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Abstract
Little is known regarding why a subset of COVID-19 patients exhibited prolonged positivity of SARS-CoV-2 infection.
Here, we found that patients with long viral RNA course (LC) exhibited prolonged high-level IgG antibodies and higher
regulatory T (Treg) cell counts compared to those with short viral RNA course (SC) in terms of viral load. Longitudinal
proteomics and metabolomics analyses of the patient sera uncovered that prolonged viral RNA shedding was
associated with inhibition of the liver X receptor/retinoid X receptor (LXR/RXR) pathway, substantial suppression of
diverse metabolites, activation of the complement system, suppressed cell migration, and enhanced viral replication.
Furthermore, a ten-molecule learning model was established which could potentially predict viral RNA shedding
period. In summary, this study uncovered enhanced inflammation and suppressed adaptive immunity in COVID-19
patients with prolonged viral RNA shedding, and proposed a multi-omic classifier for viral RNA shedding prediction.

Introduction
COVID-19, a disease caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), is an
ongoing pandemic spreading all over the world. The study
on the process of viral RNA shedding is helpful to deepen
our knowledge of viral infections and the recovery of
human body from a morbid state. Studies have reported
that the median of SARS-CoV-2 RNA shedding course is
from 10 to 22 days1–3, which is usually longer than the

duration of symptomatic relief. Remarkably, a case study
reported that viral RNA shedding could be over 151 days4.
Another individual with COVID-19 was reported to be
infectious for over 70 days, and its viral RNA shedding
course lasted for over 105 days after the initial diagnosis5.
Prolonged RNA shedding mostly occurs in carriers with
increased contagion risk, who are usually elderly, male, or
with comorbidities such as hypertension6,7. The immu-
nosuppression and some comorbidities have been repor-
ted to increase the risk of prolonged viral RNA shedding
in other infectious diseases8,9. A deeper understanding of
the viral shedding mechanisms is, therefore, crucial to
help develop better strategies to control the spread of
SARS-CoV-2.
In-depth proteomics and metabolomics technologies

provide highly detailed and comprehensive molecular
expression data shedding light on the underlying physio/
pathological processes. Multiple correlational studies,
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based on proteomics or metabolomics, have characterized
circulating molecular changes in patients with severe and
non-severe COVID-1910–14. Little is known, however, on
the molecular modulation in patients with prolonged
RNA shedding.
Here we report a systematic and longitudinal clinical

and molecular landscape of the COVID-19 patients with
long and short RNA shedding courses (LC and SC
groups), including 1252 proteins and 945 metabolites
across 461 serum samples. We further built a model to
predict the persistence of SARS-CoV-2 RNA shedding. In
summary, this study not only presents a rich data
resource for studying the COVID-19 host responses but
also proposes potential diagnostic and therapeutic stra-
tegies for COVID-19 patients with prolonged viral RNA
positivity.

Results
Prolonged RNA shedding in COVID-19
In this study, 38 COVID-19 patients were enrolled,

including 36 mild cases and 2 severe ones
(Fig. 1, Table 1; Supplementary Table S1). To identify
the factors responsible for the prolonged viral RNA
shedding, we stratified these patients to two groups
based on their viral RNA shedding time. In the litera-
ture, when Yan et al. analyzed the clinical factors asso-
ciated with the viral RNA shedding, they used the
median, i.e., 23 days, as the cutoff to stratify their
patients into the long and short groups6, while Xu et al.
used the median shedding time, i.e., 17 days, to classify
the different patients7. Following these conventions, we
used the median viral RNA shedding time, i.e., 22.5 days,
as the threshold to split the patients into the LC and SC
groups. Thus, these patients were split into two groups
based on the viral RNA shedding duration (Fig. 1). The
SC group contained 19 patients with RNA shedding
courses shorter than 22.5 days, while the remaining 19
patients were placed into the LC group. This cutoff was
very close to a previous paper6. Of the two severe cases,
one belonged to the SC group, while the other fell into
the LC group (Fig. 1). No significant difference was
found in age, gender, comorbidities, drug treatment, or
routine blood tests between the LC and SC groups
(Supplementary Fig. S1). Notably, five patients exhibited
surprisingly prolonged RNA shedding, and the longest
duration that we have observed was 110 days (P33, a 55-
year-old male) as of 20 May 2020. We therefore real-
located these patients, whose viral RNA positivity per-
sisted longer than 44 days (corresponding to the 3rd
quartile of the shedding duration in the LC group) to the
very long RNA shedding (LLC) subgroup. Data from
these five patients were then used to study the molecular
rewiring associated with very long RNA shedding.

Delayed and sustained increase of IgG, elevated cytokines
and Treg cells associated with prolonged RNA shedding
We first compared the SARS-CoV-2 viral load in the

sputum of the patients at admission between the SC and
LC groups, and observed no difference (P= 0.28) (Sup-
plementary Fig. S2a). The finding suggests that the dis-
crepancy of RNA shedding might be due to the host
responses rather than the viral load.
We then analyzed the plasma cytokines with previously

reported clinical importance, namely TNF-α, IFN-γ, IL-6,
IL-2, and IL-4, using flow cytometry. Higher expression of
cytokines was detected in most LC patients (Supple-
mentary Fig. S2b). Next, we measured different types of
IgM (Fig. 2a) and IgG (Fig. 2b) targeting the three viral
proteins or domains, namely the spike (S) protein, the
receptor-binding domain (RBD) of the S protein, and the
nucleocapsid (N). Notably, we found that the IgG anti-
body expression was significantly different between the
SC and LC groups across the nine weeks (Fig. 2a, b). Our
data showed that the lgG level increased in both groups
during the first five weeks, and decreased only in the SC
patients afterwards (Fig. 2b).
We also found that the number of CD127LowCD25High

Treg cells was significantly higher in the LC patients
than that in the SC patients (P= 0.006), while the
CD45+ lymphocytes (P= 0.306) and the CD3+CD4+

T cells (P= 0.871) showed no significant difference
(Fig. 2c).

