traffick-
ing)34, were also abundant in each histologic subtype.
Tumor vascularization, including capillary sprouting
(commonly referred to as angiogenesis) and vessel co-
option, is an important hallmark of neoplastic progres-
sion35. Alveolar capillary cells surrounding each alveolus
form the respiratory surface for gas exchange, and play an
important role in tumorigenesis and development. Addi-
tionally, the co-occurrence of several cell types was
explored using pairwise cell-type correlation analysis. We
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Fig. 1 Histologic subtypes of LUAD revealed by ST. a Schematic representation of patient sample processing for ST and mIHC. b Annotated
histologic subtypes for sample ST_P5, including micropapillary (red), poorly differentiated acinar (green), and solid (blue) subtypes. c UMAP plots of
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observed significant spatial correlations within different
cell types, for example, mucous vs. goblet cells, and CD4+

naive T cells vs. CD4+ memory/effector T cells (Supple-
mentary Fig. S5).
Further similarity analysis of cellular composition across

histologic subtypes indicated a high level of similarity in
major cell types (Fig. 2b), except for two clusters (ST_P7
cluster 8 and ST_P8 cluster 8) (Supplementary Fig. S6a)
which covered too few spots in the given slides (Supple-
mentary Fig. S6b, c). Intriguingly, substantial changes of
cellular proportion in different histologic subtypes were
observed. The proportion of club cells was highest in PA
subtype, whereas general capillary cells are the most
abundant cells in normal lung tissue (Fig. 2c). In contrast,
there are no differences in capillary aerocytes, AT2 cells
and alveolar fibroblasts across histologic subtypes (Sup-
plementary Fig. S7). Notably, macrophages accounted for
the largest proportion of all cell types in S and MP sub-
types, with an average of 13.21% and 15.71%, separately
(Fig. 2d). For PA and moderately differentiated acinar
(MA), epithelial cells, including club, basal, and AT2 cells,
were predominant cell types (Supplementary Fig. S8).
To explore the functions of macrophages in TME across

histologic subtypes, we integrated two public scRNA-seq
datasets21,36 to assess phenotypic differences of macro-
phages by multimodal intersection analysis (MIA)37. With
the exception of anti-inflammatory macrophages that
were prevalent across histologic subtypes, macrophage
phenotypic heterogeneity was a key feature in LUAD (Fig.
2e). For example, tumor-associated macrophages (TAMs)
were enriched in S subtype. The number of angiogenesis-
associated macrophages was much larger in PA, MP and S
subtypes. By contrast, phagocytosis-associated macro-
phages were depleted in PA and S subtypes. In addition,
alveolar resident macrophages preferred to reside in
normal tissues. These results revealed heterogeneity of
LUAD histologic subtypes, and differential enrichment of
cells in diverse histologic subtypes.

Hypoxia in subtype progression
To explore molecular mechanisms that shape the

intrinsic differences of histologic subtypes, we performed
regulatory network inference by SCENIC38, and identified
regulons which consisted of transcription factors (TFs)

and their downstream targets. HMGB3, a regulator of
tumor proliferation39, and UQCRB, a subunit of the
mitochondrial complex, were enriched in samples ST_P1
and ST_P7, respectively (Fig. 3a). Hypoxia-inducible fac-
tor 1α (HIF1A), which affects tumor initiation, invasion
and metastasis40, had significantly higher regulon activity
in S subtype compared with PA and MP subtypes (Fig.
3b). In The Cancer Genome Atlas (TCGA) cohort, HIF1A
regulon activity increased from lepidic to high-grade
subtypes. No significant difference was observed between
S and MP subtypes, likely due to the histologic annotation
of TCGA cohort was based on the predominant subtype,
each sample in the TCGA cohort was annotated with only
one histologic subtype. In addition, high HIF1A regulon
activity correlated with worse overall survival (Fig. 3c). To
further estimate varying hypoxia levels across histologic
subtypes, we applied a hypoxia metagene signature to
spatial spots41, including hypoxia markers HIF1A and
CA9 (Fig. 3d). Increased CA9 expression in tumors was
confirmed by IHC staining (Chi-squared test, P= 1.671e-
17) (Fig. 3e). As expected, S subtype demonstrated a
higher hypoxia signature score (Fig. 3f), and this obser-
vation was consistent with TCGA cohort (Fig. 3g).

