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Abstract
Liver development is a complex process that is regulated by a series of signaling pathways. Three-dimensional (3D)
chromatin architecture plays an important role in transcriptional regulation; nonetheless, its dynamics and role in the
rapid transition of core liver functions during development and obesity-induced metabolic stress remain largely
unexplored. To investigate the dynamic chromatin architecture during liver development and under metabolic stress,
we generated high-resolution maps of chromatin architecture for porcine livers across six major developmental stages
(from embryonic day 38 to the adult stage) and under a high-fat diet-induced obesity. The characteristically loose
chromatin architecture supports a highly plastic genome organization during early liver development, which
fundamentally contributes to the rapid functional transitions in the liver after birth. We reveal the multi-scale
reorganization of chromatin architecture and its influence on transcriptional regulation of critical signaling processes
during liver development, and show its close association with transition in hepatic functions (i.e., from hematopoiesis
in the fetus to metabolism and immunity after birth). The limited changes in chromatin structure help explain the
observed metabolic adaptation to excessive energy intake in pigs. These results provide a global overview of
chromatin architecture dynamics associated with the transition of physiological liver functions between prenatal
development and postnatal maturation, and a foundational resource that allows for future in-depth functional
characterization.

Introduction
The liver is an essential, multifunctional, solid organ in

mammals that undergoes a rapid transition in its functions
during development1,2. The fetal liver is committed to

hematopoiesis, as hematopoietic stem cells migrate from
the yolk sac to the liver3,4. Subsequently, its role in hema-
topoiesis is replaced by the bone marrow. After birth, the
liver becomes the metabolic hub for nutrient homeostasis
and drug detoxification by coordinating the synthesis, sto-
rage, breakdown, and redistribution of nutrients, and by
metabolizing xenobiotics5–7. The liver plays major immu-
nological and clotting roles during adulthood, and respon-
sible for the production of complement components,
cytokines, and chemokines, as well as clotting factors and
related inhibitors8–10. Liver malfunction due to environ-
mental or/and genetic factors can thus lead to several
hepatic disorders, such as non-alcoholic fatty liver disease
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(NAFLD), which is the most common form of liver dis-
ease11–14.
Substantial research efforts have been made to char-

acterize changes in the physiological and pharmacological
liver functions during development and disease, especially
through multidimensional omics approaches, including
transcriptomics15–21, proteomics22–24, and metabolomics
profiling25–28. A series of critical signaling events—
including WNT, FGF, TGF-β, and Hippo pathway acti-
vation17,24—and transcription factors—including HNF4α,
ONECUT2, and PROX129,30—underlying liver develop-
ment and core hepatic functions have been recently
identified in humans and rodents.
The mammalian genome is organized in hierarchical

layers that enable accessibility to a suite of genes, with
rapid rearrangements to accommodate responses to
developmental or environmental stimuli31,32, including
chromosome territories, compartments, and topologically
associating domains (TADs), among others33–35. In par-
ticular, the long-range interaction of promoters with
distal regulatory loci is essential for gene regulation by
mediating regulatory programs between networks that
often span hundreds of kilobases36,37. Nevertheless, a
panoramic view of the dynamic changes in chromatin
architecture underpinning the transitions in liver func-
tions during development and metabolic stress has not yet
been thoroughly characterized.
The domestic pig (Sus scrofa) is emerging as a biome-

dical model that is highly relevant for the study of many
complex diseases due to its anatomical, genetic, physio-
logical, and metabolic similarities to humans38–40. Here,
we employed Bama miniature pigs (an indigenous Chi-
nese breed) as a model to study liver development and
metabolic stress. Specifically, we generated high-
resolution chromatin contact maps for livers using
in situ high-throughput chromatin conformation capture
(Hi-C) sequencing across six major developmental stages
and under metabolic stress of high-fat diet (HFD)-induced
obesity. This experimental setting allowed us to conduct
an integrated analysis of chromatin structural and tran-
scriptomic characterization of the porcine liver associated
with the transition in hepatic functions from pre- to
postnatal development, and metabolic stress during
adulthood (Fig. 1a).

Results
Chromatin architecture dynamics during liver
development and metabolic stress
To elucidate the multi-scale rewiring of chromatin

architecture and its influence on gene expression during
liver development and metabolic stress, we used in situ
Hi-C to map chromatin contacts on the porcine liver
throughout six key developmental stages, specifically:
embryonic days (1) 38 [E38] and (2) 80 [E80]; (3) birth

[0D]; (4) weaning at 28 days [28D]; (5) sexual maturity at
110 days [110D]; (6) and body maturity at 2 years [2Y]). In
addition, we conducted in situ Hi-C experiments for liver
tissue of adult pigs that were given an HFD diet for
22 weeks (Fig. 1a). We generated a total of ~29.65 billion
valid contacts, a large fraction (~65.01%) of which
occurred within chromosomes, and constructed contact
maps at a maximum resolution of 800 bp by merging the
intra-chromosomal contacts of the six replicates at each
developmental stage and under the HFD treatment
(Supplementary Fig. S1a–c).
We observed a rapid liver growth during prenatal

development, inferred by a drop in the hepatosomatic
index (i.e., the ratio of liver to body weight) at the E38
(14.7%) and E80 (3.24%) stages compared to the postnatal
stages (1.11%–2.45%) (Fig. 1b). Accompanying these
changes, correlation analysis for Hi-C maps at 100 kb
resolution with QuASAR-Rep41 and GenomeDISCO
scores42 indicated more dramatic shifts in chromatin
architecture between the two prenatal stages (QuASAR-
Rep score of E38 vs. E80= 0.92) than observed between
neighboring postnatal stages (average QuASAR-Rep
score ≥ 0.95) (Fig. 1c, d; Supplementary Fig. S2a, b, i, j).
If we focus on consecutive stages, the transition between
E80 and 0D exhibited relatively higher differences in
chromatin architecture (QuASAR-Rep score= 0.89)
(Fig. 1c). These results suggest that the core liver function
undergoes more profound changes during prenatal
development, whereas following birth these functions
stabilize and the liver matures in a more gradual fashion.
We also noted that global reprogramming of chromatin
architecture in the liver as a response to HFD-induced
obesity (QuASAR-Rep score of 2Y vs. HFD= 0.97) was
relatively lower than during development (Fig. 1c). The
transcriptomic variations (Fig. 1e; Supplementary Fig. S2c,
k), the combined differences in chromatin architecture
and gene expression (i.e., form-function differences)
estimated using a chromosome phase portrait approach43

recapitulated these findings (Fig. 1f; Supplementary Fig.
S3). This further implies that chromatin architectural
changes may facilitate concomitant shifts in transcrip-
tional activity.

