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Abstract
Animal models play crucial roles in the rapid development of vaccines/drugs for the prevention and therapy of COVID-
19, but current models have some deficits when studying the pathogenesis of SARS-CoV-2 on some special tissues or
organs. Here, we generated a human ACE2 and SARS-CoV-2 NF/F knockin mouse line that constitutively expresses
human ACE2 and specifically expresses SARS-CoV-2 N gene induced by Cre-recombinase. By crossing with Cre
transgenic lines allowing for lung-specific and constitutive expression, we generated lung-specific (Sftpc-hACE2-NF/F)
and constitutive SARS-CoV-2 N (EIIa-hACE2-NF/F) expressing mice. Upon intranasal infection with a SARS-CoV-2 GFP/ΔN
strain which can only replicate in SARS-CoV-2 N expressed cells, we demonstrated that both the Sftpc-hACE2-NF/F and
EIIa-hACE2-NF/F mice support viral replication. Consistent with our design, viral replication was limited to the lung
tissues in Sftpc-hACE2-NF/F mice, while the EIIa-hACE2-NF/F mice developed infections in multiple tissues. Furthermore,
our model supports different SARS-CoV-2 variants infection, and it can be successfully used to evaluate the effects of
therapeutic monoclonal antibodies (Ab1F11) and antiviral drugs (Molnupiravir). Finally, to test the effect of SARS-CoV-2
infection on male reproduction, we generated Sertoli cell-specific SARS-CoV-2 N expressed mice by crossing with
AMH-Cre transgenic line. We found that SARS-CoV-2 GFP/ΔN strain could infect Sertoli cells, led to spermatogenic
defects due to the destruction of blood-testis barrier. Overall, combining with different tissue-specific Cre transgenic
lines, the human ACE2 and SARS-CoV-2 NF/F line enables us to evaluate antivirals in vivo and study the pathogenesis of
SARS-CoV-2 on some special tissues or organs.

Introduction
The SARS-CoV-2 is the aetiological agent of cor-

onavirus disease 2019 (COVID-19)1–5. Up to date, January
2023, 663 million people have been infected, and more
than 6 million people have died worldwide6. The long-
term and large-scale epidemic of SARS-CoV-2 char-
acterized by widespread community transmission, while
causing large numbers of asymptomatic, mild and long

COVID cases7–9, has brought great pressure on the global
public health.
Since its outbreak in late 2019, many animal models

have played crucial roles in aiding the rapid development
of vaccines/drugs for prevention and therapy, as well as
understanding the pathogenesis of SARS-CoV-2 infection
and immune responses of hosts10. Multiple COVID-19
animal models have been developed to date, such as non-
human primates11,12, genetically modified mice13–15,
AAV- or Ad5-transduced mice16,17, as well as Syrian
hamster18, ferret19, poultry, and domestic animal mod-
els20. Nevertheless, the deficiencies have emerged, when
facing with new requirements about studying the patho-
genesis of SARS-CoV-2 in different tissues10. In addition,
all of these animal models are restricted to Animal Bio-
safety Level 3 (ABSL-3) laboratories, which strongly
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hinders the study of SARS-CoV-2 and development of
countermeasures.
Cre-loxP system is widely used for mammalian gene

editing21. This system has enabled researchers to inves-
tigate genes of interest in a tissue/cell (spatial control)
and/or time (temporal control) specific manner22. Pre-
viously, we had developed a transcription and replication-
competent viral-like particles of SARS-CoV-2 (SARS-
CoV-2 trVLP) system, which could recapitulate the entire
viral life cycle in vitro at BSL-2 laboratory23–25. In this
study, we combined the advantages of Cre-loxP system
and trVLP system to construct a tissue-specific infection
mouse model. First, we generated a human ACE2 and
SARS-CoV-2 NF/F knockin mouse line that constitutively
expresses human ACE2 and tissue-specifically expresses
SARS-CoV-2 N induced by Cre recombinase. By the lung-
specific and constitutively expressed SARS-CoV-2 N
mice, we demonstrated that the Sftpc-hACE2-NF/F is a
lung-specific infection model. Next, our model supports
different SARS-CoV-2 variants strains infection, and it
can be used to evaluate the effects of therapeutic mono-
clonal antibodies and antiviral drugs. Finally, we focused
on the symptoms of long COVID-19 in the male repro-
duction system. By crossing with AMH-Cre mice that
specifically express Cre-recombinase in Sertoli cells26, we
constructed the AMH-hACE2-NF/F mice. Through direct
intra-testicular challenge with SARS-CoV-2 GFP/ΔN in
AMH-hACE2-NF/F mice, we found that SARS-CoV-2
infected Sertoli cells and led to impaired spermatogenesis
due to the destruction of blood-testis barrier (BTB) in
testis. In summary, we generated a human ACE2 and
SARS-CoV-2 NF/F knockin mouse line, which enables us
to study the pathogenesis of SARS-CoV-2 on different
special tissues or organs. And we further demonstrated
that the infection of SARS-CoV-2 indeed results in testi-
cular damage by disrupting the BTB in Sertoli cells. Thus,
our mouse model provides a novel in vivo platform to
study the pathogenesis of SARS-CoV-2 in some special
tissues or organs at BSL-2 laboratory.