Progressive changes in cell signaling
To investigate the molecular consequences of reg-

ulatory networks and biological processes underlying
subtype progression, we performed enrichment analysis of
~1800 gene sets from Molecular Signatures Database
(MSigDB), including hallmark gene sets and canonical
pathways. Subtype-specific pathways were identified (Fig.
4a). For example, MYC-regulated pathways, epithelial-
mesenchymal transition, PI3K/AKT/mTOR signaling,
P53 pathway, and hypoxia described above, were pre-
dominant biological processes in S subtype (Fig. 4b).
Additionally, glycolysis and gluconeogenesis pathways
were enriched in PA subtype, E2F-targeted genes were
enriched in MA and PA subtypes, and surfactant meta-
bolism is enriched in lepidic subtype (Fig. 4b).
We then assessed the intrinsic relationships between

subtype-associated signaling pathways using Jaccard
similarity (see Materials and methods). A biological net-
work was constructed based on pathways (referred to as
nodes) and Jaccard-weighed interactions between

(see figure on previous page)
Fig. 2 Identification and characterization of cellular composition across histologic subtypes. a Cell types composition inferred by molecular
anchors transfer based on a comprehensive cell atlas of the human lung. The middle panel showed cell types (rows) by subtype-specific clusters
(columns). The size of circle represents the average proportion of cell type in each cluster. The top histogram showing the number of spots covered
in each cluster. The right histogram showing average fraction of each cell type in this cohort. b Similarity analysis of cellular composition across
histologic subtypes using hamming distance between each pair of clusters. c Proportion differences of club cells and capillary cells among histologic
subtypes. P values were calculated by Kruskal–Wallis rank sum test. Each dot represents a cluster. d Cellular compositions of S and MP subtypes.
Kruskal–Wallis rank sum test. e Enrichment of phenotypic differences of macrophages using MIA based on two independent macrophage
datasets21,36.
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pathway pairs (edges) (Fig. 4c). Based on biological
functions, these pathways had intrinsic interactions and
were categorized into several classes, such as immune, cell
cycle, oncogenic, metabolism, extracellular matrix (ECM)
organization.

Heterogeneity of dedifferentiation states across histologic
subtypes
Dedifferentiation processes have been implicated in

tumor progression42. The histologic subtypes of invasive
LUAD are associated with prognosis, and high-grade
subtypes that include MP, S and PA subtypes show a
significantly increased risk of recurrence and metastasis43,
and correlate with clinical response to checkpoint inhi-
bitor therapies44–46. To gain insights into subtype-specific
dynamically dedifferentiated changes, we performed dif-
ferentiation analyses using Monocle247 and Cyto-
TRACE48, and applied principal component to visualize
developmental trajectory (Fig. 5a; Supplementary Fig.
S9a). ST_P1 comprised three histologic subtypes, MP, PA
and normal (N) tissues (Fig. 5b). As expected, N region
exhibited a more differentiated state, while a less differ-
entiated state was observed in PA subtype, consistent with
histologic annotations (Fig. 5b). In ST_P6, N region has
also been demonstrated to be a more differentiated state,
and MA, PA, MP subtypes displayed less differentiated
states (Supplementary Figs. S10b, S11).
Interestingly, MP subtype, defined by the existence of

small papillary tufts in alveolar space or connective tis-
sues, showed a striking intra-subtype heterogeneity of
differentiation states (Fig. 5b) and intermingled spatial
clusters (Fig. 5c). Among the MP-specific clusters, Clus-
ters 9 (Fig. 5c), localizing at the boundary of PA and
enriching for AT2 cells, was less differentiated compared
with other MP clusters (Supplementary Fig. S9b), sug-
gesting a potentially transitional morphology in subtype
progression. For the MP subtype, similar differentiation
heterogeneity that spanned the whole differentiated states
was observed in other samples (Fig. 5d). MP subtype
displayed more differentiated potential than S subtype
(Supplementary Fig. S10a). No significant difference was
observed between MP and MA subtypes (Supplementary
Fig. S10b), further indicating that MP subtype exhibited a
moderately differentiated feature.

We next identified genes associated with dedifferentia-
tion process in PA (less differentiated) versus MP (more
differentiated) subtypes (Fig. 5e) by Pearson correlation.
We found that dedifferentiation marker genes, such as
TMSB4X and PLAT, were highly enriched in PA subtypes,
whereas MGP and CLU were skewed towards well-
differentiated subtypes (Fig. 5f; Supplementary Table S6).
Meanwhile, development and differentiation pathways
were significantly enriched as shown by gene ontology
analyses (Fig. 5g; Supplementary Table S7).
In order to investigate more detailed molecular profiles

of MP subtype, we dissected micropapillary tufts from
spatial architecture (Fig. 5h), and found that high
expression of TMSB10 in these micropapillary tufts (Fig.
5i) was associated with significantly reduced overall sur-
vival (P= 0.019) (Fig. 5j). Previous studies also demon-
strated TMSB10 as a key regulator of tumor progression
and metastasis49. Taken together, our findings revealed
subtype-specific heterogeneity of dedifferentiation states
in LUAD, especially MP subtype, which might explain the
highly invasive feature of MP subtype.