Temporal proteomic and metabolomic profiling of serum
To further characterize the underlying molecular

mechanisms responsible for prolonged RNA shedding, we
performed in-depth proteomic and metabolomic profiling
of 217 serum samples derived from the 38 COVID-19
patients and 35 non-COVID-19 controls (Ctrl) over nine
weeks since the disease onset.
A total of 2192 proteins were quantified by tandem

mass tag (TMT)-based proteomics (Supplementary
Table S2a). The batch effect was negligible (Supple-
mentary Fig. S3a–d). The median coefficient of variance
(CV) among technical replicates was 15% (Supplemen-
tary Fig. S3g). After excluding proteins with over 80%
missing values, 1252 proteins were subjected to down-
stream data analysis (Supplementary Table S2a).
Metabolomic analysis characterized 945 metabolites in

193 serum samples from the same patient cohort using
both hydrophilic and hydrophobic molecules analyzed by
both positive and negative ionization modes (Supple-
mentary Table S3a). Batch effect was negligible (Supple-
mentary Fig. S3e, f), and the median CVs of four methods
among 29 technical replicates were all below 12%
(Supplementary Fig. S3h), indicating high quality of
the data.
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Fig. 1 (See legend on next page.)
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Delayed immune response in the LC group
To identify the potential molecules responsible for

longer viral RNA shedding courses, we compared the
temporal proteomes of the SC and LC patients. Four
dynamic clusters (Supplementary Table S2b) and their
enriched pathways were portrayed in the SC and LC
groups, respectively (Fig. 3a–d). Interestingly, three
clusters in LC patients showed similar dynamics with
three respective clusters in the SC group. Next, we
focused on these three pairs of clusters. Proteins from
Cluster 1 displayed a consistently ascending pattern till
the 9th week; for this cluster, primary immunodeficiency
signaling was the most significantly and exclusively
enriched pathway in the LC group (Fig. 3b; Supple-
mentary Table S5a). This finding is supported by a
previous study reporting immunodeficiency in a
COVID-19 case with long viral RNA shedding5. In
Cluster 2, the dynamic proteome tended to keep
ascending till the 5th week and the pattern was relatively
delayed in the LC group. Disease-associated pathways
were significantly enriched in the LC group, whereas the
SC group was mainly characterized by tissue remodeling
and cytoskeleton-associated remodeling pathways (Fig.
3c; Supplementary Table S5a). The results suggest that
the tissue damage was more severe in the LC group,
while remodeling occurred in the SC group. Regarding
Cluster 4, the turning point for the LC group appeared
~2 weeks later than that for the SC group. T cell
exhaustion was more significantly enriched in the LC
group (Fig. 3d; Supplementary Table S5a), indicating
that the T cell deficiency is more severe in the LC group.
We next identified the SC/LC group-specific proteins,

for each of the three clusters, among those enriched in
their top three Reactome pathways (false discovery rate
(FDR) q-value < 0.05, Fig. 3e; Supplementary Table S5b).
In Cluster 1, the proteins that were uniquely clustered in
the SC group were all involved in immune response and
metabolism, while the fat-soluble vitamin metabolism and
neutrophile degranulation pathways were enriched in the
LC group (Fig. 3e).

In Cluster 2, proteins associated with platelet degranu-
lation and cofactor metabolism were uniquely enriched in
the SC group (Fig. 3f). These proteins were upregulated
earlier and persisted longer at a high level in the SC group,
indicating a prompt and stable innate response. Proteins
associated with extracellular structure organization, on
the other hand, were enriched in the LC group (Fig. 3f).
They were upregulated with a delay and maintained at a
high level until the 9th week, indicating that a delayed
tissue remodeling took place in the LC group.
Regarding the consistently descending proteins from

Cluster 4, those associated with the insulin-like growth
factor (Gro) and extracellular matrix (ECM) receptors
were enriched in the SC group (Fig. 3g). Proteins involved
in neutrophil degranulation, negative regulation of
immunity, and Jak-STAT signaling pathway were sig-
nificantly enriched in the LC group (Fig. 3g).
Interestingly, the protein dynamics in Cluster 3 was

different between the LC and SC groups. In Cluster 3 in
the SC patients, 144 proteins enriched mainly in hepatic
fibrosis/hepatic stellate cell activation and other five
inflammatory pathways (including complement system,
IL-15 signaling, acute phase response signaling, LXR/RXR
activation pathway, and coagulation system) declined in
the weeks 8 and 9, suggesting recovery from this disease.
In contrast, 59 proteins in Cluster 3 in the LC patients
increased in the LC group. These proteins were uniquely
enriched in four pathways, including leukocyte extra-
vasation signaling, calcium signaling, actin cytoskeleton
signaling, and axonal guidance signaling (Supplementary
Table S5a), suggesting delayed tissue repair.
We further investigated the dynamics of COVID-19-

specific molecules by comparing with the control group.
These dysregulated molecules showed similar perturba-
tion patterns to those revealed by overall analysis above
(Supplementary Table S2c).
Together, our data show that for the innate immunity,

the SC group exhibits a prompt and adequate innate
response, while the LC group shows a delayed but per-
sistent innate response and tissue remodeling. As for the

(see figure on previous page)
Fig. 1 Patients, samples, and study workflow. a An overview timeline of our study cohort. The y-axis shows the patient ID, and the x-axis displays
the length of RNA shedding measured from the onset. The 38 patients included 19 with short and 19 with long shedding courses (SC and LC,
respectively). Other important information, including the virus nucleic acid test results (sputum or throat swab positive/negative result), gender,
severity, comorbidities, etc., are shown in the right panel of the figure. The sputum swab was marked as positive from the first to the last continuously
positive test during our observation; a persistent negative swab was negative until the end of our observation. The black dots indicate the sampling
time for both omics data, while the blue or orange dots represent only the proteomics or metabolomics data, respectively. More details are provided
in Supplementary Table S1. b Multi-omics overview involving virological detection based on RT-PCR, an immunological assay based on ELISA and
flow cytometry, proteomics and metabolomics analyses for 38 COVID-19 patients and 35 control patients. A total of 298 sputum swab samples (from
the 38 COVID-19 patients) and 70 sputum swab samples (from the 35 control patients) were used for the SARS-CoV-2 RNA assay across 16 weeks.
Immunological measurements were comprised of 190 serum samples for antibodies-mediated detection over nine weeks and 43 whole blood
samples for immune cell counting over three weeks. 217 serum samples and 251 peptide samples, including 34 technical replicates, were analyzed
by TMT 16-plex-based quantitative proteomics. 193 serum samples and additional 29 quality control samples for metabolomics analysis were
acquired with four different methods including three types of RP-UPLC and one of HILIC-UPLC. A total of 945 metabolites were identified.
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adaptive immunity, the LC group uniquely shows T cell
exhaustion, which might contribute to the suppression of
virus clearance.

