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Enhanced channel activity by PI(4,5)P2 ignites
MLKL-related pathogenic processes
Bingqing Xia1,2, Jingbo Qie3, Xurui Shen1,2, Sheng Wang3✉ and Zhaobing Gao1,2✉

Dear Editor,
Mixed lineage kinase domain-like protein (MLKL)

emerged as executioner of necroptosis1–3. The intrinsic
nature of MLKL and how it induces plasma membrane
permeabilization, forming a huge pore or a channel,
remain an interesting conundrum for a long time4,5. Our
previous study demonstrated that MLKL forms cation
channels and its channel activity is a primary effector of
necroptosis5,6. In the field of MLKL, a major unsettled
issue is, if MLKL does serve as channels, how it ignites the
necrotic or non-necrotic pathogenic progresses4,5. Phos-
phatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a neces-
sary cofactor of various ion channels7. The physical
interaction between MLKL and phosphatidylinositol
phosphates (PIPs), including PI(4,5)P2, facilitates MLKL-
mediated liposome leakage and the necrotic membrane
disruption8–10. These studies have been directed toward
understanding whether PI(4,5)P2 is a direct modulator for
the MLKL channel activity. The potential effects of PI(4,5)
P2 on MLKL channels were thus evaluated electro-
physiologically and the subsequent pathogenic influences
were explored.
The four-helical bundle domain (4HBD) in the

N-terminal region of MLKL (MLKLNT) is sufficient to
induce oligomerization and trigger cell death9. Consistent
with our previous study, MLKLNT protein exhibited
channel activity, translocated onto plasma membrane, and
caused cell death, similarly to full-length protein
(MLKLFL) (Supplementary Figs. S1 and S2). We next asked
whether lipids could regulate the channel activity. Inter-
estingly, we found that the typical single-channel currents

could only be recorded when the phosphatidylcholine (PC)
bilayers were premixed with phosphatidylserine (PS).
Different from the neutrally charged PC, PS is a type of
negatively charged phospholipid (Fig. 1a; Supplementary
Fig. S3a, b). Afterward, MLKL channel activity was tested
with some other important negatively charged phospho-
lipids. Under the identical experimental conditions, we
observed much larger step-like signals in the 3PC/2PS
lipids premixed with 2% PI(4,5)P2 compared with those
without PI(4,5)P2 (Fig. 1a). The overall open probability
(Po) was enhanced to 27.4% (Fig. 1b). These step-like
currents exhibited two conductance states (Fig. 1b, c;
Supplementary Fig. S3c). Influences of other lipids on
MLKL channel activity were tested, including phosphati-
dylinositol 3,4-bisphosphate (PI(3,4)P2) and phosphatidy-
linositol 3,5-bisphosphate (PI(3,5)P2), phosphatidylinositol
4-phosphate (PI(4)P), 1,4,5-trisphosphate inositol (IP3) and
diacylglycerol (DAG), phosphatidylinositol 3,4,5-trispho-
sphate (PIP3)

11. Among these lipids, PI(4)P is the only one
that increases MLKL channel open probability (Fig. 1b;
Supplementary Fig. S3a, b). Collectively, these data indi-
cate that the anionic phospholipids are essential for the
channel function and the channel activity could be
modulated by the PIPs, particularly PI(4,5)P2. Subse-
quently, we further tested MLKL channel activity in the
presence of different concentrations of PI(4,5)P2. An
increased concentration of PI(4,5)P2 induced more fre-
quent and larger currents of MLKL channel (Fig. 1c, d;
Supplementary Fig. S4a, b). To further evaluate whether
the observed influences were due to the changes in PI(4,5)
P2 level, a well-recognized approach was exploited to
manipulate PI(4,5)P2 levels in live cells. Stimulation of the
M1 muscarinic receptor can activate PLC-β which
hydrolyzes PI(4,5)P2. PLC-β-PH-GFP (PLC-PH) construct,
a PI(4,5)P2 reporter, is used to monitor the PI(4,5)P2 dis-
tribution on plasma membrane12. Here, MLKL, M1
receptor, and PLC-PH were co-transfected into HEK293
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cells. With 5 μM oxotremorine M (Oxo-M) treatment, the
PLC-PH probe dissociated from the plasma membrane to
cytoplasm, showing PI(4,5)P2 hydrolyzation (Fig. 1e).
Meanwhile, MLKL currents were rapidly inhibited and
restored after Oxo-M withdrawal (Fig. 1f, g; Supplemen-
tary Fig. S4c). These data indicate that MLKL channel
activity could be finely tuned by PI(4,5)P2.
Whether the PI(4,5)P2-induced augmentation of MLKL

