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Single-cell RNA-Seq reveals transcriptional
heterogeneity and immune subtypes associated
with disease activity in human myasthenia gravis
Wanlin Jin1, Qi Yang 2, Yuyao Peng1, Chengkai Yan1, Yi Li1, Zhaohui Luo1, Bo Xiao1, Liqun Xu1✉ and Huan Yang1✉

Abstract
Myasthenia gravis (MG) is a rare autoimmune disease. Although the impact of immune cell disorder in MG has been
extensively studied, little is known about the transcriptomes of individual cells. Here, we assessed the transcriptional
profiles of 39,243 cells by single-cell sequencing and identified 13 major cell clusters, along with 39 subgroups of cells
derived from patients with new-onset myasthenia gravis and healthy controls. We found that B cells, CD4+ T cells, and
monocytes exhibited more heterogeneity in MG patients. CD4+ T cells were expanded in MG patients. We reclustered
B cells and CD4+ T cells, and predict their essential regulators. Further analyses demonstrated that B cells in MG
exhibited higher transcriptional activity towards plasma cell differentiation, CD4+ T cell subsets were unbalanced, and
inflammatory pathways of monocytes were highly activated. Notably, we discovered a disease-relevant subgroup,
CD180− B cells. Increased CD180− B cells in MG are indicative of a high IgG composition and were associated with
disease activity and the anti-AChR antibody. Together, our data further the understanding of the cellular heterogeneity
involved in the pathogenesis of MG and provide large cell-type-specific markers for subsequent research.

Introduction
Myasthenia gravis (MG) is a rare autoimmune disease

characterized by skeletal muscle weakness caused by
disrupted neurotransmission at the neuromuscular junc-
tion, with a prevalence of 150–250 cases per 1 million1. B
and T cell hyperactivity and the autoantibodies secreted
by B cells mediate the autoimmune phenotype by
responding to muscle neuronal nicotinic receptors2. In
80%-85% of MG patients, the pathogenic antibodies are
anti-AChR3. CD4+ T cells, also known as T helper cells,
are essential for helping antigen-experienced B cells
produce these pathogenic high-affinity antibodies. The
innate immune system also plays a significant role in these
processes. Dendritic cells (DCs) can function as antigen-

presenting cells and induce autoimmunity by promoting
the expansion and differentiation of autoreactive T cells4.
Autoantibodies produced by B cells can activate myeloid
cells and form the proinflammatory milieu, which in turn
promotes the disorder of adaptive auto-reactive T or B
cells5.
Although major cell types involved in the pathogenic

processes of MG are known, key cellular subsets, their
transcriptomes characteristics, and the interactions
through which they promote MG have remained largely
unclear. Studies of the peripheral blood after sorting
specific cell subtypes by flow cytometry in bulk also failed
to capture the natural transcriptome signatures. Addi-
tionally, approximately 10% of MG patients are treatment
refractory6, highlighting the need to better understand
specific disease-associated pathogenic events. Further-
more, anti-AChR antibodies are markers for diagnosis and
disease classification of MG patients but not for disease
severity7. Therefore, additional markers are needed for
indicating disease severity.
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Here, we applied single-cell RNA sequencing (scRNA-
seq) to visualize a high-resolution immune landscape of
MG patients and compared them to healthy controls
(HCs). We first identified 13 major cell groups and
assessed the primary changes of these major types of cells.
We next analyzed B cells and CD4+ T cells with more
granularity due to their important roles in the adaptive
immune process and the shift between MG patients and
HCs. We characterized their cellular network to better
understand their cellular identity and the process of their
differentiation.
In summary, our analysis provides insights into the

major immune cells in MG and HCs, the possible altered
transcriptional differentiation trajectories, the higher
connection to plasma cells in MG patients, and cellular
cross-talk with potential relevance to pathogenic
mechanisms. Moreover, our analysis defines a subset of B
cells known as CD180− B cells that clinically coincide
with anti-AChR antibody and disease severity. We also
showed that immunosuppressive therapy restored
CD180− B cells frequency. Finally, we investigated the
relationship of major changed cell types and risk genes of
MG patients, highlighting the increasing expression of
HLA-DRA, HLA-DQA1, HLA-DQB1, and HLA-DPB1 in
B cells of Chinese early-onset MG patients. Altogether,
these analyses help characterize the cellular pathological
mechanism by investigating cell differentiation and cel-
lular interactions, identifying large cell type-based mar-
kers and pathways for understanding the pathogenic
events that occur in MG to identify new effective
therapeutics.

Results
Single-cell survey of major changes in transcriptional
profiles between MG patients and healthy controls
To characterize the immune changes in MG patients,

we performed scRNA-seq and generated 39,243 high-
quality single-cell transcriptomes of PBMCs from 2 early-
onset MG (EOMG) patients and 2 HCs using the 10×
Genomics platform (Fig. 1a, Supplementary Table S2).
MG patients had not undergone immunotherapy treat-
ment (Supplementary Table S1).
We first partitioned the single-cell profiles into 13

clusters composed of major cell subtypes, including CD8+

T cells, CD4+ T cells, B cells, CD14+ monocytes,
FCGR3A+ monocytes, NK cells, and DCs (Fig. 1b, Sup-
plementary Figs. S1, 2) using an unsupervised method.
Cell types were identified by known unique signature
genes, CD3E (T cells), MS4A1 and CD79A (B cells), CD14
and FCGR3A (monocytes), LILRA4, and FCER1A (DCs),
and NKG7 (NK cells) (Supplementary Fig. S1). A small
population of platelets was also present after isolating
PBMC preparations, which were excluded from further
analysis.

We next assessed alterations in transcriptional profiles
between MG patients and HCs in two ways. We calcu-
lated differentially expressed genes (DEGs) in each cluster
(see Materials and Methods) and then projected the
numbers of DEGs on UAMP. The DEGs revealed broad
transcriptional changes in immune cells, with the most
prominent in B cells and CD4+ T cells (Fig. 1d). In
addition, we measured the distance between the major
types of cells using Bhattacharyya distance8. DCs were not
included due to the limited number of cells available. This
result revealed large differences in B cells and monocytes
(Fig. 1e) between MG patients and HCs, while CD4+

T cells, NK cells, and CD8+ T cells were more similar in
this analysis. Actually, B cells exhibited the highest dif-
ference with 1.7-fold changes, followed by CD14+

monocytes with 1.67-fold changes (data not shown). Cell
proportion analysis revealed that CD4+ cells were sig-
nificantly expanded in MG patients compared to HCs
(Fig. 1c). Overall, we identified the major immune cells
and characterized broad changes of transcriptional pro-
files and cell proportions in MG patients compared to
HCs, revealing prominent changes in B cells, CD4+

T cells, and monocytes.

