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Bivalent mRNA vaccine booster induces robust
antibody immunity against Omicron lineages BA.2,
BA.2.12.1, BA.2.75 and BA.5
Zhenhao Fang1,2,3, Valter S. Monteiro 4, Anne M. Hahn 5, Nathan D. Grubaugh5,6, Carolina Lucas4 and
Sidi Chen 1,2,3,7,8,9,10,11,12✉

Dear Editor,
As the immune protection through antibodies elicited

by the first booster dose wanes over time and new Omi-
cron sublineages emerge with stronger immune evasion
from humoral anti-Spike responses, the need for variant-
adapted coronavirus disease 2019 (COVID-19) vaccine
boosters is increasingly imminent. On June 28, vaccine
advisory committee of the US Food and Drug Adminis-
tration (FDA) voted in favor of updating COVID-19
vaccine booster to add an Omicron component. However,
the rapid displacement of dominant Omicron lineages
(from BA.1 to BA.2, then BA.2.12.1 and now BA.4, BA.5,
and in some areas BA.2.75) makes it difficult to anticipate
future COVID-19 vaccine targets while maintaining
potency against circulating variants1. Each former domi-
nant Omicron lineage, including BA.1, BA.2 and
BA.2.12.1, have been replaced in a span of less than
3 months2,3. Reinfection or vaccine breakthrough infec-
tion caused by a new dominant variant is not uncommon
due to its strong immune evasion4,5, which complicates
the redesign of new COVID-19 boosters given the short
time window of each Omicron wave and the lead time
between design, validation, and deployment of new
boosters.
It is a crucial question to ask which variant-based

antigen(s) to use in the next generation COVID-19
boosters in order to elicit potent and broad response to
past, present and emerging variants. At the time we
initiated this study, the then-dominant subvariant BA.2

was gradually replaced by BA.2.12.1, BA.4, and BA.5. The
L452Q/R substitutions in BA.2.12.1 and BA.4/5 are
located at the receptor binding region (RBD) and ACE2
interface, and therefore associated with neutralizing
antibody escape (Fig. 1a, b)6, with L452R detected in
previous variants, including Delta, highlighting similar
evolutionary trajectories in various independent variants.
Omicron BA.2.75 has quickly become local dominant in
some regions of India (e.g. Karnakata) in the presence of
BA.5 and was found more resistant to neutralization by
polyclonal sera than BA.27.
Bivalent vaccine candidates have recently gained

traction due to the concept of direct targeting of two
variants, which may also induce broader immunity
against other variants. Bivalent vaccine candidates have
been under active clinical testing such as Modern’s
mRNA-1273.214, which is an equal mixture of two
spike-encoding mRNAs targeting ancestral SARS-CoV-
2 and Omicron BA.1 (B.1.1.529), demonstrating the
importance and the clinical relevance of bivalent vac-
cination. In light of this mix of virus genetics (Fig. 1a,
b), we asked if mRNA vaccine candidates based on
antigens of a circulating variant (BA.2) and/or former
dominant variant (Delta) can mediate broad antibody
response to emerging variants such as BA.2.12.1,
BA.2.75, BA.4, or BA.5. It is worth to explore in this
direction for a few reasons. The lead time of combining
boosters adapted to dominant and former dominant
variants will be shorter than predicting and developing
boosters targeting new variants. In addition, because of
the rapid displacement of circulating variants, the
mismatch between the strain used for updated boosters
and emerging strain may always exists. How to elicit
broad response to emerging variants using existing
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Fig. 1 (See legend on next page.)
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variant antigens is an inevitable question to answer
when redesigning updated COVID-19 boosters.
To answer this question, we compared the antibody

response elicited by ancestral (wild type, WT), Delta, or
BA.2 spike-based monovalent or Delta & BA.2 bivalent
mRNA boosters against Omicron BA.2, BA.2.12.1,
BA.2.75, and BA.4/5 Spike proteins. Mice were pre-
immunized with two doses of 1.5 µg WT lipid nano-
particle mRNA (LNP-mRNA), followed by a booster dose
with a 1.5 µg monovalent, or bivalent (1.5 µg
Delta+ 1.5 µg BA.2) immunization shot. All three
monovalent and one bivalent booster elevated Omicron
binding and neutralizing antibody titers to various degrees
as indicated by ELISA and pseudovirus neutralization
assay (Fig. 1c‒e; Supplementary Figs. S1‒S5, Table S1),
exemplifying the benefit of receiving WT or variant-
adapted booster shots against circulating emerging var-
iants. The BA.2, BA.2.12.1, BA.2.75, and BA.5 pseudo-
viruses were quantified and normalized to ensure similar
infection rate (Supplementary Figs. S6, S7c). Booster-
associated titer ratios quantify the booster’s effect on
antibody titers and were shown in each bar graph as post-
booster titer on day 42 over pre-booster titer on day 28.
Its dynamic range was greater in neutralization assay
(ratio ranges from 1 to 23) than in ELISA (ratio ranges
from 2 to 11).
Before boosters’ immunization, 24 mice in four groups

received the same treatment, two doses of WT LNP-
mRNA, and showed little or no significant difference in
binding and neutralizing antibody titers measured on day
0 and day 28 (Supplementary Figs. S4‒S7, S8a). A minimal
increase in Omicron neutralizing antibody titers was
observed from mice immunized with two doses of WT
LNP-mRNA (Supplementary Fig. S8b). This titer increase
by WT LNP-mRNA was lowest in neutralization assay of
BA.4/5 (~40% increase) as compared to BA.2.12.1,
BA.2.75, and BA.2, consistent with the fact that BA.4/5
has stronger evasion of existing antibody therapeutics or