channel activity is correlated with cell death was exam-
ined. To elevate PI(4,5)P2 concentrations in the plasma
membrane, PIP5K, one of the key PI(4,5)P2 biosynthetic
enzymes, was transfected into L929 cells (Supplementary
Fig. S5). A time-dependent increase in the number of
fluorescent cells stained by Annexin V-FITC and prodi-
dium iodide (PI) was observed in PIP5K-transfected L929
cells compared to non-transfected cells with tumor
necrosis factor (TNF-α, T) plus pan-caspase inhibitor z-
VAD-fmk (Z) treatment1 (Fig. 1h; Supplementary Fig.
S6a). In addition, we found that either knockdown of
PIP5K or administration of the PIP5K inhibitor ISA-
2011B (ISA) efficiently suppressed the TNF-induced
necroptosis in L929 cells (Fig. 1h; Supplementary Fig.
S6b). Similar PI(4,5)P2 influences were observed in HeLa
cells (Supplementary Fig. S6c, d). PIP3K was used as a
negative control (Supplementary Fig. S5). Collectively,
these results support that the elevated PI(4,5)P2 level
aggravated MLKL-dependent necroptosis.
For many PI(4,5)P2-sensitive ion channels, PI(4,5)P2

binds with positive amino acid via “electrostatic interac-
tion”7,13. We mutated the positive amino acids of MLKLNT

to alanine and tested the channel activity (Supplementary
Fig. S7a–c). Two of these mutations, K22A (22A) and
R34A (34A), were found to abolish the channel function
regardless with or without 2% PI(4,5)P2 (Fig. 1i, j). Notably,
the channel functions were rescued under higher PI(4,5)P2
concentrations (4%) (Fig. 1j; Supplementary Fig. S7d).
Whether these mutant channels could lead to cell death
was then investigated. In comparison to WT MLKLNT, the

capability of killing cells of the two mutant channels was
lost or largely suppressed in MLKL–/– HeLa cells9 (Fig.
1k). Consistently, the two mutants became toxic to cells
after overexpression of PIP5K that elevated PI(4,5)P2 levels
on membranes. Of note, the double mutant K22A/R34A
did not further reduce the PI(4,5)P2 sensitivity or abrogate
the capability of killing cells after overexpression of PIP5K,
suggesting that K22 and R34 may interact with PI(4,5)P2
independently (Fig. 1j, k).
MLKL could activate the innate immune receptor

nucleotide-binding oligomerization domain (NOD)-like
receptor protein 3 (NLRP3) in a cell-intrinsic manner
before cell lysis, but its working model has not yet been
clarified14. Thus, we further explored the potential func-
tion of PI(4,5)P2-enhanced MLKL channel activity in an
inflammation model12 (Supplementary Table S1). The
proteome profiling of mouse microglia (BV2 cells) treated
with lipopolysaccharide (LPS) showed that expression of
traditional MLKL-binding proteins related to cell death
(such as RIPK1, RIPK3) was not influenced by LPS,
indicating that this inflammatory process was indepen-
dent of classical necroptosis pathway (Fig. 1l). Gene
enrichment analysis on differentially expressed genes
(DEGs) showed activation of inositol metabolism and
phospholipid metabolic processes, as well as inflammatory
responses induced by LPS treatment (Fig. 1m; Supple-
mentary Fig. S8). Of particular relevance is that enzymes
responsible for PI(4,5)P2 anabolism were upregulated by
LPS treatment, along with the LPS-induced inflamma-
tion-related proteins (Fig. 1n; Supplementary Fig. S8). To
investigate the molecular regulation network of the DEGs
related to PI(4,5)P2 metabolism and inflammatory
responses, we searched their protein–protein interactions
(PPIs) through String database (https://string-db.org), and
further revealed the close relationship between PI(4,5)P2,
MLKL and LPS-induced inflammation (Fig. 1n).
Consistent with proteomic data, treatment with the