Subtype-specific immune landscape
To illustrate immune profiles of TME across LUAD

subtypes, especially immunosuppression in TME, we
explored the spatial distributions of immunosuppressive
genes and co-signaling molecules that expressed in var-
ious immune cells (Fig. 6a), including dendritic cells
(DCs), exhausted T cells, T regulatory (Treg) cells,
myeloid-derived suppressor cells (MDSCs), TAMs, reg-
ulatory B (Breg) cells, and monocytes. High-grade (PA,
MP and S) subtypes exhibited an immunosuppressive
phenotype, especially S subtype. TNFRSF14, expressed by
Tregs and antigen-presenting cells (APCs), delivered
inhibitory signals by interacting with co-inhibitory factor
BTLA (B and T lymphocyte attenuator) or CD160
(upregulated in effector T cells50). DC-specific XBP1
(blunts T cell anti-tumor immunity51), S100A8 and
S100A9 (markers for MDSCs52), and NT5E (expressed by
Tregs, converts ATP to adenosine that suppresses the
activity of effector T cells and APCs)53, were highly
expressed (Fig. 6a). TNFRSF14 and XBP1 were expressed
prominently in MP subtype, while an opposite trend was
observed for S100A9 (Fig. 6b). A significant spatial

(see figure on previous page)
Fig. 3 Transcriptional regulatory networks underlying subtype progression. a Identification and hierarchical clustering of regulons. The activity
of regulons is indicated using color scale. The extended regulons represent regulons inferred by motif similarity. b HIF1A regulon activity in TCGA
cohort (Lepidic, n= 11; Papillary, n= 28; Acinar, n= 71; Micropapillary, n= 23; Solid, n= 61). Kruskal–Wallis Rank sum test with Dunn’s multiple
comparisons post hoc test. c Overall survival difference between high- and low-HIF1A regulon activity (Kaplan–Meier). Log-rank test. d The expression
of hypoxia markers HIF1A and CA9 examined by ST. e IHC staining of CA9 in tumors (n= 62) and normal tissues (n= 84). Chi-squared test. Scale bars,
200 μm. f Spatial plot of hypoxia score by signature genes, and statistical differences among different histologic subtypes. Kruskal–Wallis rank sum
test with Dunn’s multiple comparisons post hoc test. g HIF1A signature score in TCGA cohort (Lepidic, n= 11; Papillary, n= 28; Acinar, n= 71;
Micropapillary, n= 23; Solid, n= 61). Kruskal–Wallis rank sum test. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 4 Characterization of cell signaling among histologic subtypes. a Enrichment analysis of hallmark gene sets (n= 50), KEGG pathways
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correlation between S100A9 and NT5E was observed in S
subtype (Supplementary Table S8). Notably, M2-like
macrophages (CD68+, CD163+, MRC1/CD206+), known
as anti-inflammatory and pro-tumorigenic macrophages,
were also abundant across histologic subtypes (Fig. 6a, c).
The increase in expression of CD68 in MP cluster (Sup-
plementary Fig. S12a and Table S4) was validated in
TCGA cohort (Fig. 6d, e).
To characterize cell-cell communication networks, we

used CellPhoneDB54, allowing to integrate a repository of
ligands, receptors, heteromeric complexes, and their
interactions, to infer crosstalk pairs, especially spatial-
dependent intra-cluster ligand-receptor complexes (Fig.
6f). Considering spatial distances between cells, we
focused only on intra-cluster cell-cell interactions of each
histologic subtype. MIF-TNFRSF14, a significantly enri-
ched ligand-receptor pair, was highly expressed in MP, S
and PA clusters. Aberrantly expressed macrophage
migration inhibitory factor (MIF) (Supplementary Fig.
S12b) was previously reported as a cytokine that regulates
innate immunity55, overexpressed in various cancers and
involved in M2-like macrophage polarization56. It pro-
motes pancreatic ductal adenocarcinoma progression by
the MIF-mir-301b-NR3C2 signaling axis57. We also
identified a multifaceted ligand LGALS9 (Supplementary
Fig. S12c) binding to diverse receptors, including
HAVCR2 (TIM-3) which mediates immune suppression
by T cells or macrophages58, immunotherapy checkpoint
CD47 that overexpressed in many tumor types59. Col-
lectively, our data suggested that an immunosuppressive
microenvironment, particularly an essential role of M2-
like macrophages, may shape diverse histologic subtypes
and facilitate LUAD progression

Spatial profiles of macrophages across histologic subtypes
by mIHC
As a predominant cell type (Fig. 2a), macrophages also

exhibited immunosuppressive functions in TME (Fig. 6a).
However, it remained unclear whether diverse TAM
subpopulations contribute to lung adenocarcinoma pro-
gression, and how these macrophage subpopulations spa-
tially distribute across different histologic subtypes. We
then used an additional cohort comprising 92 tumors and
88 adjacent normal tissues to perform mIHC. The mIHC

assay includes several macrophage markers located in the
cell membrane, cytoplasm or nucleus (Fig. 7a): cytokeratin
markers (Pan-CK) for tumor cells60; CD68, a highly
expressed pan-macrophage marker which primarily loca-
lizes on lysosomes and endosomes, and also localizes on
cell membranes61; interferon regulatory factor 8 (IRF8),
also known as interferon consensus sequence-binding
protein (ICSBP), an M1-like macrophage marker62; CD163
and CD206 that are upregulated in M2-like macrophages.
For each tumor tissue, stroma and tumor regions were