B cell clustering and subgroup analysis
We next bioinformatically separated and reclustered B

cells. Clustering of B cells revealed 9 distinct clusters (Fig.
2a). Combined with reported marker genes9,10, we iden-
tified naïve B cells (clusters 0 and 3), class-switched
memory B cells (clusters 2 and 5), CD27+ memory B cells
(clusters 1 and 7), CD27− memory B cells (cluster 6), pre-
ASCs (cluster 4), and plasma cells (cluster 8) (Fig. 2b). We
next assessed function by gene set enrichment analysis
(Fig. 2c), which further supported the cluster annotation.
Specifically, GSVA analysis revealed that cluster 6 was
associated with cytokines, chemokines, toll-like receptor
signaling pathway, and JAK-STAT and MAPK signaling.
Cluster 5 was associated with B cell receptor signaling and
major histocompatibility complex (MHC) class II antigen
presentation. Cluster 4 was enriched in cell cycle set and
intrinsic signaling, such as the JAK-STAT and MAPK
pathways, implying that they were highly activated
(Fig. 2c). This result was also consistent with the GO
analysis indicating that clusters 4 and 8 were highly
activated. KEGG analysis also showed that clusters 4 and
8 shared similar pathways (Supplementary Fig. S4). Fur-
thermore, cluster 4 highly expressed HOPX, a marker of
PrePB10. Thus, we infer that cluster 4 potentially repre-
sents a transient state before plasma cell transformation.
Class-switched B cells (cluster 2) had undergone antibody
class switching and were indicators of B cell activation by
antigen stimulation, coincident with their gene enrich-
ment in antigen processing and presentation process in
GSVA analysis.
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In addition, we comprehensively inferred transcription
factor (TF) regulatory networks by SCENIC analysis,
highlighted differentiation-associated TFs, and predicted
additional markers. As expected, plasma B cells exhibited
large transcription factor differences from their B cell

predecessors, and the differentiation to plasma B cells is a
process that loses B cell identity11. SPI1(PU.1), ETS1,
PAX5, SPIB, and BACH2 are transcription factors that
represent B cell identities11 and loss of PAX5 implies the
ASC differentiation12. As expected, they are expressed in
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Fig. 1 Assessment of major changes in transcriptional profiles between MG patients and healthy controls. a Overview of the scRNA-seq
experiment: PBMCs were isolated from two healthy controls and two myasthenia gravis patients. Overall, ~39,243 cells were included in the
functional analysis. b Uniform manifold approximation and projection (UMAP) representation of scRNA-seq data showing the seven main cell types:
CD8+ T cells, CD4+ T cells, B cells, CD14+ monocytes, FCGR3A+ monocytes, NK cells, and DCs. c Cluster abundance across all samples. d Number of
DEGs between MG and HC cells within each cluster projected onto the UMAP. DEG: |log fold change| > 0.5; P-value < 0.05 was calculated using
DESeq2. e Quantification of differences between major immune cells between MG patients and HCs. Each dot represents a sub-sample of 500 cells
from the principal component analysis space for MG patients and HCs. For the random groups, we sampled 500 cells of sample type. The height of
the bar represents the mean values of the subsamples. All comparisons were significant due to 100 replicates of testing, while the mean fold change
varied from 1.77-fold (monocytes) to 1.21-fold (CD4+ T cells). P values are from a Wilcoxon rank-sum test comparing the MG vs HC groups to the
random selection for each type of major immune cell.
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nonplasma cells. STAT3, which functions in IL-21 sti-
mulated B cell differentiation13, are also not expressed on
plasma B cells. Plasma cells have high regulon activity of
IRF4, Prdm1, and XBP1, as expected. Additional increased
TF regulon signatures included CHD2, IRF7, ZBTB18,
MYBL2, DDIT3, and ATF6B for plasma cells. Plasma B
cells and class-switched memory B cells have high regulon
activity of POU2AF1, which is required for GC formation
and thus has unique roles in T cell responses14 and gen-
erating ASCs15. This implies class-switched memory B
cells are an important stage before the terminal ASCs to
produce high-affinity antibodies. Pre-ASCs have regulon
activity of TBX21, which positively regulates isotype
switching to IgG isotypes. Additional possible markers for
B cell subsets are provided in the supplement (Supple-
mentary Fig. S6).

Extensive B cell heterogeneity and altered differentiation
trajectories
Class-switched B cells were expanded in MG. GSVA

analyses revealed that they participate in antigen proces-
sing and presentation, supporting that class-switched B
cells are highly activated, and their function is increased in
MG patients (Fig. 2c, Supplementary Fig. S3).
To characterize transcriptomic changes in B cells between

MG patients and HCs, as well as their biological sig-
nificance, DEGs were calculated (Fig. 3a) and a detailed
analysis of the DEGs was performed by the functional
annotation of Gene Ontology (GO) (Fig. 3b). Pathways
related to antigen processing and presentation and antigen
processing and presentation of peptide antigen via MHC
class II were upregulated, driven by HLA-DPA1, HLA-
DQB1, and HLA-DRB5. HLA-DPA1 and HLA-DQB1 genes,
which are also reported predisposing risk genes in Chinese
MG patients16. Also upregulated pathways were involved in
leukocyte differentiation and activation, with elevated
ZFP36L2, IRF1, JUN, JUNB, RELB, CD83, HLA- ZFP36L2,
IRF1, JUN, JUNB, RELB, CD83, HLA-DPA1, EZR, DUSP1,
and CXCR4 genes. The CXC-chemokine receptor 4
(CXCR4), which is important for the recruitment of ASCs17,
was increased in MG patients, implying the increasing
homing process of tissues. Overall, antigen presentation,
immune response signaling, and differentiation pathways

were activated, with cytokine participation contributing to
deficits in peripheral immune tolerance.
To reveal the programming processes with alterations

in B cells, we used the Monocle 2 method to construct the
differentiation trajectory of B cells from each sample (Fig.
2d). In HCs, trajectory analysis revealed a gradual tran-
sition from naïve B cells (cluster 0, 3) to the fate of plasma
B cells (cluster 8) or memory B cells (cluster 6), with most
cells undergoing differentiation to plasma B cells. In MG
patients, while the differentiation pathways were similar,
cluster 4 was on average closer to the terminal cluster 8
and seemed to have an aberrant developmental process.
Cluster 4 highly expressed BATF, without which B cells
fail to induce Aicda and differentiate into plasma B cells18.
Cluster 4 also highly expressed TBX21, and a previous
study demonstrated that T-bet is expressed by memory
pre-ASCs19. RNA velocity further indicated that higher
numbers of unspliced RNAs were present in the naïve
cells of MG patients (Fig. 2d). Moreover, we observed
increased activity towards plasma B cells in MG patients.
The above analysis revealed the more highly activated
state of naïve B cells and the enhanced propensity for
differentiation towards a plasma B cell phenotype in MG
patients.
Next, to assess the TFs underlying differences in B cells