Results
Generation of an hACE2 and SARS-CoV-2-N conditional
knockin mouse line
To study the pathogenesis of SARS-CoV-2 in different

tissues, we generated a tissue-specific infection mouse
model of SARS-CoV-2. We designed a conditional
knockin mouse line capable of Cre recombinase-induced
expression of both the human ACE2 protein and the
SARS-CoV-2 N gene, which combined the advantages of
Cre-loxP system and SARS-CoV-2 trVLP23. In this design,
SARS-CoV-2 GFP/ΔN trVLP and related mutant strains
are only able to replicate in tissues with the expression of
the SARS-CoV-2 N gene (Fig. 1a). To generate the human
ACE2 and SARS-CoV-2-N conditional knockin mouse

line, we constructed a CAG promoter-loxP-PGK-Neo-
6×SV40 pA-loxP-Kozak-SARS-CoV-2-N-HA-rBG pA-
anti (CAG promoter-Kozak-Human ACE2 CDS-BGH
pA) cassette (Fig. 1b), in which the cDNA encoding the
human ACE2 protein was inserted downstream of the
CAG promoter. A BGH poly (A) sequence was added to
enhance mRNA stability. By flanking the PGK-Neo-
6×SV40 pA sequence with two loxP sites, the expression
of SARS-CoV-2 N gene could be induced by mating with
a tissue-specific expressed Cre-transgenic mouse. And the
construct was inserted into intron 1 of the ROSA26 site in
mice.
Mice bearing the intended insertion were termed as

hACE2-NF/F, and confirmed by PCR-based genotyping
(Fig. 1c), and the expression of the human ACE2 gene was
confirmed by immunofluorescence staining, western blot,
and qPCR (Fig. 1d, e, g). To confirm the efficiency of Cre-
mediated SARS-CoV-2 N gene expression, we crossed
hACE2-NF/F mice with the Sftpc-Cre transgenic mice27 to
obtain Sftpc-hACE2-NF/F mice which expressed SARS-
CoV-2 N in lung alveolar type II cells specifically. Sftpc-
hACE2-NF/F mice were initially administered tamoxifen
(via intraperitoneal injection) daily for 7 days to induce
Cre recombinase expression in the lung. Our results
showed that the SARS-CoV-2 N-HA protein was
expressed in lungs by immunofluorescence staining and
western blot with an anti-HA antibody (Fig. 1f, h). Thus,
we successfully generated a mouse line that constitutively
expresses hACE2 and specifically expresses SARS-CoV-2
N in lung induced by Cre recombinase.

Sftpc-hACE2-NF/F mice are susceptible to intranasal
infection of SARS-CoV-2 GFP/ΔN trVLP
To test whether the mouse expressing SARS-CoV-2 N

supports SARS-CoV-2 GFP/ΔN trVLP replication,
tamoxifen was administered for 7 times in a total of 7
consecutive days via intraperitoneal injection before
14 days of the infection, after another 7-day recovery
without tamoxifen treatment, 1 × 105 50% Tissue Culture
Infectious Dose (TCID50) of SARS-CoV-2 GFP/ΔN trVLP
was intranasally inoculated into Sftpc-hACE2-NF/F mice.
The control mice hACE2-NF/F received the same dose of
SARS-CoV-2 GFP/ΔN trVLP. Mouse body weights were
then monitored daily for up to 7 days, and mice were
sacrificed to collect tissue samples at 7 days post-infection
(dpi) (Fig. 2a). The Sftpc-hACE2-NF/F mice displayed
significant weight loss at 7 dpi compared with control
groups (Fig. 2b). Viral RNA replication was detected in
lungs from trVLP infected Sftpc-hACE2-NF/F mice,
whereas no detectable viral RNA was observed in lungs
from control mice (Fig. 2e).
As the N gene was replaced with green fluorescent

protein (GFP) gene in the SARS-CoV-2 GFP/ΔN gen-
ome23, we also monitored GFP RNA using SARS-CoV-2
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GFP/ΔN sub-genome specific primers (Fig. 2f) and
detected GFP protein accumulation in lungs of mouse
infected by SARS-CoV-2 GFP/ΔN with immunostaining
(Fig. 2g). Compared with the hACE2-NF/F mice, we found
that the GFP RNA and protein were only detected in the
Sftpc-hACE2-NF/F mice lung samples. To test the safety
of SARS-CoV-2 GFP/ΔN trVLP produced from infected
Sftpc-hACE2-NF/F mice, we performed the experiments
of animal infection and genetic stability of SARS-CoV-2
GFP/ΔN trVLP. We found that the SARS-CoV-2 GFP/ΔN
trVLP produced from infected Sftpc-hACE2-NF/F mice
could not infect hACE2 mice (Supplementary Fig. S1c),
and the genetic stability experiments showed that no PCR
product of >1050 bp was detected in any of the samples
(Supplementary Fig. S1d), which is similar to the SARS-
CoV-2 GFP/ΔN trVLP produced from cells23. These
results demonstrated that the Sftpc-hACE2-NF/F mice
support SARS-CoV-2 GFP/ΔN trVLP replication in lung
tissues in a relative safe way.