separated by the expression of PanCK. The CD68+,
CD68+CD163+, and CD68+CD163+CD206– macro-
phages were abundant in both tumor and stroma regions.
In contrast, CD68+IRF8+, CD68+CD163+CD206+ mac-
rophages were less enriched in both tumor and stroma
regions (Supplementary Fig. S13). Despite the low abun-
dance of M1-like macrophages, we found significant co-
localization of CD68+IRF8+ with CD68+CD206+ and
CD68+CD163–CD206+ TAMs (Fig. 7b), reflecting a
dynamic process of macrophage polarization in vivo,
especially in acinar and solid subtypes. The density of
tumor cells increased significantly from normal regions to
solid subtype (Kruskal–Wallis, P= 1.529e−13), and was
abundant in high-grade subtypes (MP, PA and S) (Fig. 7c).
We also observed similar trends for CD68+CD163+ (Fig.
7c), CD68+CD163+CD206– (Supplementary Fig. S14a)
TAM subpopulations, but not in CD68+CD163+CD206+

(Supplementary Fig. S14b) subpopulation. In addition, the
trend of CD68+ macrophages was consistent with subtype
progression as well, but highest in PA subtype (Fig. 7c) as
described previously63. The spatial distributions of TAMs
across histologic subtypes were poorly understood. We
then characterized the proximity of macrophage sub-
populations to tumor cells using Euclidean distance based
on pixel coordinates of the field of view. We found sta-
tistically significant differences in spatial distances
between histologic subtypes in different TAM sub-
populations, and the biological implications of this phe-
nomenon remain elusive (Supplementary Fig. S15).
Interestingly, we observed an enrichment of
CD68+CD206+ macrophages in vessel regions in several
samples (Fig. 7d; Supplementary Figs. S16–S19), sug-
gesting that CD206-specific macrophages may promote
tumor vascularization in a spatially dependent manner

(see figure on previous page)
Fig. 5 Heterogeneity of dedifferentiation states across histologic subtypes. a Differentiated trajectory of sample ST_P1 in a two-dimensional
space inferred by Monocle2 and CytoTRACE. b Differentiation states of spatial spots and H&E staining of histologic subtypes. c Spatial distribution and
clustering of ST_P1 ST spots. d The kernel density estimation of differentiation scores for MP subtype in our cohort. e Violin plots showing the
comparison of differentiation scores between PA and MP subtypes. Wilcoxon Rank sum test. f Top 10 poorly differentiated genes and 10 well
differentiated genes correlated with histologic subtypes. g Significantly enriched gene sets for differentiated genes. h MP subtype is featured by
micropapillary tufts (red arrow) in ST_P6. i Spatial plot of micropapillary tufts-specific marker TMSB10 expression in histologic section. j Overall survival
difference between patients with high- and low-TMSB10 expression (Kaplan–Meier) in TCGA cohort. High expression (n= 250), low expression
(n= 250). P value was calculated by log-rank test.
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Fig. 7 (See legend on next page.)

Wang et al. Cell Discovery            (2023) 9:96 Page 12 of 19



during tumor progression. In summary, our findings
further supported the indispensable roles of TAM sub-
populations in shaping diverse histologic subtypes during
tumor progression.

Discussion
Intrinsic molecular features and extrinsic microenviron-

ment determine tumorigenesis and metastasis64. Recent
studies have revealed that driver mutations in LUAD were
not associated with specific histologic subtypes, and onco-
genic alterations didn’t drive subtype progression and spa-
tial heterogeneity. Epigenetic and transcriptional
reprogramming is a key determinant of histologic sub-
types63,65. Meanwhile, substantial advances have been
achieved by bulk RNA-seq, proteomics and single-cell
profiles, while information on spatial localization of tumor
cells, stromal cells and immune cells, as well as intercellular
communications is lost during tissue dissociation. The lack
of comprehensive spatial characterizations of TME remains
an obstacle in improving therapeutic strategy and clinical
prognosis66. Therefore, delineating histologic features at
spatially resolved molecular resolution is critical to depict
heterogeneity of histologic subtypes and corresponding
molecular profiles in tumor progression. Here, we inte-
grated spatial transcriptomics and mIHC in invasive lung
adenocarcinoma to elucidate molecular mechanisms and
microenvironment composition driving histologic subtype
progression (Fig. 8).
Cellular composition and plasticity are fundamental to