between MG and HCs, we applied SCENIC analysis (Fig.
2e, f). Among the 20 most elevated TFs, BCL3, and
POU2AF1 are associated with differentiation. Eμ-BCL-3
transgenic mice with BCL-3 overexpression led to a
hyperactivated state of B cells20. Furthermore, the top
enriched BCL3 also serves as a unique factor to control
NF-kB activity in the nucleus21, suggesting a role for
immune activation and inflammatory regulation. Indeed,
the activities of nuclear factor (NF)-κB subunits (RELB)
were also highly upregulated in B cells from MG patients.
These results also support the prominent feature of MG
patients wherein B cells are highly activated and exhibit
aberrant differentiation states.

Correlations of B cell subtype-specific signatures with
disease activity and autoantibodies
Notably, DEGs revealed decreased expression of the

CD180 gene in MG patients compared to HCs (Fig. 3a)

(see figure on previous page)
Fig. 2 Assessment of changes in B cells in transcriptional profiles between MG patients and healthy controls. a UMAP plot displaying 4133 B
cells from two MG patients and two HCs separated into 9 subtypes. b Violin plots showing key gene markers across B cell subsets. c Gene set
enrichment revealed differences in pathway activities and cell identity of naive, memory, switched B cells, and plasma B cells. d B cells were sorted
using the DDRTree algorithm and projected onto the different cell states using the color in a. Transcriptional activity was estimated by measuring the
ratio between unspliced and spliced mRNAs. The length of the arrow represents the transcriptional activity. e UMAP plots showing the expression of
BCL3 and POU2AF1 genes in B cells (top) and the AUC of the estimated regulon activity of the corresponding TFs, predicting the degree of expression
regulation of their target genes (bottom). f Heatmap of the AUC scores of expression regulation by transcription factors (regulon activity), as
estimated using SCENIC, followed by comparisons between two groups using the t-test. The twenty transcription factors with the highest
upregulated expression in MG are shown.

Jin et al. Cell Discovery            (2021) 7:85 Page 5 of 18



 -
L

o
g

1
0 

P
-v

a
lu

e

-log10(P value)

0

5

10

15

20

-2                  -0.5    0 0.5                  2
 Log 2 (fold change)

CD180

a b

p = 0.0041

*
**

ns

0

20

40

60

HC            oMG gMG
CD

18
0-- 

B 
ce

lls
 (%

)

Kruskal-Wallis

ns

0.25

0.50

0.75

HC MG
*

CD18
0-
- B 

CD18
0+ B 

CD18
0-
- B 

CD18
0+ B 

Ig
G

+ B
 c

el
ls 

(%
)

d

f

0

20

40

C
D

18
0-- 

B
 c

el
ls

 (%
)

p = 0.0313
Wilcoxon Signed-Rank Test

Before After

p = 0.0355

5

10

15

20

Q
M

G

Before After

i

Q1
0.60

Q2
0.099

Q3
93.5

Q4
5.79

0 10
3

10
5

CD19+ B cell
Q1
4.80

Q2
0.25

Q3
87.6

Q4
7.36

0 10
3

10
5

0

10
3

10
4

10
5

CD19+ B cell

0

50K

100K

150K

200K

250K

c

e

4.64

0 10
3

10
5

CD19+ B cellHC

16.4

0 10
3

10
5

CD19+ B cellMG

HC MG

p = 0.025R2 = 0.30

0

10

20

30

0 20 40
CD180-- B cells (%)

Q
M

G
 s

co
re

CD180-- B cells (%)

0

20

40

60

0 20 40

an
ti 

- A
C

hR
 a

nt
ib

od
y

p = 0.01782R2 = 0.31
g h

Ig
G

CD180

S
S

C

CD180

8

7.3

6.9

6.5

6.2

5

4.2

4.1

3.9

3.6

3.3

3.1

Immune response-regulating signaling pathway
Response to mechanical stimulus

Immune response-activating signal transduction
Activation of immune response

Cytokine-mediated signaling pathway
Leukocyte differentiation

Antigen processing and presentation
MyD88 cascade initiated on plasma membrane

antigen processing and presentation
of peptide antigen via MHC class II

MHC class II antigen presentation
Adaptive immune response

Lymphocyte activation
0 2 4 6 8

Fig. 3 (See legend on next page.)

Jin et al. Cell Discovery            (2021) 7:85 Page 6 of 18



(log2Fc=−0.61, adj. P= 2.92E−13). Flow cytometry
analysis further supported that the frequencies of CD180
negative B cells were significantly increased in both ocular
and generalized MG patients (P= 0.004). The gating
strategy is shown in Supplementary Fig. S5. The fre-
quencies of CD180 negative B cells were not different
between ocular and generalized MG patients (Fig. 3c, d),
suggesting that the increased CD180 negative B cells
might be a common pathological mechanism of MG.
Evaluating disease severity by the Quantitative Myas-

thenia Gravis (QMG) score22,23, the CD180 negative B
cells correlated with disease severity (R2= 0.30, P= 0.025)
in MG patients (Fig. 3g). The increased CD180 negative B
cells were also associated with anti-AChR autoantibodies
(R2= 0.31, P= 0.018) (Fig. 3h). As anti-AChR antibodies
primarily belong to the IgG1 and IgG3 subclass24, we
examined the IgG secreting B cells by intracellular flow
cytometry. The results showed that though CD180
negative B cells were the major IgG secreting B cells,
CD180 positive B cells still stained slightly positive for
intracellular IgG and still existed in both MG patients and
HCs. However, CD180 negative B cells from MG patients
demonstrated significantly increased IgG secreting ability
compared to CD180 positive B cells (n= 6, P= 0.031),
while no significance was observed in HCs (n= 8, P=
0.313) (Fig. 3e, f).
Assessing treatment efficacy by QMG score25, after

immunosuppressive therapy, CD180 negative B cells
decreased (P= 0.031), and patients exhibited clinical
improvement along with decreased QMG scores (P=
0.036) (Fig. 3i). In summary, we identified a cell group that
may have an important role in anti-AChR autoantibody
secretion and indicated disease activity.