LXR/RXR-mediated lipid regulation and innate immunity in
the LC group
To further investigate the dysregulated proteins and

pathways between the LC and SC groups of patients over

nine weeks, we performed a pairwise comparison of the
proteomes of both groups for each time point. The dys-
regulated proteins, identified at each timepoint, were
combined to generate a list of 295 significantly dysregu-
lated proteins between the LC and SC groups (Supple-
mentary Table S2d). These 295 proteins could be used to
separate the LC and SC samples to various degrees at
different time points (Supplementary Fig. S4a). Enriched

Table 1 Clinical characteristics of the studied cohort.

Baseline characteristic Non-COVID-19 COVID-19 SC COVID-19 LC

(N= 35) (N= 19) (N= 19)

Gender—no.a(%)

Male 18 (51.4) 9 (47.4) 10 (52.6)

Female 17 (48.6) 10 (52.6) 9 (47.4)

Age—yrb

Mean ± SD 43.1 ± 18.3 42.9 ± 12.5 51.5 ± 11.5

Median (IQR) 37.0 44 51

(28.5–56.0) (33.0–50.0) (44.5–56.0)

Range 18–80 20–67 33–84

Symptoms—no. (%)

Fever 29 (82.9) 10 (57.8) 13 (68.4)

Cough 2 (5.7) 13 (73.7) 17 (89.5)

Diarrhea 1 (2.9) 11 (63.2) 8 (42.1)

Fatigue 1 (2.9) 8 (47.4) 8 (42.1)

Comorbidities—no. (%)

Hypertension 3 (15.8) 6 (31.6)

Diabetes 1 (5.3) 3 (15.8)

Hepatitis B 2 (10.5) 0 (0.0)

Coronary sclerosis 1 (5.3) 3 (15.8)

Gastrohelcosis 1 (5.3) 0 (0.0)

Psoatic strain 0 (0.0) 1 (5.3)

Chronic gynecologic inflammation 1 (5.3) 0 (0.0)

Gout 0 (0.0) 1 (5.3)

Asthma 0 (0.0) 1 (5.3)

Chronic renal failure 1 (5.3) 0 (0.0)

Treatment—no. (%)

Lopinavir and ritonavir 19 (100.0) 19 (100.0)

Atomized interferon 19 (100.0) 19 (100.0)

Arbidol 7 (36.8) 12 (63.2)

Lianhuaqingwen (Chinese traditional medicine) 16 (84.2) 17 (89.5)

Ribavirin 0 (0.0) 3 (15.8)

Hydroxychloroquine 1 (5.3) 3 (15.8)

ano.: number.
byr.: year.
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Fig. 2 (See legend on next page.)
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pathways for these 295 proteins were related to immunity
and metabolism (B-H adjusted P-value < 0.01) (Fig. 3h).
LXR/RXR activation pathway was found to be sig-

nificantly inhibited in the LC group in the 1st week
(Fig. 3h). In the following weeks, significant activation of
the complement and coagulation system was observed in
the LC group. Cell proliferation-associated pathways
including PI3K/AKT, ERK/MAPK, ILK, and phospholi-
pase C signaling pathways were activated in the 4th
week. In the 8th week, complement and coagulation
systems were activated again in the LC group (Fig. 3h),
providing evidence for ECM remodeling. Inversely, the
LXR/RXR pathway was activated in the 8th week. We
found downregulation of lipid metabolism-associated
molecules, including RBP4, APOA4, APOF, diacylgly-
cerol and cholesterol in the LC group (Fig. 3i), in
agreement with the positive regulatory impact of LXR/
RXR on lipid metabolism15. Furthermore, in our data,
acute phase factors including SAA4, SAA1, and AGT
were upregulated in the LC group at the 1st week (Fig.
3i), while TNF-α was upregulated in the LC group at the
2nd week (Supplementary Fig. S2b). This observation is
supported by findings that LXR/RXR inhibits innate
immune response16, and that LXR/RXR is inhibited by
proinflammatory factors including IL-1β and TNF-α17.
The innate immune activation induced by LXR/RXR
inhibition might have contributed to prolonged viral
RNA shedding.

Prolonged LXR/RXR inhibition contributes to the LLC
group
A specific subgroup of patients included in this dataset

exhibited unusually long RNA shedding persistence (over
44 days). To examine the molecular characteristics of
these patients, we divided the LC group into LLC (longer
length of RNA shedding course, over 44 days, which was
the 3rd quartile of duration in the LC group, N= 5
patients, n= 11 samples) and MLC (medium length of
RNA shedding course, from 23 to 44 days, N= 14
patients, n= 56 samples) groups. Serum samples included
in this analysis were collected from the 4th week to the
9th week because the LLC group had only one sample
collected in the first three weeks due to biosafety issues.

We compared the protein expression in LLC, MLC, and
SC groups pairwise (Supplementary Table S2e, f). Inter-
estingly, among 383 dysregulated proteins between the
LLC and SC groups, 268 dysregulated proteins were
shared with those dysregulated between the LC and SC
groups (Supplementary Table S2d), suggesting that the
comparison of LC and SC well recapitulated the differ-
ence between LLC and SC. Pathway analysis showed that
the 268 commonly dysregulated proteins were enriched
in 19 pathways (Supplementary Fig. S4b and Table S5c).
The remaining 115 proteins were enriched in 18 path-
ways, with 16 overlapped with the previous 19 pathways,
further consolidating the similarity between LC and LLC.
Two unique pathways were characteristic for the LLC
patients, namely wound healing signaling pathway and
inhibition of matrix metalloproteases (Supplementary
Fig. S4b and Table S5c), suggesting higher degree of
tissue injury and repair in these patients. Of note, the
LXR/RXR pathway was again the most significantly
inhibited pathway in the LLC group compared with SC or
MLC, and the period of its inhibition lasted longer in the
LLC group than that in the LC group (Supplementary
Table S5c), further consolidating that inhibition of LXR/
RXR might have contributed to prolonged viral RNA
shedding.