Sftpc-hACE2-NF/F mice developed interstitial pneumonia
upon SARS-CoV-2 GFP/ΔN infection
Having found that Sftpc-hACE2-NF/F mice can support

SARS-CoV-2 GFP/ΔN trVLP replication in lung tissues,
we subsequently examined whether Sftpc-hACE2-NF/F

mice develop interstitial pneumonia upon SARS-CoV-2
GFP/ΔN infection. To check whether the SARS-CoV-2
GFP/ΔN infected Sftpc-hACE2-NF/F mice produced
similar pathological features as other genetically modified
mice14, histopathological examination was performed in
lung sections from those animals. In the SARS-CoV-2
GFP/ΔN infected Sftpc-hACE2-NF/F mice, post-mortem
examinations showed focal dark-red lesions throughout
the dorsal region of the right middle lobe of the lung
(Fig. 2c), and hematoxylin-eosin (H&E) staining showed
that the Sftpc-hACE2-NF/F mice developed interstitial
pneumonia characterized by inflammatory cell infiltration
and alveolar septal thickening when compared with wild
type (WT) mice, uninfected Sftpc-hACE2-NF/F mice, and

SARS-CoV-2 GFP/ΔN infected hACE2-NF/F mice (Fig. 2d;
Supplementary Fig. S1a–b). Inflammatory cell infiltration
was also detected in an immunohistochemistry (IHC)
analysis (Supplementary Fig. S2a). In addition, we con-
ducted qPCR-based cytokine profiling and found that
compared with lungs from control mice, the lungs of
SARS-CoV-2 GFP/ΔN infected Sftpc-hACE2-NF/F mice
had elevated cytokine levels (e.g., Cxcl10, Il1b, Ifng, ccl2,
Ifnb1, Cxcl11, and Il6, among others) (Supplementary Fig.
S2b). These data support that upon SARS-CoV-2 GFP/
ΔN infection, Sftpc-hACE2-NF/F mice develop interstitial
pneumonia.

Sftpc-hACE2-NF/F mice support SARS-CoV-2 variants
infection
Due to the emergence of several variants throughout the

world28,29, we further constructed SARS-CoV-2 GFP/ΔN
related variants. To assess if the SARS-CoV-2 GFP/ΔN
variants can replicate in Sftpc-hACE2-NF/F mice, we
infected Sftpc-hACE2-NF/F mice with SARS-CoV-2 GFP/
ΔN variants and found that all the SARS-CoV-2 GFP/ΔN
variants could replicate in Sftpc-hACE2-NF/F mice.
Immunostaining of lung sections from the infected mice
showed that viral GFP protein could be detected in
samples from infected Sftpc-hACE2-NF/F mice (Fig. 3b, d,
f). Results from H&E staining lung sections from Sftpc-
hACE2-NF/F mice infected with different SARS-CoV-2
GFP/ΔN variants showed that they developed interstitial
pneumonia in lung tissues (Fig. 3a, c, e). Therefore, we can
study the pathogenesis of SARS-CoV-2 variants using this
mouse model.

Sftpc-hACE2-NF/F infection model is a lung-specific
infection model
After confirming that Sftpc-hACE2-NF/F mice are sus-

ceptible to SARS-CoV-2 GFP/ΔN infection and developed
interstitial pneumonia, we focused on the question whe-
ther the Sftpc-hACE2-NF/F infection model is a lung-
specific infection model. To answer this question, we

(see figure on previous page)
Fig. 1 The design and construction of human ACE2 and SARS-CoV-2-N conditional knockin mouse. a The left sub-panel shows the genetic
organizations of the SARS-CoV-2, SARS-CoV-2 GFP/ΔN, and related variants. The ORF encoding the N protein is replaced with GFP. The right sub-panel
illustrates the concept that the SARS-CoV-2 GFP/ΔN virus can only replicate in lungs that are expressing the N protein. b The genetic sequences
encoding the human ACE2 and SARS-CoV-2 N genes were inserted together into intron 1 of the ROSA26 site located on chromosome 6. The PGK-
Neo-6×SV40 pA sequence flanked by two loxP sites. When there were both the Cre recombinase and loxP sequences, the sequence between two
loxP sites (PGK-Neo-6×SV40 pA) will be removed. c Primers used for genotyping are indicated in the cartoon. Two different primers are used to
confirm the insertion element. d The expression of hACE2 in hACE2-N heterozygous, homozygous, and control mice (n= 5) assessed using qPCR.
e Mouse lung tissue lysates were subjected to SDS PAGE followed by western blot with ACE2 antibody (recognize both human and mouse ACE2).
f Mouse lung tissue lysates were subjected to SDS PAGE followed by western blot with HA antibody. g Immunofluorescence staining of lung sections
with anti-ACE2 (green) antibody (recognize both human and mouse ACE2) and 4,6-diamidino-2-phenylindole (DAPI, blue) for evaluating hACE2
expressing cells in the lungs of hACE2-NF/F mice. The two white frames are magnified at the right. h Immunofluorescence staining of lung sections
with anti-HA (red) antibody and DAPI (blue) for evaluating SARS-CoV-2 N expressing cells in the lungs of Sftpc-hACE2-NF/F mice. Two white frames
are magnified at the right.
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constructed a constitutively expressed SARS-CoV-2 N
mice by crossing with EIIa-Cre line30, which we termed as
EIIa-hACE2-NF/F, and it expressed in a wide range of
tissues, including the lung (Supplementary Fig. S3a).
Compared with EIIa-hACE2-NF/F infected mice, we can
test and verify whether the Sftpc-hACE2-NF/F is a lung-
specific infection model. The EIIa-hACE2-NF/F mice were
intranasally challenged with 1 × 105 TCID50 virus each,
and sacrificed to collect tissue samples at 7 dpi (Fig. 4a).
We initially tested whether EIIa-hACE2-NF/F mice are