T cell and NK cell clustering and subgroup analysis
We subgrouped T cells and NK cells into 21 subsets and

named them according to reported marker genes. Seven
CD4+ T cell clusters (0, 1, 5, 6, 8, 14, 19), 5 CD8+ T cell
clusters (3, 11, 12, 13, 15), 3 γδ T cell clusters (4, 7, 10), 1
MK cluster (18), 1 NKT cluster (9), proliferating T cell
cluster (20) and 3 NK cell clusters (2, 16, 17) were iden-
tified (Fig. 4a).
In the T cell compartment, the combination of the

GSVA analysis results and reported marker genes iden-
tified a CD4+ T cell subpopulation of naïve CD4+ cells

expressing CCR7 (T4naive, cluster 0), central memory
CD4+ T cells (T4cM, cluster 1), effector memory CD4+

T cells (T4eM, cluster 5) with low expression of CCR7,
effector CD4+ cells (T4eff, cluster 6) expressing NKG7
and GZMK, regulatory (T4reg, cluster 14) and interferon-
activated cells (TIFN, cluster 19) highly expressing ISG15.
In addition, cluster 8 highly expressing CCR7 belonged to
naïve CD4+ T cells or central memory CD4+ T cells.
CD8+ T cells included naïve CD8+ cells (T8naive, clusters
3 and 15) expressing CCR7, central memory CD8+ T cells
(T8cM, cluster 12) expressing IL7R, cytotoxic CD8 cells
(T8cyto1, clusters 11) expressing GZMH and GZMB,
cytotoxic CD8 cells (T8cyto2, cluster 13) expressing
GZMK and γδ T cells (clusters 4, 7, 10) expression high
levels of TRDC. Additional populations included a small
group of megakaryocyte-like cells (MK, cluster 18)
expressing PPBP and cluster 20, which represented pro-
liferating cells with high expression of TYMS and MKI67
(Fig. 4b). MG patients exhibited higher proportions of
T4cM and T4eM.
We next used SCENIC to identify TF regulatory net-

works. Naïve CD4+ T cells highly expressed UQCRB,
TCF7, CHD2, and MYC. Interferon-activated cells highly
expressed IRF1, STAT1, and STAT3. Previous studies
have shown that IFN-γ activating STAT1 is important for
Th1 differentiation26, and STAT3 is involved in Th17
differentiation and maintenance27. IRF1 can regulate the
differentiation and expansion of Th1 and Th1728. Com-
bining the high expression of IL17A in clusters 1, 5, and
19, TIFN may represent the Th1 and Th17 states.
HMGB1, which was previously demonstrated to directly
enhance immune inhibitory functions of Tregs29, was
highly expressed in Tregs. Interestingly, T4eM and T4eff
shared similar expression patterns for many TFs, sug-
gesting that the T4eff may be derived from T4eM. Our
data characterize the regulators of the CD4+ T cell sub-
group, which helps to further investigate the modulation
of CD4+ T cell activation and plasticity.

CD4+ T cell heterogeneity
Since CD4+ T cells were significantly expanded in MG

patients and given their essential roles in stimulating B
cells to produce high-affinity antibodies, we determined
the transcriptional changes between MG patients and
HCs. DEGs were calculated and followed by enrichment

(see figure on previous page)
Fig. 3 A unique B cell subpopulation associated with AChR antibody and disease activity in MG patients. a Volcano plot showing DEGs
between MG patients and HCs. DEG: |log fold change| > 0.5; P value < 0.05 was calculated using DESeq2. b Enrichment analysis of DEGs from B cells
between MG patients and HCs (selected among upregulated pathways in MG patients, P value < 0.05). c, d CD180− B cells are increased in MG
patients. e, f CD180− B cells are the major IgG secreting cells in MG patients and HCs. CD180− IgG cells are significantly higher than CD180+ IgG cells
in MG patients. g Circulating CD180− B cells are associated with disease activity. h Circulating CD180− B cells are associated with titers of anti-AChR
antibodies. i Immunotherapy decreases CD180− B cells and is associated with improved disease activity.
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analysis using Metascape (Fig. 4c). The results showed
that TNF signaling, NOD-like receptor signaling, IL-17
signaling, T cell receptor signaling, and CD40 pathways
were highly enriched in MG patients, indicating that Th17
cells and T helper type 40 (TH40) cells were expanded
and exhibited greater antigenic stimulation of peripheral
CD4+ T cells in patients with MG compared to HCs.
Murine studies highlighted the importance of Th17 cells
for their contribution to the loss of B-cell tolerance30.
To investigate the relationships between the different

states of CD4+ T cells, differentiation trajectory analysis
(Fig. 4d) was performed and showed that naïve T cells and
central memory T cells primarily aggregated on the
pseudotime backbone. Cytotoxic CD4+ T cells and cluster
8 were primarily located in different directions. The
direction to cluster 8 might represent the quiescent state,
while the other represents steps to the terminal stages.
Interestingly, effector CD4+ T cells exist in both ends of
the two directions in myasthenia gravis, while they pri-
marily exist in one direction after the effector memory
CD4+ T cells or Treg stage and have more branches in
HCs. Previous murine research demonstrated that dis-
equilibrium of the CD4+ helper T-cell subsets promoted
the development of EAMG31. Comparing the differ-
entiation progression of CD4+ T cell subsets between MG
and HCs, CD4+ T cell subsets except for TIFN showed
extensive differences (Supplementary Fig. S7). Our result
also indicated that CD4+ T cells from MG patients exhibit
imbalance in CD4+ T cell subgroups from their
transcriptomes.
We next explored transcription factors (TFs) in CD4+

T cells that might be involved in promoting auto-
immunity (Fig. 4e, f). Among the 20 most highly elevated
TFs, we observed that regulon activity of STAT3, JUND,
and JUN, which are associated with differentiation, was
elevated in MG patients. JUND reportedly regulates
lymphocyte proliferation and Th cell cytokine expres-
sion32. Our results identify key transcription factors
associated with changes in CD4+ T subgroups.

Myeloid clustering
11,507 myeloid cells were detected in MG and HCs.

Myeloid cells were then sub-grouped into 9 clusters (Fig. 5a,
b), including three CD14+ monocytes (clusters 0, 1, and 4)

and two CD16+ monocytes (clusters 2 and 3). Three mye-
loid subsets were defined as DCs, including two conven-
tional DCs (cDCs) highly expressing CLEC9A or FCER1A
(clusters 6 and 8) and one plasmacytoid dendritic cells
(pDC) highly expressing IRF7 and LILRA4 (cluster 7). We
designated one myeloid subset as macrophages according to
high expression of CSF3R and ISG15 (cluster 5).
We constructed a diffusion map to depict the devel-

opmental trajectory of myeloid cells (Fig. 5c). CD14+

monocytes are the root cell group. The diffusion map of
monocytes/macrophages/DCs revealed three develop-
mental paths, possibly corresponding to the macrophage,
cDC, and pDC phenotypes, respectively.

