
Qin et al. Cell Discovery           (2021) 7:113 Cell Discovery
https://doi.org/10.1038/s41421-021-00336-4 www.nature.com/celldisc

CORRESPONDENCE Open Ac ce s s

Depletion of giant ANK2 in monkeys causes drastic
brain volume loss
Dong-Dong Qin1,2, Jian-Kui Zhou3, Xie-Chao He4, Xiang-Yu Shen5, Cong Li6,7, Huan-Zhi Chen1,7, Lan-Zhen Yan4,
Zheng-Fei Hu4, Xiang Li4, Long-Bao Lv4, Yong-Gang Yao 1,4,7,8,9✉, Zheng Wang 1,5,8✉, Xing-Xu Huang 10✉,
Xin-Tian Hu1,4,8✉ and Ping Zheng 4,6,9,11,12✉

Dear Editor,
Autism spectrum disorders (ASDs) are heritable neu-

rodevelopmental disabilities with core symptoms of
impaired reciprocal social behaviors and restrictive or
repetitive behaviors1. ASDs are relatively common
developmental neuropsychiatric disorders and important
public health issues, affecting around 1%–2% of the
population2. ASDs have been classified into syndromic
and nonsyndromic (also called classic or idiopathic). Most
syndromic ASDs have a genetic basis and around 1000
candidate risk genes have been identified according to the
Simons Foundation Autism Research Initiative (SFARI
Gene: https://www.sfari.org/resource/sfari-gene/). Unlike
syndromic ASDs, the etiologies of most nonsyndromic
ASD cases are largely unknown and very limited genes
have been implicated in that.
ANK2 is a member of ankryin gene family and is tran-

scribed into two major isoforms via alternative splicing.
The two isoforms produce 220 and 440 kDa polypeptides,
termed ANK2 and giant ANK2, respectively3. Compared
to ANK2, giant ANK2 has an additional fragment enco-
ded by exon 37 (2066 amino acid residues in cynomolgus
and rhesus monkeys, and 2085 amino acid residues in
human). Unlike ANK2 which displays broad expression in
many tissues including nervous system, giant ANK2 is

restrictively expressed in nervous system4. Several giant
ANK2-specific mutations (p.P1843S, p.R2608 frameshift,
and p.E3429V), which locate in exon 37, were identified in
nonsyndromic ASD patients4. In addition, a recent study
of giant ANK2 deletion in mice revealed that loss of giant
ANK2 has no effects on brain structure, but displays mild
impairment on selected communicative and social beha-
viors4. These studies suggested that giant ANK2 might be
a potential genetic factor involved in nonsyndromic ASDs.
Although the laboratory mice are widely employed to
decipher the molecular and cellular mechanisms under-
lying ASDs, rodent models have the limitation that the
animals are phylogenetically distant from human. Non-
human primates share higher degree of similarity with
humans in genome sequence and physiology5. Specifically,
monkeys have a well-developed prefrontal cortex and
display a repertoire of behaviors that are more relevant to
ASDs5. Several recent studies have established reliable
syndromic ASDs monkey models by overexpression or
knockout of MECP2 or SHANK3 in cynomolgus mon-
keys6–8.
In this study, we evaluated the function of giant ANK2