vaccine-induced immunity6. On day 42 (2 weeks post
booster), the binding as well as neutralizing titers of mice
that received WT booster were lower compared to those
of mice that received variant booster (Supplementary Figs.
S4, S8a). These data highlight the advantage of variant-
adapted boosters administration, which is consistent with
our previous reports8–10. Interestingly, compared to the
neutralizing titers against BA.2 and BA.2.12.1, BA.2
monovalent but not Delta & BA.2 bivalent booster suf-
fered a loss of BA.4/5 pseudovirus and authentic virus
neutralizing titers (Supplementary Fig. S8c, d). Collec-
tively these indicate a broader activity of bivalent booster
and strong neutralization escape of Omicron BA.4 or
BA.5 even in the BA.2 mRNA-boosted individuals. In
addition, RBD- and Ectodomain (ECD)- binding antibody
titers directly correlated and showed distinct linear
regression models between day 28 and day 42 in WT,
Delta (right panel in Supplementary Fig. S5) as well as
Omicron antigen datasets (left panel). The upper right
shift of day 42 linear segment suggested a titer increase by
boosters while the lower left shift in Omicron antigen
dataset was associated with antibody evasion of Omicron
epitopes.
The boosting effect of Delta- and BA.2-specific mono-

valent or bivalent LNP-mRNAs is universally higher than
that of WT LNP-mRNA, which only modestly increased
antibody titer (statistically insignificant, increase by ≤1
fold, fold change = ratio ‒ 1) in neutralization assays of
Omicron BA.5, BA.2.12.1, BA.2.75, and BA.2 pseudovirus
and authentic virus (Fig. 1d, e). The Delta & BA.2 bivalent
booster showed superior performance of enhancing
binding and neutralizing titers than either monovalent
counterparts in neutralization of Omicron BA.2,
BA.2.12.1, BA.4 or BA.5 pseudovirus and infectious virus,
but not in neutralization of BA.2.75 pseudovirus. The
bivalent booster-associated titer ratios were 23, 16, 5, and
7 fold for neutralization of BA.2, BA.2.12.1, BA.2.75, and
BA.4/5 pseudovirus, respectively, while Delta/BA.2

(see figure on previous page)
Fig. 1 Potent antibody response to Omicron BA.2, BA.2.12.1, BA.2.75, and BA.5 subvariants by Omicron BA.2 and Delta bivalent LNP-
mRNA. a Vaccine design of Omicron BA.2 and Delta variant-specific LNP-mRNA based on BA.2 and Delta spike mutations. Unique spike mutations on
BA.2.12.1, BA.2.75, and BA.5 (not included in LNP-mRNA) are colored in orange, green, and red. b Distribution of BA.2 (purple), BA.2.12.1(orange),
BA.2.75 (green), and BA.5 (red) mutations in one protomer of Omicron spike trimer (PDB: 7T9K). c Delta- and BA.2-specific monovalent or bivalent
LNP-mRNA boosters improved antibody response of WT-vaccinated mice to Omicron BA.2, BA.2.12.1, and BA.4/5 subvariants. Comparison of binding
antibody titers against BA.2, BA.2.12.1, and BA.4/5 spike RBD and ECD before (D28) and after (D42) receiving 1.5 µg WT-, Delta-, BA.2-specific
monovalent or bivalent (1.5 µg Delta+ 1.5 µg BA.2) LNP-mRNA boosters. Antibody titers were quantified by area under curves (AUC) of ELISA
response curves in Supplementary Figs. S1 and S2. Blood samples were collected in mice immunized with two doses of 1.5 µg WT LNP-mRNA
followed by 1.5 µg WT-, Delta-, BA.2-specific monovalent or Delta & BA.2 bivalent boosters (n= 6 in each group). d Neutralization of Omicron BA.2,
BA.2.12.1, BA.2.75, and BA.5 pseudovirus by plasma of mice before (D28) and after (D42) vaccination with WT-, Delta-, BA.2-specific monovalent or
Delta & BA.2 bivalent boosters. Six samples collected on day 0 were included and compared to both D28 and D42 datasets. e Neutralization of
Omicron BA.2.12.1 and BA.5 authentic virus by plasma of mice before (D28) and after (D42) vaccination with WT-, Delta-, BA.2-specific monovalent or
Delta & BA.2 bivalent boosters. Six samples collected on day 0 were included and compared to both D28 and D42 datasets. The authentic virus
neutralization assay was blinded. Titer ratios before and after receiving boosters (D42/D28 ratios) were shown in Fig. 1c‒e. Titers in Fig. d, e are log10
transformed. Statistical analysis details can be found in supplementary methods.
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monovalent booster ratios were 10/12, 7/8, 6/10, 4/3
respectively. The linear regression models of neutralizing
and binding titers showed a trend of correlation (Sup-
plementary Fig. S9). The neutralization titers measured on
day 42 by pseudovirus and authentic virus assays were
well correlated and the authentic virus titers tend to be
lower (Supplementary Fig. S10).
To sum up, our data delivered a few clear messages

regarding the potency of boosters against Omicron: (1)
either WT or variant, monovalent or bivalent boosters can
improve antibody response to Omicron BA.2, BA.2.12.1,
BA.2.75 and BA.4/5, demonstrating the benefit and
necessity of receiving booster shots; (2) the variant boos-
ters with closer antigenic distance to circulating variant
perform universally better than WT booster; (3) compared
to monovalent booster, bivalent booster combining two
genetically distant variants, Delta & BA.2 showed broader
and numerically stronger antibody response to Omicron
BA.2, BA.2.12.1 and BA.4/5 subvariants, but not BA.2.75.
Taken together, these data provide pre-clinical evidence
and rationale for developing bivalent or multi-valent var-
iant-targeted COVID-19 boosters.
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