also susceptible to infection of SARS-CoV-2 GFP/ΔN
trVLP. In comparison with WT mice, uninfected EIIa-
hACE2-NF/F mice, and SARS-CoV-2GFP/ΔN infected
hACE2-NF/F mice, H&E staining showed that only infec-
ted EIIa-hACE2-NF/F mice developed interstitial pneu-
monia (Fig. 4b; Supplementary Fig. S4). As expected,
immunostaining of lung sections from the infected EIIa-
hACE2-NF/F mice showed GFP protein expression in lung
cells (Fig. 4c). Then, we tested whether the Sftpc-hACE2-
NF/F mice get lung-specific infection through compared
with infected EIIa-hACE2-NF/F mice. Based on the results,
SARS-CoV-2 GFP/ΔN GFP RNA was found in the lung
tissues from both Sftpc-hACE2-NF/F and EIIa-hACE2-NF/F

mice, whereas the viral GFP RNA was observed in the
intestine, stomach, and testis from EIIa-hACE2-NF/F mice
(Fig. 4d). In addition, immunostaining of intestine and
stomach sections from the infected mice showed that viral
GFP protein expression could only be detected in samples
from EIIa-hACE2-NF/F mice (Fig. 4e, f). A mosaic pattern
of SARS-CoV-2 N expression has been commonly
observed in EIIa-hACE2-NF/F mouse lung (Supplementary
Fig. S3a), and we speculated that the lower viral RNA level
in EIIa-hACE2-NF/F lung compared with that of Sftpc-
hACE2-NF/F mice may be caused by the SARS-CoV-2
N-HA expression level. To test this possibility, we detected
the expression level of SARS-CoV-2 N-HA in EIIa-hACE2-
NF/F and Sftpc-hACE2-NF/F lung tissues. The western blot
results revealed that the SARS-CoV-2 N-HA protein level
in EIIa-hACE2-NF/F mice lung tissues is indeed lower than
that in Sftpc-hACE2-NF/F mice lung tissues (Supplemen-
tary Fig. S3b). These results documented that Sftpc-
hACE2-NF/F is a lung-specific infection model, and this
model can be used to generate different tissue-specific

infection model through crossing with various Cre
transgenic lines.

Application of this model in evaluating the efficacy of
antibodies and drugs
To test whether our models could be used for evalua-

tion of antivirals, we verify the antiviral effects of a neu-
tralizing antibody 1F1131 and molnuporavir32, which are
well characterized with their antiviral activity against
SARS-CoV-2 infection. At 4 h after intranasal infection
with 1 × 105 TCID50 of SARS-CoV-2 GFP/ΔN trVLP,
Sftpc-hACE2-NF/F mice were administered with vehicle
(PBS) or the antibody (Ab1F11) (Fig. 5a). For the pro-
phylactic orally administered EIDD-2801 experiment, we
also performed in Sftpc-hACE2-NF/F mice where we
administered vehicle (10% polyethylene glycol (PEG) and
2.5% Cremophor RH 40 in water) or EIDD-2801 2 h prior
to intranasal infection with 1 × 105 TCID50 of SARS-CoV-
2 GFP/ΔN trVLP, then vehicle or drug every 12 h there-
after (Fig. 5b). After treatment with 1F11 or EIDD-2801,
H&E staining of lung tissues showed that both 1F11 and
EIDD-2801 reduced the extent of lung hemorrhaging and
diffuse alveolar damage as compared to vehicle-treated
animals (Fig. 5c, d). Immunofluorescence staining of lung
samples and qPCR results showed that both 1F11 and
EIDD-2801 treatments resulted in reduced viral loads
(Fig. 5e–g). These results indicated that our mouse model
can be used as an in vivo platform under BSL-2 conditions
to evaluate the antiviral effect of monoclonal antibodies
and antiviral drugs23.

Testicular damage induced by SARS-CoV-2 infection
The aforementioned studies have demonstrated that the

application of our mouse model in drug evaluation, we
next sought to apply this model in studying the effect of
SARS-CoV-2 infection on specific tissues or organs. As
human ACE2 is highly expressed in Sertoli cells and
Leydig cells of testis33–35, it is possible that SARS-CoV-2
infects testis and leads to testicular damage. Although
relevant studies have been reported36–42, the effect of
SARS-CoV-2 infection on testis is still controversial43,44.
The somatic Sertoli cells within the seminiferous tubules
play a key role in supporting the maturation of germ cells