and its relevance to human nonsyndromic ASDs by using
CRISPR/Cas9 gene-edited cynomolgus monkeys (Macaca
fascicularis) and rhesus monkeys (Macaca mulatta) in
which giant ANK2 was specifically knocked out whilst
ANK2 remained intact. Two sgRNAs were designed to
target distinct sites at exon 37 encoding unique fragment
of giant ANK2 (Fig. 1a). Evaluating the cynomolgus
monkey pre-implantation embryos revealed high editing
efficiency (Supplementary Fig. S1). After embryo transfer,
we obtained three pregnancies in cynomolgus monkeys
and six in rhesus monkeys, respectively. All fetuses
developed to full term. Unfortunately, one cynomolgus
monkey and three rhesus monkeys died within 17 days
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Fig. 1 (See legend on next page.)
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after birth. Genotyping of the nine monkeys was con-
ducted using genomic DNA extracted from the umbilical
cord, ear skin, or blood samples (Supplementary Table
S1). Among the five live monkeys, two cynomolgus
monkeys and two rhesus monkeys contained frame-shift
mutations at both alleles (Supplementary Fig. S2 and
Table S1). These frame-shift mutations caused premature
translational stop and possibly a complete loss of the
functional giant ANK2. Notably, one rhesus monkey
(T113) harbored only a small fragment deletion and
missense mutations (Supplementary Fig. S2a), which may
not significantly alter giant ANK2 functions. We collected
eight different tissues from dead monkeys and confirmed
the mutations by using Sanger sequencing (Supplemen-
tary Fig. S3). We also validated the mutations of ANK2 at
both alleles in brain or liver tissue from three dead
monkeys and in peripheral blood samples from all five live
monkeys with successful genetic modification using the
second-generation sequencing technologies (Supplemen-
tary Figs. S2b, S3, and S4). Furthermore, we examined the
protein expression of ANK2 and giant ANK2 in the brain
of one dead monkey (T114, frameshift). Due to the
extremely large size of giant ANK2 (~440 kDa), we had
difficulty in detecting this isoform in wild-type (WT)
control. However, we confirmed that the ANK2 isoform
(~220 kDa) was not affected in knockout (KO) monkey
(Supplementary Fig. S2c), demonstrating the specific
mutation of giant ANK2 isoform.
We firstly examined the possible influence of giant

ANK2 mutation on brain structures. WT monkeys with
matched ages and growth conditions were used as con-
trols and were raised together with the mutant monkeys
(Supplementary Table S1). Magnetic resonance imaging
(MRI) scanning of monkey brains was performed using a
United Imaging UMR 790 3T scanner (Shanghai, China)
when monkeys were 6-month, 12-month, and 24-month
old. Notably, a drastic brain structure change predicting
the enlargement of lateral ventricles was reproducibly
detected in two cynomolgus monkeys (T87 and T88) and
two rhesus monkeys (T105 and T111), all of which carried
frame-shift mutations and premature translational stop of
giant ANK2. Moreover, the structural alternations were
persistent at all examined ages. Some MRI scanning
results were shown for the 24-month (Fig. 1b) and other
ages as well (Supplementary Fig. S5a, b). Notably, the

mutant rhesus monkey (T113) carrying only small frag-
ment deletion and missense mutations did not display
detectable brain structural abnormality compared to WT
control (Supplementary Fig. S5c). This could be attributed
to the mild change of protein sequence which may not
alter protein functions. We therefore exclude this monkey
(T113) from the following analyses.
Next, we conducted a quantitative analysis on structural

MRI data that were collected at 24-month to evaluate the
brain volumetric alterations. Each monkey’s brain was
registered and segmented into 94 sub-regions based on
the brain atlases of rhesus macaque (F99) and cynomolgus
macaque (Cyno162)9,10. The structural MRI data for each
mutant monkey was compared with specie-specific stan-
dard brain atlas instead of species-matched WT controls
in this study, as these standard brain atlases were con-
structed by using more WT individuals9,10. The loss of
gray matter volume (GMV) in each brain region was
defined as the percentage of missing GMV (dark signal in
T1-weighted MRI images) compared to the specie-specific
standard brain atlas, i.e., dividing the missing GMV
volume by the standardized regional GMV of the brain
atlases9,10. The total brain volume of individuals was
normalized by the total volume of the atlas. The average
percentages of regional GMV loss for each brain region
throughout the whole brain were shown (Supplementary
Fig. S6a). The distribution of regional GMV loss in indi-
vidual mutant monkeys was plotted as a violin plot
(Supplementary Fig. S6b), and the top 20 brain regions
with the largest GMV loss in mutant monkeys compared
to WT controls were listed (Supplementary Fig. S6c).
Regions that exhibited consistent and marked volumetric
alteration in mutant monkeys were predominantly located
in left visual area 1, left visual area 2, left anterior visual
area, left ventral temporal cortex, and right medial frontal
cortex.
To detect whether giant ANK2 depletion causes the core