Dynamic metabolomic profiling reveals downregulation of
metabolites in the LC group
Across the entire disease course, we found that most

dysregulated metabolites were downregulated in the LC
group (Supplementary Table S3b), including lipids, amino
acids, and nucleotides (Fig. 4a, b; Supplementary Fig. S5).
Lipids were the most dysregulated metabolites (Fig. 4a, b;
Supplementary Fig. S5). The substantial downregulation
of lipids has also been observed in severe COVID-19
patients10,18. The most significantly downregulated lipids
in the LC group are sphingomyelins, phosphatidylcholine
(PC), and phosphatidylethanolamine (PE) in the 1st week
(Fig. 4c), followed by downregulation of fatty acids and
their oxidative products, such as monohydroxy and
dicarboxylate fatty acids in the 3rd week (Fig. 4c). PC and
sphingomyelins were also the most dysregulated lipids in
the 5th and 6th weeks, respectively (Fig. 4c). PC is well-

(see figure on previous page)
Fig. 2 Clinical characteristics of the two groups. a, b Comparative quantification of six antibody categories between the LC and SC groups.
Number of samples collected for each week: 10 SC and 8 LC in week 1, 16 SC and 13 LC in week 2, 16 SC and 13 LC in week 3, 11 SC and 15 LC in
week 4, 13 SC and 9 LC in week 5, 10 SC and 11 LC in week 6, 8 SC and 5 LC in week 7, 9 SC and 9 LC in week 8, 8 LC in week 9; total samples: 93 from
17 SC patients, and 91 from 19 LC patients. The profiles of the serum anti-S, anti-RBD, and anti-N IgM (a) and IgG (b) between the two groups along
time. Orange asterisks mean significant variance over 8–9 time points in the SC group (one-way ANOVA). Purple asterisk means significant variance
over 8–9 time points in the LC group (one-way ANOVA). Black asterisks show the interactional difference between time points and LC/SC group (two-
way ANOVA). *P < 0.05; **P < 0.01; ***P < 0.001. c Flow cytometry analysis of immune cells between the SC and LC patients. 22 samples from 17 LC
patients and 30 samples from 17 SC patients were analyzed. Flow cytometry analysis of lymphocytes, CD4+ cells and CD127–CD25+ Treg cells of two
representative patients (P-value from Welch’s t-test). The bean plots show the comparison between the two groups.
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Fig. 3 (See legend on next page.)
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known as an anti-inflammation factor19. Its suppression
in the LC patients suggests activation of inflammation.
Pathway analysis of the most dysregulated metabolites

in the LC group during the first three weeks showed the
enrichment of nucleotide metabolism and beta-alanine
metabolism (Fig. 4d). Metabolites regulated in the 5th
and 6th weeks were mainly fatty acids (Fig. 4d). Among
the downregulated metabolites were anti-inflammation
molecules, such as eicosapentaenoic acid (EPA), doc-
osahexaenoic acid (DHA), capric acid, and caprylic
acid20,21 (Fig. 4d). This indicates persisted inflammation
in the LC patients.

Activated complement system, suppressed cell migration,
and enhanced viral replication plausibly contribute to
prolonged RNA shedding
We next identified persistently ascending and des-

cending molecules using Mfuzz in the SC and LC patient
groups, respectively. This resulted in four clusters (Fig. 5a;
Supplementary Table S4). We then applied ingenuity
pathway analysis (IPA) to the molecules, and found that
the most significant pathways enriched from ascending
molecules in the SC group were antigen processing and
presentation, and cell adhesion (Fig. 5b; Supplementary
Table S5d). In contrast, ascending molecules in the LC
group were enriched for pathways including biosynthesis
of unsaturated fatty acids (Fig. 5b). Staphylococcus aureus
infection ranked first in the descending molecules in the
SC group, while ECM–receptor interaction was the most
enriched pathway in the descending molecules in the LC
group (Fig. 5b). We further built a k-nearest neighbors
(KNN) network to investigate the molecules involved in
the pathways, and identified a few functional groups
(Supplementary Fig. S6). Remarkably, complement system
proteins, including collectin-11 (COLEC11), MBL-
associated serine protease 1 (MASP1), Mannose-binding
lectin 2 (MBL2), and Ficolin-3 (FCN3), were persistently
highly expressed in the LC group across the entire disease
course (Fig. 5c, network 1 and network 2). The activation
of complement system may induce severe inflammatory
injury of COVID-19 patients as an innate immune

response22. The data suggest that the prolonged innate
immunity accompanied with more severe inflammatory
injury might contribute to prolonged disease course, in
agreement with prolonged innate immunity response
induced by LXR/RXR suppression (Fig. 3).
Recruitment of immune cells is usually promoted by

innate immunity. However, we found lower expression of
proteins participating in cell migration, including selectin
P (SELP), moesin (MSN), and lymphocyte cytosolic pro-
tein 1 (LCP1) (network 1 in Fig. 5c). In particular, the
prolonged lower expression of MSN in the first seven
weeks of the LC disease course suggests a deficiency of
lymphocyte egression to kill the pathogen23. Ezrin (EZR)
exhibits opposite functions in lymphocytes to MSN in the
ezrin–radixin–moesin (ERM) complex24, and indeed, our
data showed higher expression of EZR in the LC group
(network 4 in Fig. 5c). These observations together indi-
cate a deficiency in leukocyte migration in the LC
patients.
Molecules associated with xenobiotics and RNA

metabolism were elevated in the LC group (Fig. 5c).
Upregulation of proteins participating in viral RNA
metabolism, including a non-secretory ribonuclease
(RNASE2)25 and Inosine-5’-monophosphate dehy-
drogenase 2 (IMPDH2)26, suggests that viral replication
might persist longer in the LC group, and these proteins
might be potential therapeutic targets.
Altogether, our KNN-based network analysis uncovered

several kinds of biologically important proteins and
pathways. These factors, associated with the activation of
innate immune response, deficiency in leukocyte migra-
tion and longer viral replication, collectively contributed
to prolonged RNA shedding in the LC group of patients.