(see figure on previous page)
Fig. 2 SARS-CoV-2 GFP/ΔN infection in Sftpc-hACE2-NF/F mice. a A cartoon shows schedule of the intranasal infection. The Sftpc-hACE2-NF/F

mice were each intranasally infected with 1 × 105 TCID50 of SARS-CoV-2 GFP/ΔN virus, and were sacrificed to collect tissue samples at 7 dpi. b Mouse
body weights were monitored for up to 7 days (two experiments; n= 10; two-way ANOVA, symbols represent means ± s.e.m.). c Post-mortem
examinations showed focal dark-red lesions throughout the dorsal region of the right middle lobe of the lung. d Pathological changes in Sftpc-
hACE2-NF/F mouse lung after infection. Five euthanized mice were used to examine the pathological changes in the lungs after 7 dpi. Mouse lung
showed multifocal lesions with inflammatory infiltration (red arrow) and fibroplasia (green arrow). e Viral RNA was quantified using qPCR of mouse
lung tissues collected at 7 dpi. f SARS-CoV-2 GFP/ΔN sub-genome monitored by using SARS-CoV-2 GFP RNA-specific primers. g Immunofluorescence
analysis of mouse lung paraffin sections staining for SARS-CoV-2 GFP/ΔN GFP protein (green), N-HA (red), and DAPI (blue).

Yang et al. Cell Discovery            (2023) 9:43 Page 6 of 16



(Fig. 6a)45. To investigate the effect of SARS-CoV-2
infection on testis, we generated AMH-hACE2-NF/F mice
that specifically expressed SARS-CoV-2 N in Sertoli
cells26 (Supplementary Fig. S5).
Following intra-testicular inoculation with 5 × 103

TCID50 SARS-CoV-2 GFP/ΔN trVLP in AMH-hACE2-

NF/F mice, immunofluorescence staining of viral GFP
protein showed a few positive cells in seminiferous
tubules at 4 dpi (Fig. 6b). At 7 dpi, there were no gross
changes in the appearance of the testes or in the size of
inoculated testes compared with the contralateral control
testes (Fig. 6c, d). However, the sperm counts were
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significantly reduced in the SARS-CoV-2 GFP/ΔN infec-
ted testes (Fig. 6f, h), and severe testicular damage was
observed (Figs. 6e, g, 7f–h; Supplementary Fig. S8b). Some
seminiferous tubular lumens only contained cell debris
(Fig. 6g; Supplementary Fig. S6a). Cytoplasmic vacuola-
tion, degeneration, detachment of Sertoli cells into the
lumen (Figs. 6g, 7b; Supplementary Fig. S6a–b), and
mononuclear cell infiltration in testis (Fig. 6g; Supple-
mentary Fig. S6a) were also observed. The epididymis had
interstitial mononuclear cell infiltration with lumens filled
with sloughed germ cells and cell debris (Fig. 6h). At 23
dpi, histological analysis of the SARS-CoV-2 GFP/ΔN
infected AMH-hACE2-NF/F testes showed severe damage
of the seminiferous tubule structures with the loss of the
central ductal lumen (Supplementary Fig. S7).

SARS-CoV-2 infection disrupts the integrity of BTB
The BTB is formed between Sertoli cells, where it creates

a unique microenvironment for spermatogenesis46. If BTB
is disrupted, spermatogenesis can be severely impaired, and
germ cells will loss due to cell death47, which is similar to
the phenotype in SARS-CoV-2 GFP/ΔN infected AMH-
hACE2-NF/F testes. Then we tested the integrity of the BTB.
According to the immunofluorescence results, F-actin was
affected at VII-VIII and X-XI stages (Fig. 7a), suggesting
that the BTB structure was disrupted in SARS-CoV-2 GFP/
ΔN infected testes. SOX9 staining indicated that the Sertoli
cells detached from the basal membrane (Fig. 7b). In the
mock testes, tight junction protein ZO-1, adhesion junction
proteins, and β-catenin were detected at the peripheral
region of seminiferous tubules, where tight junctions are
formed (Fig. 7c, d; Supplementary Fig. S8a). In contrast, the
expressions of these proteins were significantly reduced in
SARS-CoV-2 GFP/ΔN infected testes, and their distribu-
tions were also perturbed (Fig. 7c, d; Supplementary Fig.
S8a). Moreover, IHC staining showed that there were
increased immune cell infiltration (CD3 T cells, CD20 B
cells, and CD68 macrophages) in the testicular interstitium
compared with that of the control testis (Fig. 7e), and the
TUNEL staining showed that the number of cell death in
testis were dramatically increased (Fig. 7g, h). The immu-
nofluorescence staining of DDX4 and γ-H2AX showed that
spermatogenesis was severely impaired (Fig. 7f, Supple-
mentary Fig. S8b). Together, our results revealed that Ser-
toli cells can be infected by SARS-CoV-2 GFP/ΔN, and the

infection disrupts the integrity of the BTB, which eventually
leads to oligospermia or even azoospermia.