tissue morphogenesis and development. Most of lung
adenocarcinoma are characterized by coexistence of more
than two histologic subtypes in a tumor tissue. Therefore,
it is important to comprehensively investigate cell lineage
composition. We found that histologic subtypes demon-
strated a high level of similarity for major cell types, but
differential enrichment of cells in diverse histologic sub-
types. However, it is important to note that cellular
composition is inferred by a comprehensive cell atlas of
the human lung comprising 58 cell subpopulations23.
Other novel or rare cell types, especially intermediate cell
states, may not be resolved or identified by current
technologies. To overcome this limitation, we predicted
differentiation state of each spatial spot using an unsu-
pervised framework, and observed heterogeneity in ded-
ifferentiation states among histologic subtypes, which

were consistent with histologic morphologies. Interest-
ingly, a recent study revealed a high-plasticity cell state
(HPCS) during lung cancer progression using genetically
engineered mouse models of human cancer. HPCS cells
displayed robust potential for differentiation, as well as
proliferation24. Importantly, the MP subtype exhibited
substantially heterogeneous differentiation states, possibly
explaining the occurrence of micropapillary tufts. Com-
bining lineage-tracing techniques with spatial sequencing
approaches could facilitate the construction of clonal
trajectories and track cell differentiation dynamics during
the progression of histologic subtypes67.
The most abundant cell type was macrophages in our

dataset, possibly suggesting their essential roles in
immune response, phagocytosis, angiogenesis, and lung
homeostasis. TAMs regulate tumor immunity via
immune checkpoint blockade, secretion of inhibitory
cytokines, metabolic reprogramming, and recruitment of
immunosuppressive cells68. Notably, we found different
TAM subpopulations in different histologic subtypes,
indicating the indispensable roles of TAM subpopulations
in remodeling tumor environment and mediating immu-
nosuppression to promote tumor progression. Although
precise cellular interactions between tumor cells and
TAMs are still not fully understood, our results help to
improve our understanding of cellular relationships
within TME, which may promote the development of
therapeutic approaches that target spatial architectures.
As new single-cell resolution spatial transcriptomics will
become available, we will better elucidate cell-cell inter-
actions and cell state transitions in spatial architecture.
In addition, there were a large number of T cells in

TME. T cells, including naïve T cells, effector T cells (T
helper cells, cytotoxic CD8+ T lymphocytes) and memory
T cells (central memory T cells, effector memory T cells),
mediate adaptive immune response. Macrophages act as
APCs to activate T cells through MHC/TCR interactions
and costimulatory signaling. The T helper cells secret
cytokines, recruit innate immune cells and activate anti-
tumor immunity. The cytotoxic CD8+ T lymphocytes
(CTLs) execute effector function and promote cell death
by perforin-granzyme and Fas/FasL pathways69. Dys-
functional or exhausted T cells in TME are characterized
by overexpression of inhibitory checkpoint molecules,
such as PD-1, TIM-3, LAG3, CTLA4 and TIGIT70.

(see figure on previous page)
Fig. 7 The landscape of macrophage subpopulations. a Representative illustration of a LUAD tissue stained by multiplex IHC. Scale bar, 100 μm.
DAPI (blue), PanCK (pink), CD68 (cyan), IRF8 (yellow), CD163 (red), CD206 (green). b Co-localization of CD68+IRF8+ macrophages with other
subpopulations based on spearman correlation of densities. c Densities of TAM subpopulations across histologic subtypes. Kruskal–Wallis rank sum
test with Dunn’s multiple comparisons post hoc test. Normal (N), n= 87; lepidic (Lep), n= 6; acinar (A), n= 22; micropapillary (MP), n= 8; poorly
differentiated acinar (PA), n= 17; solid (S), n= 7. d Enrichment of CD68+CD206+ macrophages in vessel regions. Scale bars, 100 μm. DAPI (blue),
PanCK (pink), CD68 (cyan), IRF8 (yellow), CD163 (red), CD206 (green). *P < 0.05, **P < 0.01, ***P < 0.001.
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Recently, Paolo D. A. Vignali et al. revealed that exhausted
T cells could limit antitumor immunity by generating
immunosuppressive adenosine through hypoxia-induced
CD3971. Meanwhile, Treg can inhibit antitumor immune
response by suppressing APCs or producing immuno-
suppressive cytokines to downregulate effector T cells72.
Reversing T cell dysfunction has been emerging as a
promising therapeutic approach against tumorigenesis. In
addition, immune checkpoint therapy (PD1/PD-L1 and
CTLA4), adoptive T cell immunotherapy also have
demonstrated great achievements in clinical efficacy73.