Dispersed chromatin architecture in early liver
development
To understand how chromatin architecture shifted

during development, we measured changes in 3D struc-
tural order across the different stages using the Von
Neumann Entropy (VNE) index of multivariate entro-
pies44, and observed a gradual decrease in entropy status
within chromosomes from E38 to 2Y (mean of 0.66–0.42)
(Fig. 2a). This likely reflects a more disordered (the high-
entropy status) and relaxed chromatin architecture at
early development (E38 and E80) (Fig. 2b). The gradual
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decrements of inter-chromosomal spatial distances and
nuclear radius (reflected by the average distance to the
nuclear center of mass) in 3D genome structures during
liver development (Supplementary Fig. S4) also support
loose (and permissive) chromatin folding during early

development. In agreement with the phenomenon that 3D
structure in early mammalian embryos is initially obscure
but gradually established throughout development45–47,
the relatively loose chromatin folding highlights a highly
plastic state for hepatocyte genomes at the early stages of
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Fig. 1 Divergences in chromatin architecture and gene expression of liver during development and metabolic stress. a Schematics of liver
sampling. b Comparison of the hepatosomatic index (ratio of liver to body weight) across six developmental stages and the HFD-fed pigs. Data are
presented as means ± SD. P-values were calculated using a Wilcoxon rank-sum test. n.s., P ≥ 0.05; **P < 0.01; ***P < 0.001. Notably, a rapid liver growth
during prenatal development (i.e., greater proportional gain in liver weight compared to body weight) could be observed. c–h Similarities in
chromatin architecture and gene expression for livers between consecutive developmental stages and HFD-fed pigs. The correlations of chromatin
architecture were separately determined using c QuASAR-Rep and d GenomeDISCO for the Hi-C maps; g A-B index and h Directionality Index (DI) for
20-kb genomic bins; i Jaccard index for TADs; j D-score for consensus TADs (cTADs); and k regulatory potential score (RPS) for genes. The dots on the
bars represent the replicates. The correlations between gene expression (determined by RNA-seq, e) and the combined differences (reflected by the
Euclidean distances, f) in chromatin architecture (i.e., form) and gene expression (i.e., function) were also measured as described in the Materials and
methods.
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development and may be essential for the rapid functional
transitions in the liver before and after birth.
We subsequently explored the reorganization of the 3D

structure at the sub-chromosome level. Based on contact
maps at 20-kb resolution, we recognized ~48.68%–57.53%
of the genome (~1.10–1.30 Gb in length) as accessible A
compartments. These regions exhibited higher levels of
GC content, gene density, and transcriptional activity. In

contrast, the remaining genome was categorized as less
accessible or B compartments, corresponding to
42.47%–51.32% of the genome (~0.96–1.16 Gb) that is
characterized by GC-poor, gene-sparse, and tran-
scriptionally inactive (Supplementary Fig. S5a, b). The
overall similarity in compartmentalization across the dif-
ferent stages aligned well with the observed similarities in
gene expression profiles (Fig. 1e, g; Supplementary Fig.
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S2c, d, k, l), and revealed a stage-dependent trajectory for
compartmentalization during development (Fig. 2c).
Notably, we observed that the compartmentalization
strength (AA × BB/AB2) gradually increased between E38
and 2Y (51.06–99.10) (Fig. 2d). This observation was
evident by the reduction in inter-compartment contacts
in later stages (median A-B interaction strength of E38 vs
2Y: 0.30 vs 0.24, P= 2.17 × 10–3, Wilcoxon rank-sum
test), and supported by the increasing number of contacts
within the B compartment (median B-B interaction
strength of E38 vs 2Y: 1.92 vs 2.06, P= 2.17 × 10–3, Wil-
coxon rank-sum test) (Fig. 2d–f).
At a finer scale, we partitioned the genome into

3470–3991 TADs (median sizes of 460–480 kb) (Supple-
mentary Fig. S5c). Although TAD boundaries were largely
invariant during development (Spearman’s r of DI > 0.88,
Jaccard index > 0.86) (Fig. 1h, i; Supplementary Fig. S2e, f,
m, n), the ‘connectivity’ (i.e., the tendency for self-inter-
action) within a given TAD varied and tended to increase
over successive stages (median D-score of E38 vs 2Y: 0.27
vs 0.28) (Figs. 1j, 2g, h; Supplementary Fig. S2g, o). Prin-
cipal component analysis (PCA) of D-score48 kinetics
revealed a developing trajectory of intra-TAD con-
nectivity similar to that of compartmentalization (Fig. 2c,
i). As expected, D-scores positively correlated with gene
expression and A compartments (Supplementary Fig. S5d,
e). These findings indicate that higher-order chromatin
organization gradually solidifies during development.

Developmental changes in local spatial context affect gene
expression
To explore the functional implications of chromatin

architecture shifts during development, we surveyed the
genes located in switched compartments and changing
TADs between successive developmental stages. We
observed substantial levels of compartment switching by
genomic regions during development, ranging from
~26.82Mb (0.19% of the genome) between 110D and 2Y,
to ~135.92Mb (2.05% of the genome) between E80 and
0D (Fig. 3a). These switches in the local spatial context
were accompanied by a concomitant increase or decrease
in gene expression within regions that respectively swit-
ched from B to A or A to B compartments between the
successive stages (Supplementary Fig. S6a).
We next investigated possible developmental scenarios

for genes undergoing compartmental rearrangement and
identified four predominant patterns associated with 2047
genes that are located in compartment-switching regions
between two successive stages using the maSigPro-GLM
algorithm49 (Supplementary Fig. S6b). We found a total of
1535 A compartment genes (659 and 876 genes in clusters
1 and 2, respectively) in prenatal stages that gradually
switched to the B compartment in postnatal stages.
Functional enrichment analysis using Metascape50

suggested that these genes are mainly involved in pro-
cesses of primary hematopoietic roles in the liver during
early development (such as ‘gas transport’, ‘regulation of
BMP signaling pathway’, and ‘centrosome cycle’) (Sup-
plementary Fig. S6b). Typical genes essential for hema-
topoiesis that switched from the A to the B compartment
include HBB, HBE1, RHAG, and SPTA1 (Fig. 3b; Sup-
plementary Fig. S7a, b and Table S1 for functional
annotation of the genes), while CDK1, CENPW, HMGB2,
PEG10, and SGCE are critical for liver cell proliferation
and embryo development (Fig. 3c; Supplementary Fig.
S7c–e and Table S1).
In contrast, a total of 512 genes (170 and 342 genes in

clusters 3 and 4, respectively) were identified in B com-
partments during early stages and gradually switched to A
compartments in later stages. These genes are involved in
nutrient homeostasis processes (e.g., ‘lipid catabolic pro-
cess’ and ‘monocarboxylic acid metabolic process’) and
xenobiotic metabolism (e.g., ‘response to xenobiotic sti-
mulus’), possibly reflecting the rapid conversion of the
liver function in postnatal stages associated with the
response to a variety of external stimuli and environment
(Supplementary Fig. S6b). Typically, genes participating in
the metabolism of glucose, lipids, and amino acids (such
as GYS2, PAH, and PDK4), as well as genes associated
with drug metabolism (such as PON-1, −2, and −3)
gradually shifted to compartment A after birth (Fig. 3c;
Supplementary Fig. S7f, g and Table S1). The genes
switching to compartment A in the later stages were also
enriched for categories associated with growth (e.g.,
‘developmental growth’) and immune processes (e.g.,
‘positive regulation of natural killer cell chemotaxis’),
including two well-characterized growth factor genes
(GHR and IGF1) and several inflammatory indicator genes
(CCL5, CCL14, and IL1R1) (Supplementary Fig. S7h–k
and Table S1). This is consistent with the rapid growth of
the body and enhanced metabolic and immune functions
of the liver after birth1.
To further determine whether changes in epigenetic