Discussion
To accelerate SARS-CoV-2 study, we generated a human

ACE2 and SARS-CoV-2-N conditional knockin mouse line
in which SARS-CoV-2-N expression is under the control of
Cre-loxP system. By using the lung-specific and con-
stitutively expressed Cre lines, we constructed Sftpc-hACE2-
NF/F and EIIa-hACE2-NF/F mice. Further research demon-
strated that both Sftpc-hACE2-NF/F and EIIa-hACE2-NF/F

mice are susceptible to SARS-CoV-2 GFP/ΔN and the for-
mer is a lung-specific infection model. Moreover, we
demonstrated that our model can be used to study the
pathogenesis of different SARS-CoV-2 variants, and it can
serve as an in vivo model to evaluate the effect of neutralizing
antibodies and antiviral drugs under ABSL-2 condition.
The initial site of SARS-CoV-2 infection and replication

is the sinonasal airway epithelium48. As the disease
spreads down to the alveolar compartment, the primary
cell being infected by SARS-COV-2 is the alveolar type II
(AT2) cell, which is also the main cell type that expresses
ACE2 and TMPRSS2 in the lung49. After SARS-CoV-2
infection, AT2 cells release the virus that infects AT2
cells, and also secrete interferons and inflammatory
cytokines and chemokines to initiate the innate immune
response. The inflammatory response includes mobiliza-
tion of immune cells and tissue damage. The ultimate
consequence is diffuse alveolar injury with loss of func-
tional surfactant, damage of alveolar type I cells and
endothelial cells, alveolar flooding and influx of inflam-
matory cells50. In Sftpc-hACE2-NF/F mice, SARS-CoV-2
mainly replicates in AT2 cells, which can roughly mimic
the lung pathogenesis infected by real virus (Fig. 2), sug-
gesting that AT2 cells might be the major target of SARS-
CoV-2 in lung tissues.
Although several hACE2 transgenic mice have been

generated with different strategies14, our mouse model
has several advantages. First, our model is safer than the
previous mouse models, because the SARS-CoV-2 GFP/
ΔN trVLP can only replicate in the N expressed mouse, it
can be operated in the ABSL-2 condition, which could
accelerate our studies on SARS-CoV-2. Second, since this
model can be used to evaluate neutralizing antibodies and
antiviral drugs, it will be a useful platform to test new

(see figure on previous page)
Fig. 4 SARS-CoV-2 GFP/ΔN infection in EIIA-hACE2-NF/F mice. a EIIA-hACE2-NF/F mice were intranasally challenged with 1 × 105 TCID50 virus each
and sacrificed to collect tissue samples at 7 dpi. b Pathological changes in lungs of EIIA-hACE2-NF/F mice after infection. Five euthanized mice were
used to examine the pathological changes in the lungs at 7 dpi. c Immunofluorescence staining of mouse lung paraffin sections against the SARS-
CoV-2 GFP/ΔN GFP protein (green), N-HA (red), and DAPI (blue). d Tissue distribution of SARS-CoV-2 viral RNA (the GFP gene RNA) level which relative
to the Sftpc-hACE2-N mouse lung tissue group. Each tissue was processed with viral RNA copies analysis by real-time qPCR. e, f Immunofluorescence
staining of mouse intestine (e) and stomach (f) paraffin sections for SARS-CoV-2 GFP/ΔN GFP protein (green) and DAPI (blue).
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vaccines and other potential therapeutics under ABSL-2
condition. Third, with the help of some Cre recombinase
transgenic lines, the N gene can be induced to express in
certain special cells, tissues or organs, such as lung, kid-
ney, liver, spleen, and testis. These tissue-specific mouse
models can be used to test whether SARS-CoV-2 infec-
tion directly or indirectly causes the post-COVID condi-
tions in different tissues, and further dissect the
underlying mechanisms. For example, we generated a
Sertoli cell-specific mouse model to test the effect of
SARS-CoV-2 infection on spermatogenesis by crossing
with AHM-Cre mouse (Fig. 6b). We found that the SARS-
CoV-2 GFP/ΔN indeed can infect the Sertoli cells. At 7
dpi, the germ cells lost due to cell death in SARS-CoV-2
GFP/ΔN infected AMH-hACE2-NF/F testes (Fig. 6g). In
addition, we provided evidence that the infection of
SARS-CoV-2 disrupts the BTB (Fig. 7). Those results
demonstrated that SARS-CoV-2 infection is a risk factor
threatening BTB integrity, and causes testicular damage.
It is well known that a broad range of virus families,

including human immunodeficiency virus, mumps virus,
influenza, Zika virus, Coxsackie virus, may induce orchitis
and even result in male infertility51. Our study demon-
strates that SARS-CoV-2 infection influences spermato-
genesis and provides direct evidence that SARS-CoV-2
infection may disrupt BTB integrity. However, we do not
know how SARS-CoV-2 infection leads to BTB disrup-
tion. For this question, one hypothesis is that SARS-CoV-
2 infection leads to Sertoli cells death or the BTB-related
genes changes. Another hypothesis is that the immune
effects of SARS-CoV-2 infection leads to testis damage
such as the disruption of BTB integrity. The detailed
molecular mechanisms of SARS-CoV-2 infection-causing
to testis damage still need further study.

Materials and methods
Generation of human ACE2 and SARS-CoV-2-N ROSA26
conditional knockin mice
The gRNA to mouse ROSA26 gene, the donor vector

containing “CAG promoter-loxP-PGK-Neo-6×SV40 pA-
loxP-Kozak-SARS-CoV-2-N-HA-rBG pAanti (EF1A
promoter-Kozak-Human ACE2 CDS-BGH pA)” cassette,
and Cas9 mRNA were co-injected into fertilized mouse

eggs to generate targeted conditional knockin offspring.
F0 founder animals were identified by PCR followed by
sequence analysis, which were bred to wild-type mice to
test germline transmission. All of the animal experiment
were performed according to approved institutional ani-
mal care and use committee (IACUC) ptotocols (#2021-
002) of the Institute of Zoology, Chineses Academy of
Sciences.