Predictive model for prolonged viral RNA shedding period
To predict prolonged viral RNA shedding in COVID-19

patients during the early phase, we developed a machine
learning model based on the serum proteomic and
metabolomic data collected during the first three weeks
(see the Materials and methods section). We included
58 samples from 26 patients with both proteomic and

(see figure on previous page)
Fig. 3 Dynamic proteomics profiling. a The four clusters of proteins with different expression dynamics for the SC and LC groups computed with
Mfuzz analysis (one-way ANOVA, B-H adjusted P-value < 0.05, more details in Supplementary Table S2b). b–d Pathways enrichment by ingenuity
pathway analysis (IPA) for the proteins in Clusters 1, 2, and 4 of the SC and LC groups. e–g Heatmaps showing the unique proteins of the SC and LC
groups in Clusters 1, 2, and 4 (more details in Supplementary Table S2b), as well as the corresponding top two pathways annotated by IPA (P-
value < 0.05). Proteins highlighted in red are discussed in the main text. h Pathways enriched by IPA (P-value < 0.05) across the nine weeks (no
pathways were enriched for the 3rd, 5th, or 9th weeks) using the differentially expressed proteins between the LC and SC groups (Supplementary
Table S2d). The z-score represents the activation state of the pathways: z-score > 0 means the pathway is active, while z-score < 0 indicates that the
pathway is inhibited. i The relationship between LXR/RXR and their downstream proteins which uniquely belong to the LC (lipid metabolism-
associated proteins) and SC (inflammation response-associated proteins) groups in Cluster 1 (a). Blue: downregulated proteins/metabolites in the LC
group at the 1st week; red: upregulated proteins/metabolites in the LC group at the 1st week; gray: no significantly different molecules were found
between the two groups at the 1st week. The interactions retrieved from STRING are visualized with Cytoscape.
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metabolomic data as a discovery dataset. These samples
were randomly divided into two groups: a 49-sample
training dataset and a 9-sample validation dataset. We
also included an independent dataset comprising 37 sam-
ples from 37 patients with both proteomic and metabo-
lomic data in the first three weeks (i.e., the Shen dataset10)
(Fig. 6a).
Based on their expression robustness and the impor-

tance prioritized by random forest analysis (more details
in the Materials and methods section), we selected nine
proteins (NRP2, H3-3A, GNPTG, LGALS1, IGKV2-30,
HLA-B, PRSS1, IGKV1-6, KPRP) and one metabolite
(arginine) to construct a 10-molecule model (Fig. 6b).
Immunoglobulin kappa variable 2–30 (IGKV2–30),
immunoglobulin heavy variable 1–6 (IGHV1–6), and
HLA class I histocompatibility antigen, B alpha chain
(HLA-B) are all associated with antibody secretion and
humoral immunity. Notably, two proteins, neuropilin-2
(NRP2) and galectin-1 (LGALS1), have been reported to
promote the entry of SARS-CoV-2 virus27,28. Arginine is
an essential amino acid, promoting T cell proliferation29.
Several studies showed that arginine is downregulated in
the serum of COVID-19 patients30.
The area under curve (AUC) values for the training

dataset and the validation dataset were 1 and 0.95,
respectively (Fig. 6c, d). This model led to only one
incorrect prediction in the validation dataset. The SC
patient P24 was classified as an LC case. This is probably
because this 35-year-old male patient had been treated
with an immunomodulatory drug hydroxychloroquine.
In the independent test set, the model correctly

classified 29 out of 37 patients with an overall accuracy
of 80% (AUC= 0.74, Fig. 6c, e). The incorrect predic-
tion of the rest 8 cases may be attributed to their
complex clinical history. XG39, an LC patient, devel-
oped severe symptom on the day of sampling, which
might influence the performance of the model. The
immunosuppression status of the XG20 patient with
diabetes and the XG1 case with splenectomy may have
misled the model.

The other five cases, namely XG4, XG5, XG21, XG19,
and XG11, exhibited viral RNA shedding periods of 16,
19, 20, 23, 27 days, respectively. The RNA shedding per-
iods were close to the binary classification threshold of
23 days. The incorrect prediction of these cases indicates
the complexity of the viral RNA shedding prediction and
necessitates future verification of this model in larger
sample sets. Altogether, our data suggest that this multi-
omic classifier could potentially predict the SARS-CoV-2
RNA shedding.

Discussion
To understand the molecular mechanisms underlying

prolonged viral RNA shedding in COVID-19 patients, we
profiled a deep and time-resolved landscape of their
plasma proteome and metabolome. Our data showed that
these patients exhibited prolonged inflammation and
suppressed adaptive immunity. Besides, we found that a
10-molecule model could potentially predict prolonged
viral RNA shedding, including NRP2, H3-3A, GNPTG,
LGALS1, IGKV2-30, HLA-B, PRSS1, IGKV1-6, KPRP,
and arginine.
Our data showed that the LC patients were char-

acterized by prolonged inflammation. First, we detected
upregulation of multiple proinflammation cytokines in
LC patients, such as TNF-α and IL-6 by antibody-based
assay (Supplementary Fig. S2b), and macrophage colony-
stimulating factor 1 (CSF1) by MS-based proteomics
(Fig. 3g). These cytokines participate in multiple immune
responses, including macrophage activation, monocyte
recruitment, and antigen response31. Moreover, our
proteomics data also showed early inhibition of LXR/
RXR and activation of complement system in the LC
group, which may have contributed to prolonged
inflammation. Multiple complement system proteins,
including COLEC11, MASP1, MBL2, and FCN3, were
elevated in the LC group across the entire disease course
(Fig. 5c). In addition, MS-based metabolomic analysis
showed downregulation of a large number of anti-
inflammation lipids, as well as multiple amino acids (Fig.