chromatin state-mediated compartmentalization occur
coincidently with local changes in chromatin accessibility,
we performed ATAC-seq assay to measure the differences
in local accessibility between the prenatal and adult stages
(i.e., E80 vs 2Y) (Supplementary Fig. S8a–e). As expected,
we observed that A compartments had higher chromatin
accessibility than B compartments, and the stage-specific
ATAC peaks mainly occurred in stage-restricted com-
partment A regions (Supplementary Fig. S8f–h). Sup-
porting the dynamic transition of core liver functions
between prenatal development and postnatal matura-
tion2,18,23, we found the prenatal E80-specific peaks were
enriched in motifs corresponding to the GATA tran-
scription factor family (GATA-1 through -6), of which
GATA-1, -2, and -3 are known to be involved in
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Fig. 3 Gene expression affected by shifts in chromatin architecture during liver development. a Alluvial representation plot of compartment
switching during development. Boxes indicate the length of the genomic regions. ‘Un’ represents genomic regions with uncategorized
compartmental status. b, c Dynamic compartment status and corresponding gene expression for HBB and HBE1 (b) and SGCE, PEG10, PDK4, PON-1, -2,
and -3 (c). d Varying TAD connectivity largely coincided with changes in compartmentalization and gene expression during development. Among
the seven TAD clusters with developmental stage-dependent D-score changes, we found that clusters 1–4 and 5–7 were gradually elevated or
reduced, respectively. The slopes of the fitted regression lines are also shown. e Representative TADs (containing SOX6) with reduced D-scores during
development.
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hematopoiesis, while GATA-4, -5, and -6 play roles in
endoderm developments51 (Supplementary Fig. S8i). In
contrast, adult 2Y-specific peaks were enriched in motifs
corresponding to seven members of the evolutionarily
conserved FOX transcription factor family that regulate
diverse biological processes both during development and
in the adult, including metabolism (typically, FOXC2,
FOXJ3, and FOXL1) and immune (typically, FOXC1,
FOXD2, and FOXD3)52–54 (Supplementary Fig. S8i).
We next focused on changes in the interaction fre-

quency within TADs during development and identified
two representative patterns based on TAD connectivity
(determined by D-scores, Supplementary Fig. S6c) using
MaSigPro49. Notably, varying TAD connectivity largely
coincided with intra-TAD changes in compartmentaliza-
tion and transcriptional levels over successive stages (Fig.
3d). More specifically, we found 986 TADs (clusters 1–4)
exhibited higher connectivity, which is concordant with
the gradually increased compartment scores (i.e., the
larger A-B index value) and the upregulation of tran-
scription in these domains throughout development. In
contrast, 752 TADs (clusters 5–7) displayed decreasing
intra-TAD interactions, compartment scores, and tran-
scription levels (Fig. 3d). The functional categories enri-
ched with genes located in these TADs (Supplementary
Fig. S6d) were generally consistent with the transition of
liver functions during development and reflected com-
partmental reorganization, as described above (Supple-
mentary Fig. S6b). For example, LIN28B (which is
responsible for maintaining embryonic stem cell plur-
ipotency by suppressing the miRNA let-7)55 and SOX6
(which enhances erythroid cell development)56 were both
embedded in low-connectivity TADs and thus decreased
in transcription and switched from A to B compartments
after birth (Fig. 3e; Supplementary Fig. S7l and Table S1).
Taken together, the reprogramming of hierarchical

chromatin architectures, including compartments and
TADs, during development likely facilitates the tran-
scription of essential genes required for liver development
and function.

Global rewiring of spatial regulatory circuitry during liver
development
Since the 3D physical interactions of promoters and

their long-range interacting elements (typically enhan-
cers) dynamically regulate gene expression in a develop-
mental stage-specific manner36, we sought to compile an
extensive genome-wide catalog of interactions between
gene promoters and enhancers (PEIs) throughout six
stages of liver development. This analysis revealed
32,557–42,074 PEIs for each stage using the PSYCHIC
algorithm57 (Supplementary Fig. S9a–e). The analysis was
based on ultra-deep contact maps at 5-kb resolution
generated by merging the Hi-C contacts of six replicates.

We found that ~80.30% of genes engaged in physical
contact with one or more enhancers, and thus tended to
be more actively transcribed than those showing no
enhancer interactions (Supplementary Fig. S9f). As
expected, genes that interacted with more enhancers
during development also exhibited higher expression
(Supplementary Fig. S9f), which suggested that enhancers
provide an additive effect on target gene transcription58–60.
Accordingly, and in order to accurately elucidate the
dynamic rewiring of PEIs during development, we quan-
titatively explored the regulatory effects of multiple
enhancers on individual genes. To this end, we calculated
regulatory potential scores (RPSs) for each gene. We found
that genes with larger RPS had higher expression (Sup-
plementary Fig. S9g, h), which confirmed the contribution
and additive effects of enhancers to increase gene
expression61. Consistent with findings that showed chan-
ges in compartmentalization and TAD connectivity, the
overall similarity of PEIs also changed concordantly with
that of gene expression over successive stages (Fig. 1k;
Supplementary Fig. S2h, p).
Beyond the spatial proximity between enhancers and

gene promoters, we analyzed the distribution of H3K27
acetylation (H3K27ac) and H3K4 tri-methylation
(H3K4me3) to distinguish the respective effects of
enhancers from that of promoters on transcriptional
activity62–64 using ChIP-seq data (Supplementary Fig.
S1e). This enabled a comprehensive dissection of the
PEI network rewiring and their regulatory roles during
development. Compared to enhancers depleted in
H3K27ac peaks, known as poised-enhancers (PEs,
42.21%–60.88% of PEIs), enhancers exhibiting H3K27ac
signals were identified as moderately active regular-
enhancers (REs, 21.28%–30.72% of PEIs). In addition,
enhancers covered by strong H3K27ac signals were
highly active super-enhancers (SEs, 11.55%–36.51% of
PEIs, having broad acetylation peaks) (Supplementary
Fig. S9i, j). As expected, the genes contacting SEs
showed higher RPS and had increased expression levels
compared with those contacting REs or PEs (Supple-
mentary Fig. S9k, l). An investigation of promoter
activity showed that H3K4me3-marked promoters with
characteristically elevated transcriptional activity (Sup-
plementary Fig. S9m), preferentially interacted with
higher-activity enhancers (i.e., SEs and REs, Supple-
mentary Fig. S9n). In contrast, inactive promoters that
were absent from H3K4me3 peaks were generally
accompanied by less active enhancers (i.e., PEs) (Sup-
plementary Fig. S9n). To confirm the reliability of
enhancers identified here, we randomly selected 2–10
enhancers of three genes (identified in 2Y) for validation
in HEK-293T cells using the Dual-Luciferase reporter
assay. The results showed significantly increased tran-
scriptional activities for most of the tested enhancers
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compared with the controls (P < 0.05, two-sided Stu-
dent’s t-test, Supplementary Fig. 9o and Table S2).
These findings support the remarkable role of enhancer
activity in transcription control62.
Next, we identified five representative patterns of genes

exhibiting developmental-dependent changes in RPS (Fig.
4a) using the STEM algorithm65. These five patterns were
then classified according to the presence of higher RPS
before birth compared to after birth (597 and 147 genes in
clusters 1 and 2, respectively) or vice versa (360, 530, and
323 genes in clusters 3, 4, and 5, respectively). Functional
enrichment analysis showed that genes in the former group
are enriched for processes including ‘myeloid cell differ-
entiation’, ‘gas transport’, and ‘erythrocyte homeostasis’,

reflecting the hematopoietic function of the fetal liver
(Supplementary Fig. S10a). In contrast, genes in the latter
group are mainly involved in metabolic processes such as
‘lipid biosynthetic process’ and ‘carboxylic acid biosynthetic
process’, coinciding with the known metabolic functions of
the liver after birth (Supplementary Fig. S10a). Furthermore,
we found that genes with high, stage-specific RPS were
more likely to interact with active enhancers (SEs or REs)
(Fig. 4a). For example, the 26 genes present in cluster 3 that
are enriched for ‘monocarboxylic acid metabolic process’,
are mostly regulated by REs or SEs after birth (Supple-
mentary Fig. S10b).
Supporting the transcriptional similarity between liver