lower concentration (10 ng/mL) of LPS significantly

(see figure on previous page)
Fig. 1 Enhanced MLKL channel activity by PI(4,5)P2 promotes necroptosis and inflammation. a, b Single-channel current recordings and open
probability of MLKLNT in different lipid compositions (n > 3). c The heatmap shows MLKLNT currents in various PI(4,5)P2 concentrations. d Scatterplots
of MLKLNT currents vs. dwell times. e Representative subcellular localization of GFP-PH domain. Cells were treated with or without 5 μM Oxo-M. f The
currents of MLKL channel with or without Oxo-M treatment. EC indicate the extracellular solution. g Statistical analysis of MLKL currents (n ≥ 3).
h Necroptosis was detected through Annexin V-FITC (AV)/PI staining. L929 cells were treated with 20 ng/mL T and 20 μM Z after PIP5K transfection or
ISA treatment (left). Statistical analysis of AV/PI staining (right). i Schematic representation of the residues examined by the solution MLKLNT structure.
j Current traces of MLKL mutants 22A, 34A, and 22A/34A in the presence of different concentrations of PI(4,5)P2. k Cell viability of MLKL–/– HeLa cells
after co-transfection with PIP5K or PIP3K and MLKL mutant constructs. l The volcano plots for the comparison between proteome patterns of BV2
cells treated with PBS or LPS. m Representative function enrichment analysis of upregulated DEGs. Functional terms were labeled and color-coded
with log10 transformed P-value (Fisher’s exact test). n PPI network of proteins shown in Supplementary Fig. S8. Proteins participating in inositol
phosphate metabolism are labeled with blue. o Cell viability of BV2 cells after LPS treatment. p, q Potassium efflux levels in LPS-treated BV2 cells and
LPS/Q/C-treated BMDM cells (left). Statistical analysis results were shown (right). r Detection of K+ efflux level of LPS-treated BV2 cells with or without
ISA (left). Statistical analysis results were shown (right). s Enhanced MLKL channel activity by PI(4,5)P2 promoted necroptosis and inflammation via
disturbing ion homeostasis and accelerating potassium efflux.
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stimulated the secretion of inflammatory cytokines, but
did not induce cell death, while the expression level of
MLKL and PIP5K increased (Fig. 1o; Supplementary Fig.
S9a, b). Accordingly, an essential role of MLKL-
dependent K+ efflux in triggering inflammation has
been proposed14,15. We therefore hypothesized that K+

efflux during inflammation is mediated by MLKL chan-
nels. A real-time, sensitive FluxOR™ assay was performed
to monitor the K+ efflux during the LPS-induced
inflammation. We found that the K+ efflux gradually
increased in a time-dependent manner (Fig. 1p). The
contribution of MLKL channel to the K+ efflux was fur-
ther evaluated in a widely used MLKL-related inflamma-
tion model, bone marrow-derived macrophages
(BMDMs) treated with LPS, Smac-mimetic compound
(C) and a caspase inhibitor Q-VD-OPh (Q)14. Both the
MLKL-mediated cytokine secretion and the LPS-induced
K+ efflux were abrogated in MLKL-knockout (MLKL–/–)
cells (Fig. 1q; Supplementary Fig. S9c, d). Whether inhi-
bition of PI(4,5)P2 synthesis after ISA treatment sup-
presses K+ efflux was examined in two inflammation
models. After administration of ISA, the K+ efflux was
indeed decreased in both the LPS-induced and the clas-
sical NLRP3 activation inflammation models (Fig. 1r;
Supplementary Fig. S9f). Since elevated PI(4,5)P2 level is a
key factor for the MLKL-related inflammation, we used
PIP5K-knockdown BV2 cells to detect cytokine secretion
level (Supplementary Fig. S9g). The result showed that
blocking the PI(4,5)P2 synthesis indeed suppressed the
secretion of inflammatory cytokines (Supplementary Fig.
S9h). These results link PI(4,5)P2 with K+ efflux in MLKL-
related inflammation.
In summary, we show that MLKL channel activity is fine-

tuned by PI(4,5)P2 in a dose-dependent manner for the first
time (Fig. 1c–g). PI(4,5)P2 exhibits agonistic effects on
MLKL channel activity and the enhanced channel activity,
alone or with other factors together, may ignite necroptosis
or inflammation under specific stimuli (Fig. 1s). Whether
and how the fine-tuned MLKL channel activity by PI(4,5)P2
participates in more substantial biological functions of
MLKL, such as immune escape, nerve regeneration and
vesicle transport, warrants further investigation.
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