(see figure on previous page)
Fig. 4 Dynamic metabolomics profiling. a Stream graph showing the differentially expressed metabolites, split into four categories (lipid, amino
acid, nucleotide, and others), between the SC and LC groups (|Log2(fold change (FC))| > 0.25, Welch’s t-test P < 0.05). A positive number of
metabolites represents their upregulation while a negative number represents their downregulation in the LC group. b The sub-classifications of the
differentially expressed metabolites in four subcategories (as in a). The length of the circular sector represents the number of metabolites belonging
to a sub-pathway. Sub-pathways containing > 1 metabolite are annotated. c The histogram showing that the top three or two dysregulated
metabolites between the LC and SC groups in each week. Orange: upregulated metabolites in the LC group; blue: downregulated metabolites in the
LC group; |Log2(FC)| > 0.25, Welch’s t-test P < 0.05). d Connection between the differentially expressed metabolites, the time-point, and the enriched
KEGG pathways. Left: bubble plot showing the differentially expressed metabolites between the LC and SC groups (FC > 1 represents upregulation,
whereas FC < 1 represents downregulation, in the LC group); the size of the bubbles represents the degree of significance of the difference between
the LC and SC groups. Middle: the sizes of the circles represent the numbers of the differentially expressed metabolites at each week. Right: KEGG
pathways annotated with the deeper background-colored circle. Blue or red rectangles represent downregulated or upregulated metabolites in the
LC group, respectively. The interaction plot was generated using MetaboAnalyst.
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4d). Spermidine, a kind of polyamine, has been reported
to inhibit synthesis of proinflammatory cytokines32

through blocking NF-κb, PI3K/AKT and MAPK path-
ways33. Together, these data suggest that the COVID-19
patients with prolonged viral RNA shedding exhibited
characteristically enhanced inflammation.
Our data also showed suppressed adaptive immunity in

these patients. Flow cytometric analysis uncovered
increased Treg cells in the LC group (Fig. 2c). Treg cells
have been implicated with the impairment of the cyto-
toxic T cell function in defense of viral infection34. Thus,
the higher level of Treg cells observed in the LC group
may contribute to the T cell exhaustion, leading to a
suppression of defense against the virus.
Virus infection initiates innate immune response,

including release of acute phase proteins and inflamma-
tory cytokines35, which stimulates adaptive immunity to
eliminate pathogens. Surge of adaptive immune cells
tempers the initial innate responses36. Thus, the limited
adaptive immunity might be insufficient to clean the virus
and to suppress prolonged inflammation, leading to pro-
longed viral RNA shedding. For SARS-CoV-2 and MERS-
CoV, prolonged viral RNA shedding has been found in
immunocompromised patients37,38. For COVID-19, an
immunocompromised patient has been reported with
over 100 days of viral RNA shedding5; however, the
underlying molecular mechanisms remain elusive. Here
our data showed an increase of Treg cells and prolonged
inflammation in COVID-19 patients with prolonged viral
RNA shedding.
The 10-molecule model could potentially predict pro-

longed viral RNA shedding. The nine proteins and argi-
nine participate in multiple immune responses and
metabolism processes, suggesting perturbed immunity
and metabolism in the COVID-19 patients with viral RNA
shedding. To consolidate the MS-based protein identifi-
cation for IGKV2-30 (Supplementary Fig. S7a) and
IGHV1-6 (Supplementary Fig. S7b), we manually inspec-
ted the MS/MS spectra of their unique peptides. The data
confirmed unambiguous identification of these proteins
(Supplementary Fig. S7). Nevertheless, clinical translation
of these biomarkers awaits further investigations. This
study thus provides a rich data resource to study the
longitudinal host response of COVID-19, and it also

suggests potential diagnostic and therapeutic strategies
for COVID-19 patients with prolonged viral RNA
positivity.
Several studies of COVID-19 blood samples have

identified multiple regulated proteins and metabolites in
severe cases compared with non-severe cases10–14. How-
ever, no study has been reported to investigate the pro-
longed viral RNA shedding, neither has any study
presented any means to predict the prolonged viral RNA
shedding. The innate immune response is enhanced in the
severe patients, such as the activation of the acute phase
proteins and complement system, and massive decrease of
metabolites10. This study shows that these pathways are
also dysregulated in the LC patients. Remarkably, the LC
patients also exhibited more enhanced inflammation,
characterized by inhibition of LXR/RXR during the first
week since disease onset, and activation of complement
and coagulation systems during the 2nd to 8th weeks. The
unique characteristic in these LC patients is elevated Treg
cells which suggests suppressed adaptive immunity.
This study is limited by the relatively small patient

number, in particular the severe cases. However, for each
patient we have collected longitudinal samples for
dynamic monitoring. Here we procured only five LLC
patients with the RNA shedding period of over 44 days;
and due to biosafety issues, we did not obtain their
samples in the first three weeks, thus unfortunately we
could not investigate the predictive power of the machine
learning model for the LLC pateints. Nevertheless, our
data revealed molecular changes in these patients which
might be of value for further investigations of prolonged
RNA shedding. Rigorous statistics have been employed to
identify significantly disturbed molecular expression and
pathway activities. More independent validation cohorts
are needed to validate the current RNA shedding pre-
diction model. The diagnostic and therapeutic potential of
the findings awaits further investigation. The COVID-19
pandemic is rapidly evolving. By the publication of this
paper, the dominant strain of SARS-CoV-2 is Omicron
and its variants with evolved pathogenicity. The biological
insights and predictive model established here may not be
directly applicable to the changing viruses, although our
recent proteomic study of the Omicron has uncovered
some similarities between this new strain and the original