development and the human hepatocellular carcinoma
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(HCC)66, more aggressive tumors have an aberrant reac-
tivation of some developmental processes (typically, cell
proliferation) that need to be silenced in the adult liver. In
turn, less aggressive tumors typically maintain a series of
well-orchestrated metabolic events that are elevated in the
mature liver23. We observed that the predominant
developmental patterns in RPS of 32 signature genes for
the less aggressive HCC subtype (S-I, good prognosis)
gradually increased after birth (11 genes; typically, ADH4)
(Fig. 4b, c; Supplementary Fig. S10c, Table S1 and Data
S1). In contrast, a substantial proportion of the 263 sig-
nature genes linked to the more aggressive HCC subtype
(S-III, poor prognosis) exhibited increased RPS either
after birth (46 genes; typically, FGL2 and POSTN, both
involved in leukocyte activation) or during early devel-
opment (25 genes; remarkably, the cell proliferation
marker, ABRACL) (Fig. 4b–d; Supplementary Fig. S10d, e,
Table S1 and Data S1).

Rewiring of PEIs underpinning functional transition in the
liver during development
To further explore PEI reorganization associated with

shifts in core liver functions throughout development
(hematopoiesis in the fetus, metabolism, and immunity
after birth), we examined changes in RPS profiles for eight
a priori representative candidate gene sets (Supplemen-
tary Data S2).
Strikingly, we identified two significant RPS profiles

during development among the 719 hematopoietic genes.
One predominant pattern involved 84 genes that showed a
gradual decrease in RPS over successive stages (Fig. 5;
Supplementary Fig. S11). Fifty-four (or 64.29%) of these
genes were associated with the ‘myeloid cell differentiation’
process (Benjamini-Hochberg P < 10–16, hypergeometric
test). This result supports the critical role of hematopoiesis
in fetal liver3. As with most of these genes, TAL1 and IKZF1
interacted with SEs at E38 and E80 but lost all enhancer
contacts after birth (Fig. 6a; Supplementary Fig. S12a, Table
S1 and Data S2). In contrast, the other predominant pattern
involved 95 genes that showed a gradual increase in RPS
over successive stages. Among these, 55 (or 57.89%) were
involved in ‘leukocyte differentiation’ (Benjamini-Hochberg
P < 10–16, hypergeometric test), which supports the well-
established substantial increase in immunologically active
cells in the postnatal liver. For example, MAFB only inter-
acted with PEs at E38, but interacted with REs at E80 and
SEs after birth (Supplementary Fig. S12b and Data S2).
These two distinct patterns in RPS profiles are consistent
with a diminished hematopoietic capacity and improved
immune function in the postnatal liver23.
Notably, we found that six metabolic gene sets (meta-

bolism of amino acid, fatty acid, glucose, bile acid, and
drug, as well as tricarboxylic acid cycle) and hepatopathy-
related immune genes predominantly exhibited a gradual

increase in RPS during development (P ≤ 0.05, multi-
hypothesis test) (Fig. 5; Supplementary Fig. S11). This
strongly supports the increasing importance of metabo-
lism and immunity for the liver after birth23. Genes with
increased RPS profiles included CPS1 (amino acid meta-
bolism), FABP1 and PPARα (fatty acid metabolism), G6PC
(glucose metabolism), SDHC and SUCLG2 (tricarboxylic
acid cycle), CYP7B1 (bile acid metabolism), ADH4 and
PON1 (drug metabolism), and C3 (innate immune). All of
these genes showed little to no prenatal enhancer con-
tacts, but were upregulated and had increased enhancer
interactions (e.g., with SEs) following birth (Fig. 6b; Sup-
plementary Figs. S10c, S12c–j, Table S1 and Data S2).

Chromatin architecture shifts in the liver responding to
HFD-induced obesity
The liver plays a central role in metabolic homeostasis

after birth2 but may suffer from various disorders due to
metabolic stress, of which the most prevalent is NAFLD
caused by high caloric input-induced obesity67. To
investigate 3D genome responses to metabolic stress in
the liver, we performed a multi-scale comparison of
chromatin architectures with related phenotypes between
the livers of pigs fed with HFD and pigs fed normal
adult diets.
As expected, HFD feeding for 22 weeks resulted in a

dramatic increase in liver weight (fold change= 1.51, P=
8.66 × 10–3, Wilcoxon rank-sum test), body weight (fold
change= 2.03, P= 4.92 × 10–3), backfat thickness (fold
change= 2.46, P= 2.17 × 10–3), and body mass index (BMI)
(fold change= 1.62, P= 2.17 × 10–3) (Fig. 7a). All of the
above represent strong indicators of obesity. Nonetheless,
the hepatosomatic index (fold change= 0.75, P= 8.66 ×
10–3) decreased in the HFD-fed pigs. At the same time,
histological evaluation of liver sections showed almost
normal hepatic morphology, minimal inflammation, and a
non-significant increase in lipid accumulation (hepatic tri-
glyceride content for normal diet vs HFD, 7.82 vs 12.51, P
= 0.24, Wilcoxon rank-sum test) in the enlarged livers of
HFD-fed pigs (Fig. 7b). Moreover, no statistically significant
differences were observed in the serum concentrations of
five metabolic indicators between pigs fed with HFD and
normal diets (Fig. 7c).
In agreement with the limited changes in metabolism-

related phenotypes, we found subtle but widespread chan-
ges in chromatin architecture in the liver of HFD-fed pigs.
These changes were much weaker than those observed
during development, including high similarity in Hi-C
contact maps (Fig. 1c, d; Supplementary Fig. S2a, b, i, j),
comparable VNE (Fig. 7d), similar compartmentalization
strength (Fig. 7d; Supplementary Fig. S2d, l), largely con-
served TAD boundaries (Fig. 1h, i; Supplementary Fig. S2e,
f, m, n), and comparable intra-TAD contact intensities (Fig.
7d; Supplementary Fig. S2g, o). In addition, only 0.2% of
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genome (4.58Mb) exhibited compartment switching
between HFD and normal diet pigs (Fig. 7d).
We have not observed obviously aberrant transcription of

genes associated with liver metabolic stress after HFD-
induced obesity. Of the 160 genes exhibiting significant
expression changes (|log2FC| > 1 and FDR < 0.05) between
HFD and normal diet-fed pigs (Supplementary Fig. S13a, b),
only nine showed concomitant RPS changes (|log2FC| > 2
and |ΔRPS|> 3) (Supplementary Fig. S13c). Notably, none of
the 126 NAFLD-related genes in the autosomes (retrieved
from the KEGG pathway: non-alcoholic fatty liver disease
[ko04932]) exhibited significant expression changes between
the two groups (Fig. 7e, f; Supplementary Data S3). Five

typical NAFLD markers, including ADIPOQ, CYP2E1, IL6,
LEP, and TNF, also displayed comparable RPS and expres-
sion levels between the groups (Fig. 7e, f; Supplementary Fig.
S13d–g, Table S1 and Data S3).
We next measured the spatial proximity between pro-