Cell culture
Caco-2 N and Caco-2 cells were maintained in Dul-

becco’s modified Eagle medium (DMEM) (Gibco, China)
supplemented with 10% (vol/vol) fetal bovine serum
(FBS), and 50 IU/mL penicillin streptomycin in a humi-
dified 5% (vol/vol) CO2 incubator at 37 °C. All cell lines
were tested negative for mycoplasma.

RNA isolation and RT-qPCR
Total cellular RNA was isolated using TRIzol reagent

(Thermo, 15596018). To analyze the RNA levels of SARS-
CoV-2 in infected tissues, quantitative real-time PCR was
performed. In brief, 1 μg total RNA was reverse transcribed
using ReverTra Ace qPCR RT Kit (TOYOBO, FSQ-101) to
produce cDNA with random primers. Reactions of qPCR
were carried out using the 2× RealStar Green Power Mix-
ture (Genstar, A311) according to the instruction. The
qPCR primers for viral RNA were as follows: THU-2816
(5′-CGATCTCTTGTAGATCTGTTCTC-3′) and THU-
2818 (5′-TCAGGGTCAGCTTGCCGTAG-3′). The
sequences of the qPCR primers for GAPDH were as fol-
lows: GAPDH F (5′-AGGTCGGTGTGAACGGATTTG-3′)
and GAPDH R (5′-TGTAGACCATGTAGTTGAGGTCA-
3′). All data were normalized relative to the housekeeping
gene GAPDH.

Western blotting
Sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE) immunoblotting was conducted as
follows: after trypsinization and cell pelleting at 1500 rpm
for 10min, whole-cell lysates were harvested in cell lysis
buffer (50 mM Tris-HCl (pH 7.5), 150mM NaCl, 1% NP-
40, 1 mM EDTA) supplemented with protease inhibitor
cocktail (Sigma, P8340). Lysates were electrophoresed in

(see figure on previous page)
Fig. 6 Spermatogenic defects of the AMH-hACE2-NF/F mice after SARS-CoV-2 GFP/ΔN infection. a Illustration and representative H&E images of
testicular section of WT mice show properly arranged testicular structure, seminiferous tubules and different cell types including Sertoli cells and
germ cells at various stages. b Immunofluorescence staining of SARS-CoV-2 GFP in AMH-hACE2-NF/F mouse testes. c Representative image of testis
dissected from mock and SARS-CoV-2 GFP/ΔN-infected AMH-hACE2-NF/F mouse. d Average weight of testis (n= 5–10 for each group). Error bars
represent mean ± SD. e The diameter of seminiferous tubules. f Sperm counts. The epididymis was dissected, sperms were rinsed out for counting
the number per testicle (n= 5–10 for each group). Error bars represent mean ± SD. *P < 0.05, **P < 0.01 by t-test comparing to the controls.
g Histopathological changes of testis from SARS-CoV-2 GFP/ΔN -infected AMH-hACE2-NF/F mice and control mice. h Representative H&E images of
epididymis of mock and SARS-CoV-2 GFP/ΔN infected AMH-hACE2-NF/F mice.
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4%–12% polyacrylamide gels and transferred onto PVDF
membrane. The blots were blocked at room temperature
for 0.5 h using 5% nonfat milk in 1× phosphate-buffered
saline (PBS) containing 0.1% (v/v) Tween 20. The blots
were exposed to primary antibodies anti-HA (ABclonal,
AE008), anti-ACE2 (Proteintech, 21115-1-AP), and anti-
GAPDH (ABclonal, AC001) in 5% nonfat milk in 1× PBS
containing 0.1% Tween 20 for 2 h. The blots were then
washed in 1× PBS containing 0.1% Tween 20. After 1 h
exposure to Alexa Fluor 680-conjugated goat anti-mouse
or Alexa Fluor 800-conjugated goat anti-rabbit secondary
antibody, and immunoblots were visualized using the
ODYSSEY Infrared Imaging System (LI-COR biosciences,
USA).

Mouse challenge experiments
For intranasal infection, animals were housed in an

isolator in BSL-2 animal facilities at the Institute of
Microbiology, Chinese Academy of Sciences. Mice were
intranasally infected with 1 × 105 TCID50 of SARS-CoV-2
GFP/ΔN. Mice were then weighed and monitored daily,
and sacrificed on day 4 to 7 post infection for serum
collection and tissue processing.

Histopathological analysis
Mouse tissues were excised and fixed with 10% neutral

buffered formalin, dehydrated, and embedded in paraffin.
Each embedded tissue was sectioned into 5-μm thickness
longitudinal sections. Three tissue sections derived from
different parts of each tissue were stained with H&E
according to standard procedures for examination by light
microscopy. The slides were scanned by Leica Aperio
VESA8 equipped with a 40× objective lens (HC Plan-
Apochromat; Leica) and acquired a camera (Grasshopper
3 color Bayer Camera, Point Grey) at RT. Images were
analyzed byusing Aperio ImageScope software
(v12.3.2.7001) and aligned by Adobe Illustrator (CS4).