Molecular mechanisms underlying lung adenocarci-
noma progression remain less well-characterized. Anno-
tation of tumor samples only by histologic features lacks
the information on intratumor heterogeneity or histologic
subtypes. Gene regulatory networks, including transcrip-
tion factors and target genes, determine transcriptional
state of a cell. We found that differentiation- and
proliferation-related regulons, such as HMGB3, modulated
cellular plasticity and reprogramming, and potential cell
state transitions. Moreover, we observed significant
hypoxia during subtype progression. As a common

Fig. 8 Schematic representation of transcriptional reprogramming and dynamic cell signaling underlying LUAD subtype progression and
dedifferentiation states. Based on spatial transcriptomics (ST) and mIHC, we demonstrated cellular compositions, hypoxia regulon, cell signaling,
and immune landscape during LUAD dedifferentiation and progression.
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phenomenon in tumors, hypoxia stimulates dissemination
of tumor cells to other organs by altering cell–cell inter-
action and ECM, promotes angiogenesis, M2 polarization
of TAMs, neutrophil infiltrating, and induces immuno-
suppression by recruiting MDSCs and Tregs74. Intrigu-
ingly, airway stem cells can sense hypoxia, thus
differentiating into epithelial neuroendocrine cells that
secret peptides and amines, which mitigate hypoxic
injury75. Further investigations are needed to elucidate the
associations between hypoxia and cellular
dedifferentiation.
In summary, our results delineated dynamic biological

processes and dedifferentiation states during subtype
progression. Spatially resolved molecular profiles provide
a detailed and unbiased map of positional context of
cancer cells and TME during tumor progression, and
enable us to directly scrutinize molecular features and
heterogeneity of cell dedifferentiation states underlying
subtype progression, thereby yielding potentially novel
insights for therapeutic options.

Materials and methods
Human specimens
Five treatment-naïve patients with early-stage LUAD

undergoing radical lobectomy at the Department of
Thoracic Surgery II, Peking University Cancer Hospital &
Institute were prospectively recruited for ST profiling from
June 2020 to October 2020 (Supplementary Table S1).
Tissue slices of ~3-mm thick were cut immediately after
operation from each patient and then divided into several
6.5 × 6.5mm fragments. The small tumor fragments were
embedded in optimal cutting temperature compound
(OCT, #4583, Sakura, Torrance, USA) and frozen on dry
ice. After frozen, all tumor fragments were stored at
–80 °C and used for ST within three months after surgery.
Two experienced thoracic pathologists reviewed every
slide to identify the appropriate fragments for ST, and
annotated tumor slide for distinct histologic subtypes,
including lepidic (Lep), papillary (P), acinar (A), micro-
papillary (MP) and solid (S) subtypes. The pathological
diagnosis of individual sections was performed according
to the 2015 WHO classification of LUAD and the new
grading system proposed by International Association for
the Study of Lung Cancer pathology committee9,76.
This study was conducted according to the Declaration

of Helsinki (as revised by 2013) and approved by the
Ethics Committee of Peking University Cancer Hospital &
Institute (Institutional Review Board No. 2019KT59). All
patients provided written informed consent before
enrollment in this study.

Slide preparation, staining, and imaging
Spatial transcriptomics arrays include four identical

6.5 mm × 6.5 mm capture areas, and each with 4992

spatial-barcoded spots (10× Genomics). Every spot has a
diameter of 55 μm, and surrounding with six spots with a
center-to-center distance of 100 μm. Tissues were cryo-
sectioned, cut at 10-μm thickness, and then mounted onto
spatial slides. Using the Thermocycler Adaptor with the
active surface facing up, sections were incubated for 1 min
at 37 °C. The slides were then fixed by methyl alcohol for
30min at –20 °C, followed by H&E staining (Eosin, Dako
CS701, Hematoxylin Dako S3309, bluing buffer CS702)
and brightfield imaging with a Leica DMI8 whole-slide
scanner at 10× resolution.

Permeabilization and reverse transcription
Visium spatial gene expression slide and Reagent Kit

(10× Genomics, PN-1000184) was used to detect spatial
gene expression. Slides were inserted into slide cassettes
that created leakproof wells for permeabilization with
70 μL enzyme, and incubated at 37 °C for 18min. Each
well was washed with 100 μL SSC, and added 75 μL reverse
transcription (RT) Master Mix for cDNA synthesis.

cDNA library preparation and sequencing
Removing RT Master Mix from the wells after the end

of first-strand synthesis. Wells were incubated for 5 min at
room temperature after adding 75 μL 0.08M KOH, then
washed with 100 μL EB buffer. Second-strand synthesis
was performed by adding 75 μL Second Strand Mix to
each well.
Visium spatial libraries were constructed using Visium

spatial Library construction kit (10× Genomics, PN-
1000184) according to the manufacturer’s instructions.
The libraries were sequenced on Illumina Novaseq 6000
platform with pair-end 150 bp (PE150) strategy (per-
formed by CapitalBio Technology, Beijing).