moters, which represents an additional active transcrip-
tional program responding to signaling and environmental
cues36. Consistent with the previous observations in
mouse68, human69, and pig70, genes with relatively high
expression exhibited an elevated extent of spatial associa-
tions, which were most likely to be occupied by common
transcription factors (Supplementary Fig. S14a). None-
theless, no canonical transcription factors involved in
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Fig. 5 Rewiring of PEIs associated with shifts in core liver functions during development. The predominant RPS patterns across developmental
stages were separately identified for eight a priori gene sets associated with core liver functions at prenatal (hematopoiesis) and postnatal stages
(metabolism of amino acid, fatty acid, glucose, bile acid, and drug; tricarboxylic acid cycle; and immunity) (Supplementary Data S2) using STEM. The
bold lines in the left panels represent the mean RPS, and the thin lines represent the RPS of each gene in the relevant cluster during development.
FDR-corrected P-values were obtained from multiple hypothesis testing. For each RPS cluster, the proportions of genes that interacted with
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dynamic RPS (left). Representative functional genes are labelled on the plot.
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metabolic stress were predicted to preferentially bind at
genomic sites of 245 highly expressed genes in the liver of
HFD over normally fed pigs (Supplementary Fig. S14a).
Consistently, the expression of target genes of HNF4α and
C/EBPα (two essential transcription factors participating in
the regulation of NAFLD-related metabolism genes)71 in
the liver of HFD- and normally fed pigs was also compar-
able (P > 0.05, Wilcoxon rank-sum test) (Supplementary
Fig. S14b).
No obvious metabolic dysfunction could be found in the

liver of HFD-fed pigs (Fig. 7), suggesting domestic pigs
may potentially resist NAFLD in spite of obesity. If that is
the case, this constitutes a distinctive pattern from
humans, who present NAFLD in up to ~70% of over-
weight individuals17,72,73, and rodents, who normally
manifest NAFLD when undergoing high-calorie diet-
induced obesity (e.g., ~1.2–1.4-fold gain in body
weight)74. This inter-specific discrepancy indicates that
domestic pigs probably developed metabolic adaptions to
‘diabetogenic’ environments (energy abundance and little
physical exercise)75–77 and are potentially resistant to the
chronically deleterious effects of obesity in the liver78–80.
A similar selection scenario of protective mechanism has

also been observed for domestic cats and dogs (as well as
human populations in developed countries), which exhibit
more superior performance in resistance to metabolic risk
factors than rodent-catching cats and hunting dogs (and,
human populations in developing countries)75.

Discussion
This study reports the structural dynamics of the 3D

genome in a domestic pig model to illustrate how shifts in
higher-order chromatin architectures and transcriptomic
regulation are closely associated with rapid transitions in
liver functions during prenatal development and
maturation after birth, or under metabolic stress in
adulthood. Multi-scale 3D genome reorganization toge-
ther with enhancer and promoter activity dynamically
regulates gene expression in a well-orchestrated temporal
manner.
We found that the earlier stages of development (E38

and E80) showed more relaxed chromatin architecture
compared to postnatal stages, which coincide with an
expansion of accessible compartment A regions (Supple-
mentary Fig. S15a, b). Compared with compartment B
regions, compartment A regions are more gene dense,
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harbor activating chromatin marks, and have more highly
active enhancers and promoters that are necessary for
widespread active transcription (Supplementary Fig. S15b,
c). The characteristically highly plastic genome organiza-
tion of earlier developmental stages includes permissive
chromatin that allows for the transcription of extensive
genomic regions and facilitates rapid functional transition
in the liver during development. These observations
expand current knowledge on the genetics of liver
development and maturation1.
It is worth noting that the liver undergoes a substantial

change in its cellular composition during embryonic
development and growth18,81,82, nonetheless, our bulk Hi-
C data only provide the average features of chromatin
architecture on a cell population scale. To what extent
cellular heterogeneity of the liver contributes to the
observed differential signals of chromatin features is still
required to investigate at a single-cell resolution83–85.
Pigs, in particular miniature pig breeds, have recently

emerged as an attractive biomedical model for the study of
metabolic diseases39. Our work greatly expands the anno-
tation of regulatory DNA elements (enhancers) in the
reference pig genome. As expected, using the NHGRI-EBI
GWAS catalog (https://www.ebi.ac.uk/gwas/) and the Lift-
Over tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver), we
found DNA sequence variation (human noncoding SNPs)
associated with specific traits or diseases were enriched in
enhancers identified in the porcine liver (mean of SNP
enrichment scores in enhancers vs. non-enhancer regions:
1.35 vs 0.88, P= 0.014, Wilcoxon rank-sum test). This is
more pronounced in the case of SEs (mean SNP enrich-
ment score in SE regions: 2.08) (Supplementary Fig. S16a),
confirming the robustness and functional roles of these
regulatory elements86,87. In support of the findings
describing the PEI rewiring associated with shifts in liver
functions during development, we observed that hemato-
poiesis- and metabolism-associated SNPs are separately
enriched during pre- and postnatal stages (Supplementary
Fig. S16b, c). These genetic results, combined with the great
physiological similarities between pigs and humans, provide
further support for the use of pigs as an attractive model for
studying hepatology in humans.

Importantly, both the 3D genomic and phenotypic data
presented in this study showed pigs are to some extent
resistant to HFD-induced NAFLD, which provides
essential information regarding the application of
domestic pigs as a liver disease model. Hence, we corro-
borate our previous arguments that the evolutionary
divergence (particularly, transcriptional shifts of homo-
logous tissues) between pigs and other mammalian
models needs to be considered when selecting targets in
animal models to extrapolate diseases or traits39.

Materials and methods
Ethics statement
Animal maintenance and experimental procedures were

approved by the Institutional Animal Care and Use
Committee in the College of Animal Science and Tech-
nology, Sichuan Agricultural University, Sichuan, China
under permit No. DKY-2019102015. Throughout the
procedure, particular care was taken to avoid animal
suffering and to ensure ethical treatment.

Experimental animals
We used Bama pigs of the similar age and physical

condition across six developmental stages, including two
prenatal stages—embryonic day 38 (E38; n= 14 indivi-
duals) and embryonic day 80 (E80; n= 6), and four
postnatal stages—birth day (0D; n= 6), 28 days after birth
(28D; n= 6), sexual maturity at 110 days (110D; n= 6),
and body maturity at 2 years (2Y; n= 6). We also used
pigs from an HFD treatment group (n= 6). For the HFD
treatment, the pigs were fed a high-fat diet (15.12 MJ/kg
metabolizable energy, 11.26% crude protein, 6.8% fat, and
5% lysine) for 22 weeks in order to induce obesity. A total
of six pigs at the developmental stage of 2Y were used as
normal diet controls (12.9 MJ/kg metabolizable energy,
15.37% crude protein, 2% fat, and 6.7% lysine). All pigs
fasted for twelve hours before being sacrificed. Since the
sexual characteristics of pig fetuses are not visible before
day 49 post-conception, the gender was determined at
E38 using a PCR-based method, similar to previously
described88. Livers were collected immediately after
sacrificing the pigs and snap-frozen in liquid nitrogen for

(see figure on previous page)
Fig. 7 Changes in phenotypes related to hepatic function, chromatin architecture, and gene expression as a response to liver metabolic
stress in pigs. a Comparison of obesity-related phenotypes. b Representative H&E staining of paraffin sections and measurement of triglyceride
contents in the liver. Data represent means ± SD. c Serum concentrations of five metabolic indicators. TG triglyceride, LDL low-density lipoprotein,
HDL high-density lipoprotein. d Subtle alterations in chromatin architecture, reflected by VNE, compartmentalization strength, intra-TAD connectivity,
and compartment switching. e Transcriptomic comparison between HFD- and normal diet-fed pig livers. Red dots represent the 126 NAFLD-related
genes obtained from the KEGG pathway (ko04932). Five typical NAFLD markers are indicated. f Schematic representation of PEIs, 3D structural
models, and Hi-C contact maps for ADIPOQ. Left: a schematic representation of PEIs, H3K4me3, and H3K27ac signals, and transcription. Right: 3D
structural models and Hi-C contact maps of the corresponding genomic regions. Gene promoters and enhancers are shown as blue and red spheres,
respectively.
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subsequent assays. All liver samples at E38 (n= 14) were
pooled for high-throughput sequencing analysis.