Immunohistochemistry
Paraffin-embedded tissues were sectioned at the thick-

ness of 5-μm for immunohistochemistry staining. Sec-
tions were deparaffinized and rehydrated, endogenous
peroxidases were inactivated with methanol containing

0.3% hydrogen peroxide for 30min. Antigen retrieval was
performed with citrate buffer (pH 6) at 95 °C for 30min.
After incubation in blocking solution (5% normal goat
serum) for 10min at room temperature, the slides were
incubated with anti-CD3 antibody (Invitrogen, 1:200),
anti-CD20 antibody (Abcam, 1:200) and rabbit anti-CD68
polyclonal antibody (Abcam, 1:200) overnight at 4 °C.
After three washes, the sections were incubated with
biotinylated anti-IgG at 37 °C for 1 h, followed by
Streptavidin-peroxidase conjugate (Zhongshan Bio-
technology). Immunoreactivity was detected using 3, 30
diaminobenzidine and the sections were counterstained
with hematoxylin for observation by microscopy.

SARS-CoV-2 GFP/ΔN trVLP preparation
Assembly of a full-length SARS-CoV-2 GFP/ΔN cDNA:

the different fragments were obtained by PCR and then
digested with restriction enzyme23. Digested fragments
were purified by E.Z.N.A gel extraction kit (Omega), and
were ligated by T4 DNA ligase. Full-length assembly
cDNA was extracted using phenol/chloroform, pre-
cipitated using isopropanol, and resuspended in 10 μL
nuclease-free water.
RNA in vitro transcription, electroporation, and virus

production: RNA transcript was in vitro transcribed by the
mMESSAGE mMACHINE T7 Transcription Kit (Ther-
moFisher Scientific) in 30 μL system with some modifica-
tions. Twenty micrograms of viral RNA and 20 μgN mRNA
were mixed and added to a 4-mm cuvette containing
0.4mL of Caco-2-N cells (8 × 106) in Opti-MEM. Single
electrical pulse was given with a GenePulser apparatus (Bio-
Rad) with setting of 270 V at 950 μF. GFP signal can be
observed 17 h post electroporation. Three days post elec-
troporation, P0 virus was collected and Caco-2-N cells were
infected with P0 virus to amplify virus. The supernatants
were collected, passed through a 0.45-μm filter, aliquoted,
and frozen at –80 °C refrigerator.

Intra-testicular inoculation
Mice were housed on a 12 h light/dark cycyle with free

water and food provided at a temperature of 22/23 °C,
50% humidity. The procedure were followed by the pro-
tocol in a previous study52 based on the introduction of

(see figure on previous page)
Fig. 7 The integrity of BTB is disrupted in SARS-CoV-2 infected testes. a Distribution of F-actin in the testes of SARS-CoV-2 GFP/ΔN-infected
AMH-hACE2-NF/F mouse and control mouse, nuclei were stained with DAPI. b Immunofluorescence staining of SOX9 in adult mouse testes shows
the abnormal distribution of Sertoli cells in SARS-CoV-2 GFP/ΔN-infected AMH-hACE2-NF/F mouse and control mouse. c, d Immunofluorescence
staining of β-catenin (c) and ZO-1 (d) in the adult mouse testes shows their abnormal distribution in SARS-CoV-2 GFP/ΔN-infected AMH-hACE2-NF/F

mouse and control mouse. e IHC staining analysis for B cells (CD20), T cells (CD3) and macrophages (CD68+) in SARS-CoV-2 GFP/ΔN infected AMH-
hACE2-NF/F mouse testes. f Immunofluorescence staining of DDX4 in the adult mouse testes shows abnormal distribution of germ cells in SARS-CoV-
2 GFP/ΔN-infected AMH-hACE2-NF/F mouse and control testes. g Representative images of apoptotic cells revealed by TUNEL in SARS-CoV-2 GFP/ΔN
infected AMH-hACE2-NF/F mouse testes and control groups. h The number of TUNEL-positive cells per seminiferous tubule.
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fluid through the efferent ductules. All surgical proce-
dures were carried out under aseptic conditions. Keta-
mine/medetomidine was used for anesthesia induction,
and buprenorphine was used for long-acting analgesia
after surgery. Following surgery, atipamezole was given to
rapidly reverse the sedative effects of medetomidine. The
lower abdomen was shaved and swabbed with chlorhex-
idine. A small incision was made in the lower abdominal
and muscle wall slightly to the left of the midline. The
testes and epididymis were delivered to a sterile, moist
cotton swabs and kept moist with sterile saline during the
surgery. Under a dissecting microscope, the efferent ducts
were identified and isolated. A hypodermic needle was
used to make a small incision in an efferent duct, close to
the rete testis, which was then cannulated with a glass
microneedle syringe loaded with viral particles. Gentle,
steady pressure was applied to ensure the seminiferous
tubules were filled and this was monitored by the addition
of trypan blue (0.08% (w/v)) to the solution of viral par-
ticles. For each testis, injection amount was no more than
15 μL. The testis was carefully replaced into the body
cavity, which was closed with both internal and external
vicryl (Ethicon) sutures. The mouse was kept warm and
observed frequently during the post-operative period. The
left testis was treated with SARS-CoV-2 GFP/ΔN and the
right testis was treated with PBS as a paired control.
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