ST data processing
Raw sequencing data were processed using Space Ranger

pipelines (V1.1.0, https://support.10xgenomics.com/spatial-
gene-expression/software/downloads/latest), including tissue
detection, fiducial detection, read alignment, barcode and
UMI counting against GRCh38 genome assembly and cor-
responding GENCODE annotation file (V32). Feature-spot
matrices were generated based on spatial barcodes, and then
analyzed with the Seurat R package (V3.2)29.
To normalize sequencing depth variance across spatial

spots, especially for technical artifacts and tissue anatomy,
we used SCTransform function based on regularized
negative binomial regression to normalize molecular count
data, and detect high-variance features. Dimensionality
reduction was performed with principal component analysis
(PCA), then followed by a shared SNN construction based
on Jaccard index between spots with the first 30 dimen-
sions. Cluster determination was performed using the
FindClusters function at resolution 0.6 by a SNN
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modularity optimization. The top 30 PCA dimensions were
used for UMAP dimensional reduction. Subsequently,
clusters in UMAP space were visualized by DimPlot and
SpatialDimPlot functions. Spatially variable features that
correlate with spatial subtypes were identified by FindSpa-
tiallyVariables function with markvariogram method. To
identify differentially expressed genes for each cluster, we
used FindAllMarkers function in Seurat with default para-
meters, and genes with logFC > 0.25 and adjusted P
value < 0.05 were considered as significant different.

Prediction of cell type composition using integration
method
Each spatial spot with a diameter of 55 μm encompasses

multiple cells. To infer the underlying composition and
proportions of cellular subtypes in every spot, we
employed two approaches to depict each spatial voxel.
Firstly, using a molecular cell atlas of human lung that
included 58 cell types as a reference scRNA-seq dataset23,
we identified a set of anchors between reference and our
ST data that subsequently were transferred to query
object via FindTransferAnchors and TransferData func-
tions in Seurat77. Secondly, we performed enrichment
analysis using cumulative hypergeometric distribution by
investigating the overlap between ST DEGs and cell type-
specific marker genes. R packages ggplot2 (V3.3.0)78,
export (V0.3.0) (https://github.com/tomwenseleers/
export), and Patchwork (V1.0.1) (https://cran.r-
project.org/web/packages/patchwork/index.html) were
used for visualization.
In order to evaluate cellular composition across LUAD

subtypes, we calculated hamming distance between each
pair of clusters using R package e1071 (V1.7-3) (https://
cran.r-project.org/web/packages/e1071/). Heatmap was
drawn by R package pheatmap (V1.0.12) (https://cran.r-
project.org/web/packages/pheatmap/index.html).

Spatial correlation analysis
To assess cell type co-occurrence in a spot, we calcu-

lated Pearson correlations between pairwise cell types
using all spatial spots, and used Holm adjustment for
multiple tests via corr.test function in R package psych
(V1.9.12.31) (https://personality-project.org/r/psych).
Significant correlations were defined as follows: coeffi-
cient ≥ 0.3 and adjusted P value < 0.05.
Pairwise genes correlation was performed by nearest

neighbor analysis. For each spot, normalized gene
expression across the central spot and six surrounding
nearest neighbors was calculated. We then calculated
Pearson correlations as described above.

Dedifferentiation trajectory inference
To characterize dedifferentiation transitions between

histologic subtypes, we applied Monocle (V2.18.0)

algorithm47 with spatial DEGs. Firstly, Size factors and
dispersions were estimated for a new CellDateSet object
that was created with count matrices. Genes expressed in
less than 10 spots were filtered. Then dimension reduc-
tion using DDRTree algorithm, and ordering along
pseudotime were performed. Secondly, we leveraged
CytoTRACE48, based on decreased transcriptional diver-
sity during differentiation, to infer dedifferentiation tra-
jectories at spot resolution.

Gene Ontology (GO) enrichment analysis
For genes associated with differentiation, R package

clusterProfiler (V3.16.1)79 was used to perform GO
enrichment analysis using Gene Ontology gene sets80. P
value was adjusted for multiple comparisons by
Benjamini-Hochberg correction. Significant ontologies
were determined by a q-value cutoff of 0.05.

TCGA data analysis
The normalized bulk RNA-seq data (n= 515) and cor-

responding predominantly histologic subtypes of LUAD
were downloaded from TCGA LUAD cohort81. Only
primary tumor samples were considered for downstream
analysis. To characterize state transitions between histo-
logic subtypes, patients without pathology information
were excluded.

Regulon inference
Gene regulatory networks (regulons) were identified

using SCENIC (V 1.2.2)38 based on count matrices. Genes
detected in < 1% of all spots were excluded. Co-expression
network for potential TF targets was first calculated using
random forest algorithm implemented in GENIE3. TF
binding motifs enriched on transcription start site for
hg38 reference genome were downloaded from cisTarget
(https://resources.aertslab.org/cistarget/). We performed
TF motif enrichment analysis and identified target genes
of each TF module using RcisTarget. Next, we used
AUCell to score regulon activity using area under the
recovery curve across gene expression rankings for each
spot, and generating a binary regulon activity matrix.
Differentially activated regulons across histologic sub-
types were identified by Wilcoxon Rank Sum test.