Phenotypic measurements
We measured liver weight, body weight, and body

length of all pigs using conventional methods, and cal-
culated their hepatosomatic index (the ratio of liver
weight to body weight) and body mass index (BMI, body
weight/body length2).
For the 2Y control group and the HFD treatment group,

fresh liver tissue was fixed in 10% formalin at room
temperature for 12 h, and then dehydrated and embedded
with paraffin. Paraffin sections were prepared and stained
with an Hematoxylin and Eosin (HE) Staining Kit (C0109
and C0107, Beyotime) according to the manufacturer’s
instructions. To measure lipid levels in HFD-fed animals,
frozen liver samples from both the HFD treatment and 2Y
control groups were ground by mortar and pestle under
liquid nitrogen and examined for triglyceride (TG) con-
tent with a Triglyceride Content Assay kit (AKFA003C,
Boxbio) according to the manufacturer’s instructions.
Venous blood (50 mL) was also collected from fasting pigs
of both experimental groups. After this, circulating indi-
cators in the serum were measured in each pig using a
CL-8000 clinical chemical analyser (Shimadzu) via stan-
dard enzymatic procedures.

In situ Hi-C library preparation and sequencing
We constructed six Hi-C libraries (including six tech-

nical replicates for E38 and six biological replicates for
each of the other stages and HFD treatment) for livers at
each developmental stage and HFD treatment group, as
previously described89 with minor modifications. Briefly,
liver tissue was homogenized with liquid nitrogen and
then fixed with a 4% formaldehyde solution at room
temperature for 30min. After fixing, 0.2 mol/L glycine
was used to quench the reaction and the samples were
suspended in a lysis buffer (1 mol/L Tris-HCl, 1 mol/L
NaCl, 10% CA-630, and protease inhibitors) on ice for
15min. The cell nuclei were lysed with 0.1% SDS and
quenched with 0.1% TritonX-100. The chromatin was
digested with 200 U DpnII (R0543S, NEB) at 37 °C for
90min. Next, a total of 0.4 mM Biotin-14-dATP
(19524–016, Invitrogen), 10 mM dCTP, 10 mM dGTP,
10mM dTTP, and 5 U/μL Klenow Fragment were used to
fill-in and mark the DNA fragment. For ligation, T4 DNA
ligase was added and the samples incubated at room
temperature for 4 hours with slow rotation. DNA was
purified by ethanol precipitation and then sheared using a
probe sonicator to fragment size of ~400 bp. Biotin-
tagged DNA fragments were pulled down with M280
beads. The Hi-C libraries were amplified for 10 PCR
cycles and sequenced as 100 bp paired-end reads on a
BGISEQ-500 platform.

Hi-C data processing
Hi-C reads were processed using a custom pipeline in

Juicer90 software (v 1.8.9, https://github.com/aidenlab/
juicer/wiki). Briefly, high-quality Hi-C reads (1255.27
million per sample) were aligned to the pig reference
genome (Sscrofa 11.1) using BWA91 (v 0.7.15, http://bio-
bwa.sourceforge.net/) with default parameters. Then, the
read pairs that could not be successfully aligned or PCR
duplicates were filtered out with Juicer. Low-quality
alignments with MAPQ < 30 were removed, too. Finally,
intra-chromosomal contract matrices were separately
generated at 5, 20, and 100 kb resolutions using valid read
pairs, then were normalized using the Knight-Ruiz (KR)92

matrix balancing algorithm and quantile algorithms, while
1Mb inter-chromosomal metrices were generated using
the KR92 algorithm and log-counts per million (CPM; i.e.,
the average abundance across all libraries) normalization
method.
The correlations between normalized intra-chromosomal

matrices were calculated using QuASAR-Rep41 and Geno-
meDISCO42 with default parameters. We applied the Von
Neumann Entropy (VNE) approach to quantify the order of
chromatin organization for 100-kb resolution intra-
chromosomal matrices as previously described44. Higher
entropy corresponds to more disorder. First, correlation
matrix C was calculated as C= corr (log2[A]), where A
represents the Hi-C matrix of each autosome. Second, we
conducted eigen-decomposition of matrix C, where λ1 ≤
λi ≤ λn were the eigenvalues of matrix C. The eigenvalues
were then normalized: λi ¼ λiPn

j¼1
λj
. Finally, VNE was

computed as

VNE ¼ �
Xn

i¼1

λilnðλiÞ:

Compartments A/B at 20 kb resolution were identified
using both principal component analysis (PCA) and A-B
index, as previously described93. First, PCA was per-
formed to generate PC1 vectors for each autosome per
sample at 100 kb resolution. Spearman’s correlations
between PC1 and genomic characteristics including gene
density and GC content were calculated. Bins with posi-
tive Spearman’s correlation were defined as compart-
ments A, whereas the remainder were defined as
compartments B. The A-B index was then calculated as
previously described93 at 20 kb resolution, which repre-
sents the likelihood of a genomic segment interacting with
the A or B compartments defined at 100 kb resolution as
above described. Bins of 20 kb length with positive or
negative A-B index were considered as A or B compart-
ments, respectively. The final compartment status of each
bin for every developmental stage or the HFD treatment
was determined as the consistent status of more than
three biological replicates.
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For the compartmentalization plot (‘saddle plot’), we
rearranged the A-B index of 20 kb bins from the lowest to
the highest in each autosome, then reshuffled the
observed/expected (O/E) map of this chromosome and
divided the resulting map into 50 × 50 sub-matrices.
Compartmentalization strength47,93 was defined as (AA ×
BB)/AB2, where AA and BB represent the mean levels of
interactions between regions of the same compartment
status, while AB corresponds to the mean interaction
frequency between regions belonging to different
compartments.
TADs were identified at 20 kb resolution using Direc-

tionality Index (DI)93,94 and Insulation Score (IS)95. DI
was calculated for each 20 kb bin based on the interac-
tions of the ten bins immediately upstream and down-
stream from the center of each bin using a previously
described method94. We used a hidden Markov model
(HMM) to predict TAD boundaries based on the state of
DI. In addition, IS was calculated and normalized for each
20 kb bin following95. Minimal IS along the normalized IS
vector was interpreted as the TAD boundary. Finally,
large TADs identified by DI were further split into small
TADs based on IS, and then two sets of TADs were
merged for further analyses. Jaccard Index and Pearson’s
correlation of DI were calculated to assess the variation of
TAD boundaries across developmental stages as well as
between the HFD treatment and normal diet controls.
To quantify intra-TAD interaction strength with