symptoms of ASDs, we performed a serial of behavioral
tests including social interaction, environmental explora-
tion, stereotypical behaviors, staying alone, and self-
grooming6. Compared to the age- and gender-matched
WT control monkeys, the mutant monkeys did not show
typical ASDs-like behaviors. The frequencies and dura-
tions of both active and passive social interaction were
comparable between WT and mutant monkeys (Fig. 1c).

(see figure on previous page)
Fig. 1 Giant ANK2 knockout monkeys display reproducible brain volume loss, but do not show ASDs symptoms and have normal
sleep–wake cycle. a Schematic diagram showing two sgRNAs which target the specific exon of giant ANK2. b Example axial, sagittal, and coronal
slices of structural images of each knockout (KO) monkey at 24-month. L-left; R-right. c–e Frequencies and durations of both active and passive social
interaction (c), exploratory and stereotypical behaviors (d), staying alone and self-grooming (e) between KO and WT monkeys. f, g No significant
difference of the sleep state (f) (including the duration of total sleep and relaxed sleep, and the percentage of relaxed sleep in total sleep) and the
activity (g) (including day-time activity, night-time activity and ratio of day-time/night-time activity) between KO and WT monkeys. All data in
(c–g) were presented as means ± SEM.
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Consistently, no obvious differences in exploration inter-
ests and stereotypes (Fig. 1d), as well as staying alone and
self-grooming (Fig. 1e) were detected between mutant
monkeys and WT controls. These data collectively suggest
that giant ANK2 depletion in non-human primate does
not cause ASDs-like behaviors. This is in sharp contrast to
the observations in the mutant mice4.
Sleep is closely associated with neuroplasticity, brain

development, and health. We wondered whether the brain
defects in mutant monkeys could cause parahypnosis. The
sleep–wake cycle was monitored at 9-month, 15-month,
and 24-month by actigraphy, which is reliable to score the
sleep state in monkeys11. The results showed that mutant
monkeys at each age had normal total sleep and relaxed
sleep when compared to their WT counterparts (P-values
> 0.05). Consistently, the proportion of relaxed sleep in
total sleep did not differ between mutant and WT mon-
keys (Fig. 1f). We also evaluated the day-time activity,
night-time activity, and the ratio of the day-time/night-
time activity. Mutant monkeys did not display any dif-
ference from WT in these respects either (Fig. 1g). In
order to explore whether the age affected sleep–wake
cycles between the two groups, the data were further
analyzed in separate 2 (groups: KO vs WT) × 3 (age:
9-month, 15-month, and 24-month) repeated-measure
ANOVAs, with age being the repeated-measure. No sig-
nificant differences were observed in both sleep and
activity patterns between the two groups (all P-values >
0.05).
In summary, specific depletion of giant ANK2 protein in

monkeys did not induce nonsyndromic ASDs-like beha-
viors or sleep and activity pattern alterations. This finding
does not support the loss of giant ANK2 as an ASDs
factor. Unexpectedly, giant ANK2 depletion caused
drastic brain structural alteration in all mutant monkeys.
Thus, the functions of giant ANK2 are evolutionarily
divergent between rodents and primates. In addition, four
mutant monkeys with drastic loss of brain volume dis-
played normal basic brain functions. This was consistent
with several previous reports on human cases. For
instance, patients who underwent surgical removal of one
hemisphere in childhood had normal intra-hemispheric
connectivity, social responsiveness, full-scale intelligence
quotient, psychomotor function, and executive control12.
Two persons having severe hydrocephalus and drastic
brain volume loss also showed normal brain func-
tions13,14. On the other hand, our monkey models can be
used to study the functional re-organization and plasticity
of brains, for which the molecular mechanisms still
remain elusive.
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