Myeloid heterogeneity analysis
CD14+ monocytes, which can further differentiate into

CD16+ monocytes, macrophages, or DCs, exhibited large
differences between MG patients and HCs using Bhatta-
charyya distance. DEG analysis of CD14+ monocytes
showed that MG patients express high levels of the
inflammatory markers S100A4, S100A8, S100A9,
S100A10, and S100A12. We found most distinguishing
pathway changes between MG patients compared to HCs
were inflammatory-relevant pathways, including MAPK
family signaling, TNF signaling, TLR4, interferon, and
interleukin signaling (Fig. 5d). Furthermore, diseases of
metabolism were also enriched in MG patients, such as
disorders of glycosylation and carbohydrate metabolism.
As expected, we found that the genes with increased

expression in DCs in MG patients were enriched in
antigen processing and presentation, cytokine-mediated
signaling pathway, and TNF-alpha/nuclear factor k-light-
chain-enhancer of activated B cells (Nf-kappa B) signaling
(Fig. 5e). Nf-kappa B signaling activation controls the
expression of critical co-stimulatory molecules, such as
CD80, CD86, and MHC class II, along with pro-
inflammatory cytokines, such as TNF-alpha. Our result
emphasized the importance of Nf-kappa B signaling in
DCs in myasthenia gravis.
MG alters crosstalk between monocyte and cDC sub-

populations. CDCs can derive from CD16+ and CD16−

monocytes and CD16+ monocytes can derive from
CD14+ monocytes. Previous work reported that an esti-
mated 25% of the circulating inflammatory monocytes

(see figure on previous page)
Fig. 4 Assessment of changes in T cells in transcriptional profiles between MG patients and healthy controls. a UMAP plot displaying T cells
and NK cells from two MG patients and two HCs separated into 21 subtypes. b Violin plots showing key gene markers across T cells and NK cells. c
Enrichment analysis of DEGs in CD4+ T cells between MG patients and HCs (selected among upregulated pathways in MG patients, P value < 0.05). d
CD4+ T cells were sorted using the DDRTree algorithm and projected onto the different cell states using the color in a. e UMAP plots showing
expression of the STAT3, JUND, and JUN genes in CD4+ T cells (top) and the AUC of the estimated regulon activity of the corresponding TFs,
predicting the degree of expression regulation of their target genes (bottom). f Heatmap of the AUC scores of expression regulation by transcription
factors (regulon activity) as estimated using SCENIC, followed by comparisons between two groups using t-test. The top 20 transcription factors with
the highest upregulated expression in MG are shown.
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will differentiate into migrating DCs33, thus we explored
cDC, CD14+ monocyte, and CD16+ monocyte
receptor–ligand pairing in both MG patients and HCs,
which may represent the differentiation of myeloid cells.
We found altered receptor–ligand pairing between
CD14+ or CD16+ monocytes and cDCs other than pDCs
(Fig. 5f), suggesting that the differentiation of circulating
monocytes into cDCs might be modulated through TNF
signaling and TGF-β signaling and the cDCs derived from
monocytes might be with different phenotypes and
functional profiles in MG patients.

Global comparison analysis of communications among
immune cells
Excluding cell-intrinsic information, scRNA-seq can

also indicate putative cell-extrinsic interactions by inte-
grating ligand and receptor information. We used Cell-
Chat to investigate the putative interactions between the
major types of immune cells in MG versus HCs34.
We identified 13 significant signaling pathways among

the 13-cell group by CellChat. The top signaling pathways
that are more enriched in MG patients are colored orange.
Circos plots were used for visualization for the specific
interactions among the 13-cell group. The results showed
increasing activities of pathways, including IL2, IL4,
CD40, CD70, BMP, RESISTIN, TNF, WNT, and NT, in
MG patients (Fig. 6a). In addition, CD4+ T cells had
increasing autocrine activity for soluble IL2 and had a
massive expansion of interactions with other cell types
through the CD40 signaling pathway in MG patients.
Another interesting observation is that IL4 pathways from
CD4+ T cells to B cells were enriched. Our result proved
the T cell also increasingly helping to B cells in peripheral
blood except for germinal centre in MG patients. Since
the loss of IL-4 was associated with loss of IgG135, the
increasing IL-4 might lead to the increasing IgG1 in MG
patients. Further analysis showed that the CD70 signaling
pathway was most enriched from B cells to CD4+ T cells
in MG patients (Fig. 6b). CD16+ monocytes are the pro-
minent influencer controlling TNF signaling, and the
TNF signaling pathway was most enriched from CD16+

monocytes to CD14+ monocytes (primarily TNF-
TNFRSF1B) (Fig. 6c). These findings are consistent with
the known critical roles played by myeloid cells in

initiating inflammation. Notably, CellChat predicted that
WNT and NT signaling pathways are from a source of
both lymphoid cells and myeloid cells, including CD4+ T,
CD8+ T, and CD14+ monocytes, and they have similar
targets. This reveals that WNT signaling in MG is com-
plex and redundant with multiple ligand sources. CD4+

T cells are the predominant source and mediator for
WNT signaling, suggesting their potential roles as a
gatekeeper of WNT signaling in MG (Supplementary Fig.
S8).

Expression of MG-relevant genes and biological pathways
Previous GWAS studies have linked genetic variants to

MG; however, the cellar and biological processes of the
risk genes are little known due to large variants. We
collected large GWAS studies of MG patients and iden-
tified variants in MHC class II locus, protein tyrosine
phosphatase nonreceptor type 22 (PTPN22), TNFAIP3
interacting protein 1 (TNIP1)36, cytotoxic T-
lymphocyte–associated protein 4 gene (CTLA4)37, com-
bining with the predisposing gene of EOMG including
HLA-DRA, HLA-DR3, HLA-B8, HLA-DPB1, HLA-DQB1,
HLA-DQA1, CD86, AKAP12, VAV1, TNFSF13B (B-cell
activating factor, BAFF), and TNF37–40. We also included
the α-subunit of the AChR encoding gene CHRNA141,42,
IgG receptor genes (FCGR2A, FCGR3A, and FCGR3B),
and cytokines and cytokine receptors genes (TNFB,
TNF43, IL1B44, IL1A45, IL1046, IFNG, IL17A, and IL17F47).
Here, we applied transcriptomic atlas to relate the pat-

terns of MG genetic risk with patterns of cell-specific
expression (Fig. 7a, b). Some risk genes were not available
in our data, and 20 genes were ultimately analyzed. While
the human leukocyte antigen (HLA) locus remains the
most strongly associated risk factor for MG and is asso-
ciated with autoantibody expression41, relevant genes,
including HLA-DPB1, HLA-DQB1, HLA-DQA1, and
HLA-DRA, are expressed predominantly in DCs and B
cells. The CHRNA1 gene is expressed mainly in B cells,
with a small amount of CHRNA1 expression in CD4+

T cells. A previous study also reported that CHRNA1 and
HLA-DQA1 are associated with autoantibody titers48,
further emphasizing the importance of B cells. Genes with
functions that regulate T cell activation49 are expressed
most highly in CD4+ T cells (e.g., CTLA4, IL17A, IL10).