(see figure on previous page)
Fig. 5 Integrative analysis of proteome and metabolome. a Four clusters of proteins with different protein and metabolite expression dynamics
for the SC and LC groups computed using Mfuzz (one-way ANOVA, B-H adjusted P-value < 0.05). b Pathways enriched using MetaboAnalyst (P-
value < 0.05). c The annotated proteins are shown in the four networks. For each circle, the right/left half panel shows the expression time-series in
the LC/SC group (two-way ANOVA; *P < 0.05; **P < 0.01; ***P < 0.001). Black asterisks indicate a significant variance over 8–9 time points in the SC or
LC groups; the red asterisks represent the difference between the LC and SC groups; the blue asterisks represent the interaction difference between
time points and the LC and SC groups. The outermost ring represents the maximum abundance of the proteins/metabolites, between the SC and LC
groups, across nine time points for proteins and eight time points for metabolites. The different backgrounds represent the classification of the
molecules.
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Fig. 6 Machine learning model for disease course prediction. aWorkflow for machine learning; RF random forest. b The top ten features selected
by the machine learning model. c The ROC of validation dataset (left panel) and independent test dataset (right panel). d, e Performance of the
model in the validation (d) and the independent test datasets (e). Orange represents the SC group and purple represents the LC group.
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strain. However, the AI-empowered proteomic metho-
dology established here could be directly applied to the
current SARS-CoV-2 infections and other infectious dis-
eases. Should more COVID-19 specimens have been
properly stored, this study will be able to contribute more
to the fight against the ongoing pandemic.

Materials and methods
Patients and sera samples
We procured 38 COVID-19 patients and 35 non-

COVID-19 patients in January–March 2020 (Fig. 1).
Besides, 298 sputum swab samples of 38 COVID-19
patients for 16 weeks and 70 sputum swab samples of
non-COVID-19 patients were collected for virological
analysis. Moreover, 190 serum samples were used for
immunological detection by SARS-CoV-2-specific anti-
bodies, as well as 43 whole blood samples for immune cell
counting over 3 weeks. Furthermore, 217 and 193 serum
samples were, respectively, collected for proteomic and
metabolomic analyses over a timespan of 9 and 8 weeks.
We procured 73 patients in this study, including 38

COVID-19 patients whose sputum swabs were tested
positive for SARS-CoV-2 according to the manufacturer’s
instructions (Shanghai BioGerm Medical Technology Co.,
LTD., Shanghai, China). According to the Chinese Gov-
ernment Diagnosis and Treatment Guideline (Trial 4th
version), these 38 COVID-19 patients include 36 general
cases and two severe cases. We have also procured 35
non-COVID-19 patients showing similar flu-like clinical
symptoms to COVID-19 patients who are negative for
SARS-CoV-2 as indicated by nucleic acid testing. More
detailed information of these patients is provided in
Fig. 1a and Supplementary Table S1.
Totally 217 serum samples from these patients were

collected longitudinally for proteomics analysis (Fig. 1b;
Supplementary Table S1). Sampling was performed in the
early morning before diet using serum separation tubes
(BD, USA). The blood was clotted for ~30min at room
temperature, and then centrifuged at 1000× g for 10 min
for serum sample collection. This study has been regis-
tered in the Chinese Clinical Trial Registry with an ID of
ChiCTR2000031699. The study methodologies con-
formed to the standards set by the Declaration of Helsinki.
The experiments were undertaken with the understanding
and written consent of each subject. This study has been
approved by the Ethical/Institutional Review Board of
Wenzhou Central Hospital and Westlake University.

Proteomic analysis
Serum samples were prepared as previously described10.

Briefly, samples were first inactivated and sterilized at
56 °C for 30min. For proteomics study, 14 high abundant
serum proteins were depleted from 4 μL serum samples
by diluting into 500 μL PBS using a human affinity

depletion kit (Thermo Fisher Scientific™, San Jose, USA),
and then concentrated into 50 μL through a 3 K MWCO
filtering unit (Thermo Fisher Scientific™, San Jose, USA).
The concentrated samples were mixed with 500 μL 8M
urea (Sigma) and concentrated into 50 μL. The samples
were then reduced and alkylated with 10mM tris (2-
carboxyethyl) phosphine (TCEP, Sigma) and 40mM
iodoacetamide (IAA), respectively. Proteins were sub-
jected to a two-step tryptic digestion (enzyme to protein
ratio: 1:20; Hualishi Tech. Ltd., Beijing, China). The
digestion was then stopped by acidification to pH 2–3 by
1% trifluoroacetic (TFA) (Thermo Fisher), and peptides
were subjected to C18 (Thermo Fisher) desalting.
Sample preparation was performed in two phases due to

biosafety issues. In the first phase, we processed samples
from batches 1 to 8 including those collected at the first
three or four time points. In the second phase, we pro-
cessed samples from batches 9, 10, and 13–18, which
included samples from the subsequent time points. In
each phase, samples from three or four patients were
randomly allocated to each batch. To monitor the
reproducibility during the second round of sample pre-
paration, 35 samples were analyzed as technical replicates
in batches 13–15, including 29 samples from six COVID-
19 patients, covering three to five time points. In addition,
10 samples from six COVID-19 patients at a randomly
selected time point and eight control samples were ran-
domly distributed in batches 9, 16–20. Pool-1 was the
mixture of 120 samples in the first phase, while pool-2
was from 148 samples in the second phase. The protein
ratios in batches 14–17 were thus further adjusted by the
correction coefficient which is the ratio of pool-1 and
pool-2.
TMT 16-plex (Thermo Fisher) reagents were used to

label the digested peptides39. The TMT-labeled samples
were further fractionated along a 2-h basic pH reverse
phase liquid chromatography gradient using a Dionex
Ultimate 3000 UHPLC (Thermo Fisher). Liquid
chromatography–MS/MS analysis was performed using
the Easy-nLCTM 1200 system (Thermo Fisher) or a Dio-
nex Ultimate 3000 RSLCnano system coupled to a Q
Exactive HF or HF-X hybrid Quadrupole-Orbitrap
(Thermo Fisher), along with a 60-min liquid chromato-
graphy gradient at a flowrate of 300 nL/min as previously
described10. To reach comparable proteomics depth, the
fractionated samples were combined into 30 fractions for
analysis in QE-HF instruments and into 26 fractions for
QE-HFX instruments.