Domain score (D-score)48, we determined consensus
TADs (cTADs), which were defined as TADs conserved
in at least 50% of the developmental stages and replicates,
or those emerging in both HFD and controls. The D-score
of a cTAD indicated the ratio of intra-TAD interactions
across all intra-chromosomal (intra-TAD and inter-TAD)
interactions. The A-B index of a cTAD was calculated as
the average A-B index of all bins within that cTAD. The
compartment status (A, B, or mixed) of a cTAD was
determined by the frequency of the A/B status within the
cTAD, using 80% as the threshold.
To identify chromatin interactions at the gene level, Hi-C

read pairs derived from six technical (for E38 only) or
biological replicates were merged to generate 5 kb resolu-
tion contact matrices, and over-represented chromatin
interactions with gene promoters, known as PEIs, were
identified based on the 5 kb matrices using the PSYCHIC57

algorithm (https://github.com/dhkron/PSYCHIC) with
default parameters. PEIs with high confidence (FDR ≤ 0.01
and interaction distance ≥ 20 kb) were retained. The nor-
malized Hi-C contact matrix was split into smaller matrices
(20 × 20Mb) with a step size of 10Mb to accelerate
computing.
To explore the regulatory effects of multiple enhancers

on a gene, and accurately depict the dynamic rewiring of
PEIs over the course of development, we measured the

regulatory potential score (RPS) for each gene based on
the biochemical principle that an enhancer’s regulatory
effect on a gene is dependent on its spatial proximity, with
multiple enhancers producing an additive effect on the
upregulation of target gene transcription. The RPS was
calculated as ∑n (log10In), where In indicates the nor-
malized interaction intensity (i.e., the observed value
minus the expected value). If a promoter interacts with no
enhancer, then the RPS equals zero. Since genes with low
RPS might have high RPS fold changes (FC) but small RPS
fluctuations across developmental stages, we defined dif-
ferential RPS for genes using the formula |log2FC| > 2 and
|ΔRPS| > 3. We set the RPS of genes with no enhancers as
0.1 in order to facilitate the calculation of log2FC of RPS.
We reconstructed the 3D genome structures with both

intra- (20 kb resolution) and inter-chromosomal (1Mb
resolution) contacts using Python package miniMDS96

with default parameters. We also visualized the 3D gen-
ome using PyMOL (v 2.5.2, https://pymol.org/2/).

Dual-luciferase reporter assay
The reliability of identified enhancers was verified by a

Dual-Luciferase Reporter Assay System97. The chromo-
some coordinates and primer sequences of tested
enhancers and promoters are shown in Supplementary
Table S2. The genomic DNA of adult pig liver was used as
a template to amplify the enhancer and promoter regions
with a length of 1–2 kb. The amplified products were
separated and purified on an agarose gel. The amplified
promoters were cloned into the pGL3-Basic plasmid
(Promega, E1751) which was digested with KpnI and
HindIII and inserted into a linker sequence, termed as
pGL3-Promoter plasmid. Then the amplified enhancers
were cloned into the pGL3-Promoter plasmid digested
with Sali, that is, pGL3-Promoter-Enhancer plasmid. All
constructed vectors were verified by sequencing. pGL3-
Basic or constructed plasmids were transfected into HEK-
293T cells and incubated for 36 h using Lipofectamine
3000 (Invitrogen, L3000015) and Opti-MEM (Gibco,
11058021), with three technical replicates for each con-
struct. And TK-15 (Promega, E2241) was cotransfected
for each as a normalization control. Fluorescence values
were determined using a Dual-Luciferase Reporter Assay
System (Promega, E1960), according to the manual.
Relative fluorescence values of each construct were cal-
culated based on the signal of pGL3-Basic plasmid.

Chromosome phase portrait
To explore the combined differences in chromatin

architecture and gene expression profiling (i.e., form and
function, respectively) between developmental stages, we
implemented a quantitative assessment of form-function
dynamics at the chromosome level across all samples at
the six stages and under HFD treatment, which resulted in
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a so-called chromosome phase portrait43. The chromo-
somal architecture was characterized by the network
connectivity (Fiedler number, FN) of chromatin con-
tacts43. The genomic function was inferred by measuring
the expression level (mean of TPM) based on RNA-seq
data. The difference in form-function is indicated by the
two-dimensional (2D) distance (Euclidean distance) cal-
culated using the two characteristic values.

RNA-seq library preparation and sequencing
Total RNA was extracted from snap-frozen liver tissue

using the RNeasy Mini Kit (Qiagen) according to the
manufacturer’s instructions. RNA samples were quanti-
fied by Qubit RNA Assay Kit (Q10211, LT) according to
the manufacturer’s instructions. The integrity of the RNA
was detected using the Agilent RNA 2000 Nano kit.
We constructed six RNA-seq libraries (biological

replicates) for each developmental stage (E80, 0D, 28D,
110D, and 2Y) and the HFD-fed group. Three RNA-seq
libraries (technical replicates) were constructed for the
pooled liver tissues of 14 female fetuses at E38. We used
an rRNA depletion protocol (Ribo-Zero kit, Epicentre)
coupled with the Illumina TruSeq stranded RNA-seq
library protocol to construct the RNA-seq libraries.
Briefly, ribosomal RNA (rRNA) was removed from total
RNA using the Ribo-zeroTM rRNA Removal Kit
(RZH1046, Epicentre). The ribosome-free RNA samples
were then purified by ethanol precipitation. Next, NEB-
Next® UltraTM Directional RNA Library Prep Kit
(E7420S, NEB) was used to construct the sequencing
library. In short, second-order cations were used to frag-
ment RNA using the NEBNext First Strand Synthesis
Reaction Buffer (5×). Single strand cDNA was synthesized
using a random six-base primer and M-Mulv Reverse
transcriptase (RNase H free). The second strand of the
cDNA was synthesized with buffer, dNTPs (i.e., dUTP,
dATP, dGTP, and dCTP), DNA polymerase I, and RNase
H. After purification, terminal repair, the addition of poly
A, and ligation of sequencing joints, the cDNA was pur-
ified with the USER enzyme to degrade the cDNA con-
taining uracil (U), and a PCR enrichment was performed.
Finally, AMPure XP Beads were used to purify the PCR
products and obtain the final library. After this, q-PCR
was used to accurately quantify the library concentration.
Each RNA-seq library was sequenced as 150 bp paired-
end reads using the Illumina HiSeq X Ten platform.

RNA-seq data processing
After filtering reads containing over 10% of non-

determined nucleotides (‘N’) or over 50% of the low-
quality score (Q value < 5) bases, a total of 39 RNA-seq
libraries were generated at an average of 43.46 million
150 bp paired-end high-quality reads for each library
(Supplementary Fig. S1d). High-quality reads were aligned

to the pig genome (Sscrofa 11.1) using STAR (v 2.5.0a)98

in a basic two pass mode using the “Encode” option as
specified in the manual. On average, ~90.50% of reads in
individual libraries could be aligned to the reference pig
genome using the STAR alignment tool (v 2.5.3a) (Sup-
plementary Fig. S1d).
Kallisto (v 0.44.0)99 was used to quantify gene expres-

sion and obtain TPM values. Fold changes in gene tran-
scription levels were estimated using edgeR100 (v 3.22.5)
based on read counts. Differentially expressed genes
(|log2FC | > 1, FDR < 0.05) between the HFD and controls
were identified with edgeR (v 3.22.5). IGV (v 2.3.91)101

was used to visualize the location of different genes and
the expression data of selected genomic regions.

ATAC-seq library preparation and sequencing
ATAC-seq was performed as previously reported102.

Chopped frozen liver tissue was resuspended in homo-
genization buffer, and grounded under a homogeneous
solution, followed by filtered with a cell strainer. Cell
pellets were obtained by centrifugation. After iodixanol
density gradient centrifugation, the nuclei band was col-
lected from the resuspended sediment. Then 50,000
nuclei were resuspended in the Tn5 transposase reaction
mix with two adapters. The transposition reaction was
incubated at 37 °C for 30min. The fragmented DNA was
purified and amplified with a limited PCR cycle using
index primers. After the PCR reaction, libraries were
purified with the AMPure beads and library quality was
assessed with Qubit. The clustering of the index-coded
samples was performed on a cBot Cluster Generation
System using TruSeq PE Cluster Kit v3-cBot-HS (Illu-
mina) according to the manufacturer’s instructions. The
libraries were sequenced using the Illumina Novaseq6000
PE150 platform by Novogene (Beijing, China).