(see figure on previous page)
Fig. 5 Assessment of changes in myeloid cells in transcriptional profiles between MG patients and healthy controls. a UMAP plot displaying
myeloid cells from two MG patients and two HCs separated into 9 subtypes. b Violin plots showing key gene markers across myeloid cells. c 3D
diffusion map displaying the developmental trajectory of myeloid cells. The result shows the possible activation paths of macrophages/cDCs. Cells
are colored by their derived clusters. pDCs, plasmacytoid dendritic cells; cDCs, conventional DCs. d Enrichment analysis of DEGs in dendritic cells
between MG patients and HCs (selected among upregulated pathways in MG patients, P value < 0.05). e GSVA analysis of CD14+ monocytes
between MG patients and HCs. f Dot plot of selected significant paracrine receptor-ligand interactions between CD14+/CD16+ monocytes and cDCs
discovered using Cellchat. Commun.Prob., communication probability.
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Another T cell activation regulatory gene, PTPN22, is
highly expressed in CD8+ T cells. IL1B, involved in the
modulation of autoimmune inflammation50, is primarily
expressed in monocytes and DCs.
Several genes associated with immune or inflammatory

signaling of autoimmune disease, including VAV138 and
TNIP151, are expressed in multiple cell types. TNF,
TNFSF13B, and FCGR2A are highly expressed in mono-
cytes, which as previously reported are associated with the
autoimmune state of monocytes52. AKAP12, associated
with pathway activation, was primarily expressed in

monocytes and NK cells. IFNG, FCGR3A, and FCGR3B
were primarily expressed in NK cells and monocytes.
CD86 was highly expressed in monocytes, DCs, and
B cells.
Combined with the DEG analysis, the significantly

altered expression of MG risk genes might lead to
impaired functions. For example, HLA-DRA was upre-
gulated in B cells, DCs, and CD8+ T cells. HLA-DQA1 was
upregulated in B cells, DCs, CD8+ T cells, and monocytes.
HLA-DQB1 was upregulated in B cells, DCs, and mono-
cytes. HLA-DPB1 was upregulated in B cells, CD8+
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T cells, monocytes, and NK cells. Overall, the HLA class II
genes are differentially expressed in B cells of myasthenia
gravis, suggesting their function of pathogenic antigen
presentation. Further studies are needed to elucidate the
functional changes of these specific cells in MG.

Discussion
In this study, we aimed to understand the cellular tran-

scriptional changes in MG patients. We are the first to
create a high-resolution atlas and to systematically discuss
the cellular heterogeneity and the impaired peripheral tol-
erance from MG patients. We performed scRNA-seq of
39,243 cells and then annotated their cell type identity, fol-
lowed by DEG and pathway analysis. At this resolution, we
first identified 13 cell clusters and subsequently reclustered
them into 39 subsets. We found general differences in
monocytes, CD4+ T cells and B cells, while NK cells and
CD8+ T cells were more similar between MG and HCs.
Based on the 39 clusters, we also compared the differ-
entiation shift and observed aberrant B cell and CD4+ T cell
differentiation by monocle2 and RNA velocity. We found
large cell type-based DEGs, which might be referenced for
investigating the pathological roles of immune-cell subsets.
The scenic analysis provides clues for identifying new can-
didate TFs involved in B cell and T cell dysfunction. Cell
communication analysis also provides potential drug targets
for treating the disease.
Our approach to transcriptional profiling of the peripheral

blood in myasthenia gravis patients is unique because it did
not involve presorting. This unbiased method uses the full
transcriptome and might provide a more detailed and
comprehensive overview. We next noted several key
observations. We found that B cell differentiation was highly
connected with plasma cells. DEGs and metascape analysis
revealed increasing antigen processing and presentation and
MHC II molecular expression, including HLA-DRA, HLA-
DQA1, HLA-DQB1, and HLA-DPB1, which are also MG-
associated risk genes.
Notably, we found that CD180 is decreased in MG

patients. We further verified this with an independent
cohort by flow cytometry and found a large expansion of
CD180− B cells in MG patients, which was correlated
with anti-AChR antibodies and disease activity. A similar
phenomenon with the expansion of peripheral CD180− B
was also observed in SLE53. Our results showed that
CD180- B cells were the IgG-secreting B cells both in MG
and HCs. We further showed that CD180 negative B cells
exhibited increased IgG-secreting ability. Previous studies
reported that CD180 knockout mice have one-tenth the
serum concentrations of IgG3 than WT mice54, further
indicating the importance of the CD180 gene for IgG
secretion. In summary, CD180 expression is altered in B
cells and might have an important role in autoantibody
secretion. CD180− B cells may serve as indicators for the

disease activity of MG. In addition, we revealed some TFs
may regulate the observed aberrant differentiation and
activity of B cells in MG patients, including BCL3,
POU2AF1, JUN, RELB, and STAT3. Few of these TFs and
their function on B cells were researched in MG, but some
TFs were reported in other immune diseases and most of
the TFs are associated with antibody-secreting. Bcl-3-
deficient Mice have a decreased B cell population,
impaired formation of GCs, and severe defects in the
production of antigen-specific antibodies55. POU2AF1
(Bob1)-sufficient mice lead to abrogated germinal center
B cell formation, anti-CII antibody production, and
Collagen-induced arthritis development56. Consistent
with data from animal studies, Expression of POU2AF1
mRNA was elevated in B from synovial fluid of rheuma-
toid arthritis patients and was strongly correlated with
CD21L, a molecular marker of GCs56. In humans with
RelB deficiency, patients suffer from severe immunodefi-
ciency with shortage-specific antibodies due to the halted
B cell development and the absent CD27+ memory B
cells57. In B6.MRL/lpr mice, STAT3 deficiency led to the
defect of plasma cell differentiation and decreased auto-
antibody production58.
For T cells, we also observed expansion and altered

differentiation of CD4+ T cells. The highly enriched IL-17
signaling pathway and CD40 pathway in MG patients
suggested the expansion of Th17 and CD40+ CD4+