Gene set variation analysis (GSVA)
A non-parametric and unsupervised method GSVA

(V1.32.0)82 was used to estimate variation of gene set
enrichment score or pathway activity. Hallmark gene sets
(50 gene sets), and canonical pathways from C2 curated
gene sets that comprised KEGG (186 gene sets) and
Reactome (1569 gene sets), were obtained from MSigDB
(V7.3). Single sample GSEA (ssgsea) method in gsva
function was used to assess a gene set enrichment score
for each spot or sample.
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For further validation of regulon activity in an inde-
pendent cohort, the enrichment score of each regulatory
network (transcription factors and target genes) was
evaluated across different histologic samples.
To unveil the underlying interactions among subtype-

specific pathways, we quantified the degree of pathway
similarity between each pathway pair using Jaccard index,
which was defined as the ratio of the interaction size of
two pathways over their union size. Next, a biological
network was constructed: each pathway was defined as a
node, and interaction weighed by Jaccard index between
two pathways as an edge, and then visualized by Cytos-
cape (V3.6.0)83.

Spatial ligand-receptor interaction analysis
Spatial intra-cluster ligand-receptor interaction pairs of

histologic subtypes were inferred using CellPhoneDB
(V2.1.4)54, a repository of ligands, receptors, heteromeric
complexes, and their interactions. Metadata and count
matrix files were used as input data, and the threshold
(percentage of spots expressing a gene) was set to 0.4.
Through 1000 randomized permutations of spatial cluster
labels, we generated a null distribution on the basis of the
average expression of ligand-receptor pair in the inter-
acting populations. P value was calculated using the
proportion of means that exceeded the actual mean, and
ranked based on its significance.

mIHC staining
LUAD tissue microarray (TMA), including formalin-

fixed paraffin-embedded 92 tumor tissues and 88 normal
tissues, was purchased from National Human Genetic
Resources Sharing Service Platform (2005DKA21300). To
identify the spatial distribution and heterogeneity of
TAMs (M1-like and M2-like) in LUAD, we used PANO
7-plex IHC kit (cat 0004100100, Panovue, Beijing, China)
to perform mIHC staining (mIHC) according to the
manufacturer’s protocol. Antibodies included anti-CD68
(CST76437), anti-CD163 (CST93498), anti-CD206
(ab64693), anti-IRF8/ICSBP (sc-365042), anti-PAN-CK
(CST4545S), anti-DAPI (SIGMA-ALDRICH, D9542).
Briefly, The TMA was dewaxed and rehydrated. Then
antigen retrieval by microwave was performed as follows:
placing slide in 100 mL of antigen retrieval solution (Citric
acid solution), boiling, cooling down, and washing with
distilled water, then transferring slide to 1× TBST con-
taining slide jar (TBS (pH 7.4) plus 0.1% Tween 20). Next,
TMA was covered with blocking solution and incubated
for 10 min. Primary antibody was added and incubated at
room temperature, followed by horseradish peroxidase-
conjugated secondary antibody and tyramide signal
amplification. Sequential antibodies were stained by
repeating the procedures as described above. After
labeling all antigens, nuclei were stained with DAPI

(SIGMA-ALDRICH, D9542). Finally, mIHC slides were
scanned using Mantra System (PerkinElmer, Waltham,
Massachusetts, US), PanoVIEW VS200 slide scanner
(Panovue, Beijing, China) with Olympus 20× lens, and
Polaris System (PerkinElmer, Waltham,
Massachusetts, US).

mIHC image quantifications
Quantifications and downstream spatial analyses were

performed by inForm image analysis software (V2.4,
PerkinElmer, Waltham, Massachusetts, US) and QuPath
image analysis software (V0.2.0, the Queen’s University of
Belfast, Northern Ireland, UK)84 on PanoATLAS work-
station, including:

Tissue compartment types
Based on tissue morphologies, we separated each tumor

tissue slide into tumor and stroma categories using fea-
ture recognition algorithms, and analyzed corresponding
area for each category.

Cell count and density
Cells were counted by inform software for each cell

type, and density of cells was calculated by cell count and
normalized by pixel area (cell/mm2) in each slide.

Cells distance and co-localization
The Euclidean distance was adopted to describe cells’

spatial relationship based on pixel coordinates of the field
of view. Cell type X and Y co-localization analysis was
measured by the spearman correlation between X and Y
densities across all slides.

Survival analyses
We applied survival (V3.2-10) and survminer (V0.4.6)

packages in R statistical software to assess the association
between gene expression and overall survival time. We
used log-rank test to calculate groups’ difference, and
Kaplan–Meier method implemented in ggsurvplot func-
tion to plot survival curves.

Statistical analyses
The Kruskal–Wallis rank sum test was applied to cal-

culate statistical difference in independent samples from
multiple groups using R package stats (V3.6.0), and Wil-
coxon Rank Sum test for two-group comparison. For
multiple comparisons, Dunn post hoc test was performed
with R package FSA (V0.9.1) (https://github.com/
droglenc/FSA). P value was adjusted for multiple
hypothesis testing by Bonferroni, Benjamini-Hochberg or
holm method. A chi-squared test was performed to
compare the statistical difference in CA9 IHC between
tumors and normal tissues.
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