ATAC-seq data analysis
Quality control of raw sequencing data was performed

using trim-galore (v 0.6.4, https://www.bioinformaticsbab
rahamacuk/projects/trim_galore/) with the options of “-q
25 -phred33 -length 74 -e 0.1 -stringency 4 -paired”.
High-quality reads were aligned to the reference pig
genome (Sscrofa 11.1) using Bowtie2103 (v 2.2.6) with
default settings. Mitochondrial alignments, low-quality
alignments (q < 10) and PCR duplicates were removed
using SAMtools104 (v 1.3.1) (Supplementary Fig. S8a).
ATAC peaks were called using MACS2 (https://github.
com/macs3-project/MACS)105 with the options of
“--nomodel --extsize 200 --shift −100 --nomodel -B
--SPMR --format=BEDPE --keep-dup=1 --qvalue=0.05”.
We also checked the enrichment of ATAC peaks on
transcription start site (TSS) regions and the correlation
between ATAC peaks and compartment status. To obtain
differentially accessible regions (DARs), we merged peaks
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from all samples to acquire a non-redundant peak set
using bedtools2106 (v 2.27.1). Read pair numbers for each
non-redundant peak were calculated using HTseq (v
0.8.0) with the options of “--format=bam --order=pos
--stranded=no --nonunique=all”. We detected potential
DARs (|log2FC| > 2 and FDR < 0.001) using EdegR (v
3.22.5) based on read pair counts. Motif enrichment
analysis was performed using the AME (Analysis of Motif
Enrichment) tool packed in the MEME suite107 (v 5.3.3)
with default settings based on JASPAR database108.

ChIP-seq assays
To measure the activities of putative enhancers and

promoters involved in PEIs, we performed ChIP-seq using
antibodies against H3K27ac (a canonical histone mark of
enhancers) and H3K4me3 (an active histone mark of
promoters) for two biological replicates for each of the six
developmental stages and the HFD treatment. The ChIP-
seq experiments were performed as previously descri-
bed109. Chromatin was prepared from formaldehyde-fixed
liver tissues and fragmented with a sonicator to an average
fragment size of 200–500 bp. Half of the soluble chro-
matin was stored at –20 °C for DNA sequencing (input
control) and the remaining used for immunoprecipitation
reacting with H3K27ac (ab4729, Abcam) or H3K4me3
(9751, CST) antibodies. For both input sequencing DNA
and immunoprecipitated DNA, each ChIP-seq library was
sequenced on an Illumina HiSeq X Ten platform to
generate 150 bp paired-end reads.

ChIP-seq data processing
High-quality ChIP-seq data were mapped to the refer-

ence pig genome (Sscrofa 11.1) using BWA (v 0.7.15)
(Supplementary Fig. S1e), allowing up to two mismatches.
SAMtools (v 1.3.1)104 was employed to remove potential
PCR duplicates. We merged the bam files of biological
replicates. H3K27ac and H3K4me3 peaks were called
using SICER (v 1.1)110 with a cutoff of FDR < 0.05 for each
sample and the merged samples. The peaks occurring in
both the merged sample and at least one biological
replicate were retained for subsequent analyses. The
strength of H3K27ac or H3K4me3 signal was measured as
log2(mark FPKM / input FPKM). The active promoter was
defined as the 5 kb promoter bin overlaps with H3K4me3
peak in the length of at least 1 bp. Super-enhancer (SE)
peaks were identified using the standard Rank Ordering of
Super-Enhancers (ROSE) algorithm111. Briefly, neighbor-
ing enhancer elements (within 12.5 kb) identified using
H3K27ac peaks were merged and ranked using the
H3K27ac signal to identify a tangent with a slope of 1. The
enhancers above the tangent were then defined as super-
enhancer (SE) peaks, while those below the tangent were
classified as regular-enhancer (RE) peaks. Genomic
regions contacting distal promoters were identified as

poised-enhancers (PEs) when not overlapping with a
H3K27ac peak.

Time-series analysis of chromatin architectures and gene
expression
MaSigPro (v 3.12)49 incorporated with linear models

(GLMs) was utilized to identify temporally dynamic
compartment and TAD profiles. For switched compart-
ments between neighboring developmental stages and
cTADs across developmental stages, A-B indexes and D-
scores were, respectively, employed as inputs for MaSig-
Pro, and the change in values over the time series was
selected when the goodness-of-fit (R2) was 0.6. K-means
clustering was then performed to select the optimal
number of clusters.
Short Time-series Expression Miner (STEM, v 1.3.13)65,

an algorithm specifically designed for clustering short time-
series data, was also used to identify the predominant trends
of dynamic RPS profiles for eight a priori gene sets repre-
senting core liver functions during development (FDR-cor-
rected P < 0.05, multiple hypothesis test).

Acquisition of gene sets
Gene sets related to specific liver functions or NAFLD

were obtained from Gene Ontology (GO), KEGG, Reactome,
or related studies. All human genes were converted to their
respective orthologs in the reference pig genome. The eight a
priori gene sets linked to core liver functions included
hematopoiesis (n= 719, GO: 0030097), amino acid meta-
bolism (n= 308, GO: 0006520), fatty acid metabolism (n=
740, GO: 0008610, GO: 0006635, and R-HSA-1989781),
glucose metabolism (n= 97, GO: 0061621 and GO:
0006094), tricarboxylic acid cycle (n= 41, GO: 0006099), bile
acid metabolism (n= 30, obtained from112,113), drug meta-
bolism (n= 130, retrieved from114–116), and hepatopathy-
related immunity (n= 66, obtained from117–121). The 126
genes associated with NAFLD were converted from 127
human genes in the KEGG pathway ko04932. Signature
genes for human HCC of S-I, -II, -III subtypes were obtained
from23 (S-I: n= 43, S-II: n= 23, S-III: n= 410), and were
converted to pig orthologs (S-I: n= 32; S-II: n= 15; S-III: n
= 263) for further analysis.

Functional enrichment analysis
Function enrichment analyses were performed using

Metascape (http://metascape.org)50 with default para-
meters. Genes in the pig genome were converted to
human orthologs, which were used as inputs for the
enrichment. Human (Homo sapiens) was chosen as the
target species, and enrichment analysis was performed
against all genes in the genome as the background set,
with Gene Ontology-biological processes (GO-BP) as the
ontology test set. The top ten most statistically significant
terms were selected as outputs.
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Trait-associated SNP enrichment analysis
We downloaded 146,690 unique human trait-associated

SNPs from the NHGRI-EBI GWAS Catalog (https://www.
ebi.ac.uk/gwas/, June 1, 2021)122. These SNPs were
assigned to 77,917 loci in the reference pig genome
(Sscrofa 11.1) using the UCSC LiftOver tool (https://
genome.ucsc.edu/cgi-bin/hgLiftOver). Of these, 73,363
noncoding SNPs (or 94.16%) linked to 4514 traits or
diseases were used for subsequent analyses. To quantify
the degree of association between certain genomic regions
and traits or diseases, we calculated the enrichment score
(i.e., relative density) of noncoding SNPs for different
genomic regions86. The significance of the enrichment
score was calculated using a χ2 test for each trait or dis-
ease that contained more than 50 SNPs.
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