T cells. Similar to a previous study that showed CD40 can
be expressed on CD4+ T cells. Furthermore, CD40+

CD4+ cells are reported to be highly pathogenic and
promote broad TCR repertoire expansion in autoimmune
type 1 diabetes59,60, which partly explains the increased
TCR signaling. Cell communication results revealed
increased CD70 signaling between plasma B cells and
CD4+ T cells. CD27 is expressed on the majority of
T cells and is upregulated with T cell activation, and its
ligand CD70 is transiently expressed on activated B cells.
CD27 ligation can promote effector cell formation. This
might suggest activated B cells also promote CD4+ T
subgroup alterations. Moreover, we revealed some TFs
may regulate CD4+ T-cell polarization in MG, such as
STAT3, JUND, and JUN. CD4STAT3−/− mice are resistant
to experimental autoimmune encephalomyelitis and the
inability of pathogenic Th17 and Th1 cells61. JUND also
promoted Th17 cells polarization, although JUND is not
major role compared with JUNB62.
Although previous large studies of pathology in MG

focused on adaptive immunity, we observed that monocytes
also showed large shifts in MG patients. Apart from enri-
ched antigen processing and presentation activity, DCs also
exhibited activated TNF signaling. Cell communication
showed increased TNF signaling from CD16+/CD14+

monocytes to cDCs. Monocytes might have functions in
mediating the TNF signaling of DCs. TNF signaling plays an

Jin et al. Cell Discovery            (2021) 7:85 Page 14 of 18



important role in inflammatory and autoimmune diseases
and participates in biological processes, including cell pro-
liferation, apoptosis, and differentiation. Their altered func-
tion might be the cause of the chronic inflammatory
reaction. We propose that monocytes also play an essential
role in the pathological process of MG.
There are also limitations to our study. First, due to the

limitation of RNA capture efficiency, there were unde-
tected genes. For example, some risk genes that are lowly
expressed were not identified. Second, our scRNA-seq
dataset included only female early-onset MG patients to
avoid gender bias, which may not share the same patho-
logical transcriptional changes with other disease sub-
types or male patients. Third, clustering based on the
expressed mRNA transcriptome may not always be
coincidence with clustering by protein surface markers.
In summary, we present a comprehensive single-cell

transcriptome atlas of MG. Our study helps better
understand the mechanism of MG for basic research,
provides indicators of disease activity for clinicians, and
provides markers for drug developers.

Materials and methods
Processing of patient samples
Sixty-two MG patients and, seventeen age- and sex-

matched HCs were recruited at the Neurology Depart-
ment of Xiangya Hospital between June 2018 and Feb-
ruary 2019. The first cohort including HCs (n= 2) and
MG (n= 2), was used for the 10× genomics scRNA-seq.
The second cohort, including HCs (n= 15) and MG (n=
60), was used for flow cytometry analysis (Supplementary
Table S1). Seven MG patients in the second cohort were
followed up after 3 months of immunosuppressant ther-
apy. Participants were excluded based on the following
criteria: (1) an ethnic origin other than Han; (2) a history
of oral glucocorticoid or immunosuppressant intake; (3) a
history of IVIG or plasma therapy; (4) a history of
malignant tumor; (5) pregnancy. Diagnosis of MG was
based on clinical symptoms, neostigmine test, repetitive
nerve electrical stimulation, and serum autoantibody
results. Autoantibody results, including AChR and MuSK
antibody, were obtained from the DAAN Clinical
Laboratory Central (Guangzhou, China). Serum anti-
AChR levels greater than 0.45 nmol/L and anti-MuSK
levels greater than 0.5 nmol/L were considered positive
results. QMG score was used to evaluate disease severity
when patients have enrolled and the therapeutic effect
after immunotherapy treatment22. All patients and HCs
signed informed consent forms. This study was approved
by the Ethics Committee of Xiangya Hospital.

Generation and sequencing of single-cell libraries
Peripheral blood mononuclear cells (PBMCs) were

isolated from whole blood using Ficoll-Paque (TBD,

Tianjin, China) according to the manufacturer’s instruc-
tions. Cell viability was assessed by flow cytometry (cell
viability > 95%). ScRNA-seq libraries were prepared per
the Chromium Single Cell 5' library preparation kit user
guide (10× Genomics). 90 μL cellular suspension, 40 μL
barcoded Single Cell 5' Gel Beads, and 270 μL Partitioning
Oil were loaded onto a Chromium Chip A to generate
single-cell gel bead-in-emulsions (GEMs). GEM-reverse
transcriptions (GEM-RTs) were performed in a Veriti 96-
well thermal cycler (Thermo Fisher Scientific). After RT,
cDNAs were amplified and cleaned using the SPRIselect
Reagent Kit. Indexed sequencing libraries were con-
structed using the Chromium Single Cell 5' Library
Construction Kit (10× Genomics) according to the user
guide. Barcoded sequencing libraries were quantified by
quantitative PCR on an ABI StepOnePlus Real-Time PCR
System (Life Technologies). Pair end single-cell RNA-Seq
libraries were sequenced using NovaSeq 6000 (Illumina)
with a read length of 150 bp paired-end reads.

ScRNA-seq bioinformatics analysis
Quality control metrics and filtering
For each sample, we processed 10× genomics raw data

using the Cell Ranger Single-Cell Software Suite (v 3.1.0)
with default parameters. Reads were aligned to the pre-
built human reference genome from the 10× Genomics
website (GRCh38 V3.0.0). Then, we mapped the unique
molecular identifiers (UMIs) to genes and the barcodes to
cells. We further analyzed these metrics using the R
(v3.6.3) package Seurat (v 3.1.2). Only genes expressed in
at least three cells and cells with a minimum of 200 genes
were kept. Low-quality cells meeting one of the following
thresholds were further excluded: 1) the number of
expressed genes was lower than 500 or larger than 3500;
2) more than 7% of UMIs were mapped to mitochondrial
or ribosomal genes. After filtering, we detected 18928
genes in a total of 39,243 cells, as shown in Supplementary
Table S2.