Database search and statistical analysis
MS data were analyzed using the Proteome Discoverer

(version 2.4.1.15, Thermo Fisher)40 search engine against
the human protein database downloaded from SwissProt
(version 26/01/2020; 20375), with a precursor ion mass
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tolerance of 10 ppm, and fragment ion mass tolerance of
0.02 Da. Detailed parameters for the database searching
can be found in a previous paper10. Briefly, TMT pro-plex
labels at lysine residues and the N-terminus, and carba-
midomethylation of cysteine residues were set as static
modifications. A cut-off criterion of a q-value of 0.01,
corresponding to a 1% FDR, was set for filtering-identified
peptides with highly confident peptide hits.
After filtering proteins with 80% missing rate, 1252

proteins were used for differential expression analysis.
The missing values were set to zero.
A two-sided unpaired Welch’s t-test was performed for

each group comparison. The one-way analysis of variance
(ANOVA) was used to determine the behavior of a vari-
able in a dataset over eight or nine time points between
the SC and LC groups. Adjusted P-values were calculated
using the Benjamini and Hochberg correction.

Metabolomic analysis
The pipeline for the metabolomics analysis, including

sample preparation and quality control, was performed as
previously described10. Metabolomics data were first
normalized with the median of the intensity of some
metabolites. Two-sided unpaired Welch’s t-test was used
to compare each pair in the time series. Two-sided
unpaired Welch t-test was performed to compare
COVID-19 and non-COVID-19 patient groups.

Mfuzz analysis
We applied ANOVA analysis to the proteomic and

metabolomic data collected at nine time points (B-H
adjusted P-value < 0.05) and selected 886 differentially
expressed proteins and 314 differentially expressed
metabolites. These proteins and metabolites were ana-
lyzed using Mfuzz (version 2.48.0) package41 in R (version
4.0.2) and classified into four groups, respectively.

Pathway analysis
Four databases were used for the pathway enrichment

analysis, including GO biological processes, KEGG path-
way, Reactome, and canonical pathways. IPA (version
51963813) was then used to investigate the pathways
corresponding to the differentially expressed proteins
among the 1252 proteins we previously identified. The
most significantly enriched pathways had a P-value < 0.01
and contained at least two proteins or metabolites from
our dataset. We then used MetaAnalyst 5.042 for the
metabolomics pathway enrichment based on the 945
metabolites we previously identified.

KNN network analysis
For great unbalanced number of molecules in the

upregulated and downregulated groups, the screening
approach of molecules that participated in the KNN

network was different. This analysis was applied to the
molecules that were differentially expressed between the
SC and LC groups across nine (for the proteomics data) or
eight (for the metabolomics data) time points tested by
two-way ANOVA (Supplementary Table S4).
The distance matrices were calculated using the R

function dist from the package stats (version 3.6.2). Each
vertex contained a protein’s time series of intensities, and
it was averaged on the samples. Each vertex i connected to
k-nearest neighbors, and the distances between them were
calculated by Euclidean distance. For a directed KNN
network, all the vertices had the same out-degree (k) but a
variable in-degree. An undirected network made Aj,i= 1
when Ai,j= 1 in the adjacency matrix. Small k (for
instance, k= 5) demonstrated relatively small groups of
proteins with similar time series trend. The undirected
networks were plotted with igraph (version 1.2.5), where
the width of the line represented the distance between
two proteins via the Fruchterman–Reingold method.

Random forest analysis
The features were selected from 1229 molecules

including 808 proteins and 421 metabolites with standard
deviation < 1 in the training dataset. Then the data matrix
was normalized using Z-score. We firstly selected 420
molecules including 323 proteins and 97 metabolites
using random forest. Then 22 molecules were screened
after six-fold cross validation. Thus, we built a 10-
molecule classifier including nine proteins and one
metabolite to distinguish LC and SC groups. We then
validated the classifier in the independent test dataset10.
The machine learning was performed using the R package
randomForest (version 4.6.14) as described previously
with some modifications as described10. We optimized the
key random forest parameters including the cutoff values
for decrease mean accuracy, cross-validation fold, and the
number of trees. Input protein features were selected
based on the mean decrease accuracy cutoff. For the
optimized model, the minimal mean decrease accuracy of
protein features was set as 1 for the 420-feature selection
and 3 for the 22-feature selection, the mtry was set as 3,
and 1000 trees were built.

Flow cytometry analysis
Direct immunofluorescence was used for immune cell

detection, while the indirect method was used for cytokines
quantification, following the manufacturer’s instructions. In
brief, 50 μL peripheral blood samples with EDTA antic-
oagulants (within 4 h after collection) were incubated with
mixed antibodies including CD4-PE-Cy7 (UB105441, UB
Biotechnology Co., Ltd., Hangzhou, China), CD3-FITC
(UB104411), CD25-PE (UB112421), CD45-PerCP-Cy5.5
(UB109481), and CD127-APC (UB113451), for 15min at
room temperature in darkness. 450 μL hemolysin was used
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to destroy erythrocytes. The labeled immune cells were
then counted by flow cytometry.
After immune cells labeling, the same blood samples

were centrifuged at 1000× g for 10min. The isolated
plasma samples were used for the detection of cytokines
using a kit (UB08PX), including IL-2, IL-4, IL-5, IL-6, IL-
10, IL-17A, TNF-α, and IFN-γ. The plasma samples were
incubated with microspheres coated with anti-cytokine
specific primary antibodies for 2 h, mixed with anti-
cytokine specific secondary antibodies labeled with biotin
for 1 h, and then with 25 μL streptomavidin-phycoerythrin
(SA-PE) for 30min at room temperature in darkness. The
resuspended cytokines could be assayed by flow cytometry
after removing the supernatant by centrifugation at 250× g
for 5min.
Double negative and single-stain controls were prepared

from normal samples and used to calculate a compensa-
tion matrix. Sample acquisition was performed on a
Gallios cytometer (Beckman Coulter). Final analysis and
graphical output were performed using NovoExpress
software (Agilent Bio).
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