Dimensional reduction and visualization
After quality control, variable genes for each four

samples were identified using the FindVariableGenes
function in Seurat. Then, single-cell transcriptomes data
were log-normalized and scaled for further analysis. Fin-
dIntegrationAnchors and IntegrateData functions were
used to produce a batch-corrected expression matrix63.
Principal component analysis (PCA) for dimension
reduction was performed with the Seurat function, and 20
PCs were kept for downstream analysis based on the
Jackstraw method. Clustering was further performed with
the Seurat FindClusters function, and the Uniform
manifold approximation and projection (UMAP) was
used for visualization. Identities of clusters of cells were
manually annotated using known marker genes in
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published articles with the help of the R package SingleR
(v 1.0.1). Sub-clustering of major immune cell clusters
was performed in the same workflow.

Differential expression analysis
Cluster-specific marker genes for transcriptional sub-

populations were identified by the FindAllMarkers Seurat
function with Wilcoxon rank-sum test. For specific clus-
ter comparisons between MG patients and HCs, we used
the DESeq2 package (v1.26.0) to detect differentially
expressed genes (DEGs)64. Significant DEGs were filtered
by |log fold change| > 0.5 and P value < 0.05. Gene
ontology and gene-set enrichment analysis from DEGs
were performed using Metascape (www.metascape.org)65.

Gene functional annotation
To compare the functional profiles of different clusters,

we used the clusterProfiler package (v 3.14.3)66 for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis with significant
DEGs. Gene set variation analysis (GSVA) was performed
using the GSVA package67 (v 1.32.0). To assess the gene
set activity among clusters, we first determined the mean
expression of gene sets of each cluster and assessed the
log fold-change between clusters. The annotation gene
sets were downloaded from C2 (curated gene sets) and C7
(immunologic gene sets) of the molecular signature
database (MSigDB, version 7.0). We used Limma package
(v 3.42.0)68 to contrast the activity score and then com-
pared pathway activities between MG and HCs.

Quantifying differences between major immune cells in
MG versus HCs
After identifying the major immune cells, we also

evaluated the differences between lineages derived from
MG versus HCs by comparing cell distributions. Bhatta-
charyya distance was used to measure the distances, and
lineages with over 500 cells in each sample of MG and
HCs were calculated as reported by Cillo et al.8. More
specifically, for the comparison of any given two clusters,
we first sampled 500 cells from each individual cluster
randomly 100 times. Then, two clusters were mixed up,
and 500 cells were randomly sampled twice without
replacement, and inter-cluster Bhattacharyya distances
were calculated between sampling of individual clusters
and normalized with a sampling of mixed clusters.

Regulatory network inference
A single-cell regulatory network for 9 B cell groups and

7 CD4+ T cells was performed with single-cell regulatory
network inference and clustering (scenic)69. Specifically,
GRNBoost2 (https://github.com/tmoerman/arboreto) in
pySCENIC was used to identify gene regulatory networks,
and RcisTarget (v 1.6.0) was then used to identify

regulatory motifs and to predict candidate target genes.
The cell-regulon activity was calculated by AUCell (v
1.8.0). Differences in the AUC between the MG and HC
groups were identified by t-test.

Pseudotime-trajectory analysis
We used Monocle2 (v2.14.0)70 to construct the

pseudotime-trajectories for B cells and CD4+ T cells. The
positive significant marker genes identified by FindAll-
Markers Seurat function were used to sort cells in a
temporal differentiation order. Dimension reduction was
performed using DDRTree from Monocle2.
A diffusion map for myeloid cells was generated using

the destiny (v3.0.1) R package71.

RNA velocity analysis
We used velocyto.py (v0.17, https://github.com/

velocyto-team/velocyto.py) to quantify spliced and
unspliced reads of each 10× bam file generated by cell
range with default parameters. Expressed repetitive ele-
ments in the GRCh38 reference genome were masked,
and the bed file for the masked interval was generated
with the UCSC genome browser (https://genome.ucsc.
edu/)72. Loom files were then processed with velocyto.R
(v0.6 https://github.com/velocyto-team/velocyto.R). We
subset B cells for further analysis with the grouping of 20
cells and used Monocle DDRTree embedding for the final
RNA velocity plots, and cell to cell distance was calculated
with the first 50 PCs. Parameters were set to default
unless stated otherwise.

Assessment of receptor/ligand interactions
We use CellChat (v0.0.2)34 to evaluated cell-cell inter-

actions and significant pathways. To identify potential
cell-cell interactions that were perturbed or induced in
myasthenia gravis patients, we focused on differentially
expressed ligands and receptors in CD8+ T cells, CD4+

T cells, B cells, CD14+ monocytes, FCGR3A+ monocytes,
NK cells, and DCs. We also evaluated potentially altered
interactions between monocytes, including CD14+ and
CD16+ monocytes, and DCs, including cDCs and pDCs,
based on the reclustered myeloid cells. Briefly, we fol-
lowed the official workflow, and normalized data were
loaded into CellChat. After creating CellChat objects, we
used CellChatDB.human and set the Secreted Signaling
pathways as the database. Then, default parameters were
used to identify putative interaction pairs, and the result
were displayed as circos plots.

Flow cytometry
Flow cytometry was used to assess B cell subsets.

PBMCs were isolated by standard Ficoll-Paque (TBD,
Tianjin, China). Fresh PBMC from the donors were
stained with the surface markers of anti-human
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antibodies, including BB515-labeled anti-CD19 (clone:
HIB19, Biolegend), and PE-labeled anti-CD180 (clone:
MHR73-11, Biolegend) antibodies, and standard proce-
dures were applied. For intracellular staining, cells were
fixed and permeabilized using BD Cytofix/Cytoperm (BD
Biosciences) and then incubated with PEcy7-labeled IgG
(clone: HP6017, Biolegend). Zombie (Biolegend) was used
to exclude dead cells. Cells were subsequently blocked in
2% bovine serum albumin (BD Biosciences) supplemented
with human FcX Blocker (Biolegend). 1 × 106 fresh cells
were used for every staining, and cells were incubated in
staining buffer (0.1% BSA in PBS) for 30 min at 4 °C
shielded from light. After staining, cells were washed in 1×
PBS and acquired on a Cytek flow cytometer in an hour.
Data were analyzed using FlowJo v10.

Statistical analysis
Marker genes for transcriptional subpopulations were

identified by FindAllMarkers Seurat function with Wil-
coxon rank-sum test. Differences among multiple groups
were evaluated by one-way analysis of variance (ANOVA)
followed by Newman–Keul post hoc test. Wilcoxon
signed-rank test was used for paired data. The paired
Wilcox signed-rank test was used to compare differences
between paired samples. Correlation analysis was per-
formed using the nonparametric Spearman test. Statistical
analysis and graph processing were performed using R
(v3.6.3). Data were considered significant at *P < 0.05, **P
< 0.01, and ***P < 0.001 unless stated otherwise.
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