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Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection, poses a severe threat to humanity. Rapid and comprehensive analysis of both
pathogen and host sequencing data is critical to track infection and inform therapies. In this study, we performed
unbiased metatranscriptomic analysis of clinical samples from COVID-19 patients using a recently developed RNA-seq
library construction method (TRACE-seq), which utilizes tagmentation activity of Tn5 on RNA/DNA hybrids. This
approach avoids the laborious and time-consuming steps in traditional RNA-seq procedure, and hence is fast,
sensitive, and convenient. We demonstrated that TRACE-seq allowed integrated characterization of full genome
information of SARS-CoV-2, putative pathogens causing coinfection, antibiotic resistance, and host response from
single throat swabs. We believe that the integrated information will deepen our understanding of pathogenesis and
improve diagnostic accuracy for infectious diseases.

Introduction
Longstanding, emerging, and re-emerging infectious

diseases continuously threaten human health across
centuries1. Precise and rapid identification of pathogens
from clinical samples is important for both guiding
infection treatment strategies and monitoring novel
infectious disease outbreaks, e.g., the outbreak of SARS-
CoV-2, in the community. While most nucleic acid
amplification-based and pathogen-specific antibody
detection-based molecular techniques only detect a

limited number of pathogens and need their prior
knowledge, metagenomic or metatranscriptomic approa-
ches allow for comprehensive and unbiased identification
and characterization of microbiome directly from clinical
specimens2.
Compared to metagenomic sequencing, metatran-

scriptomic sequencing has several distinct advantages: it
permits detection of RNA viruses that would not be
interpreted in metagenomic data, reveals transcriptionally
active organism(s) which are more etiologically important,
and indicates host immune response which is essential to
distinguish true pathogens from colonizers3–5. However,
the laborious and time-consuming steps in traditional
RNA sequencing (RNA-seq) experiments hinder the
development of metatranscriptomics-based clinical diag-
nostics for rapid pathogen identification.
Very recently, we and others have independently

developed a rapid and cost-effective RNA-seq method,
based on Tn5 tagmentation activity towards RNA/DNA
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hybrids6,7. Our method, termed “TRACE-seq”, enables
rapid one-tube library construction for RNA-seq experi-
ments and shows excellent performance in comparison to
traditional RNA-seq methods. We thus envisioned that
this convenient and sensitive method could be applied to
clinical specimens for unbiased metatranscriptomic ana-
lysis. In this study, we modified the TRACE-seq proce-
dure, shortened the total time, and optimized analytical
pipeline to meet the needs for clinical metatranscriptomic
diagnosis and analysis. We then applied TRACE-seq to
metatranscriptomic sequencing of single throat swab
specimens from COVID-19 patients and healthy indivi-
duals. We found library construction of specimens could
be accomplished in ~2 h with high quality. Analysis of
TRACE-seq metatranscriptomic data of 13 SARS-CoV-2-
positive samples and 2 negative samples demonstrated the
success of this method to sensitively detect SARS-CoV-2
with high coverage even for samples with low virus
abundance, or to assemble unknown microbe genome de
novo (using SARS-CoV-2 as an example). Moreover,
TRACE-seq sensitively detected the microbiome and
simultaneously allowed for interrogating antibiotic resis-
tance and host responses. Taken together, TRACE-seq
enables unbiased pathogen detection and could have
broad applications in the metatranscriptomic study and
clinical diagnosis.

Results
TRACE-seq enables metatranscriptomic analysis
To perform metatranscriptomic analysis on clinical

samples, such as throat swabs in this study, we made
several modifications to TRACE-seq. First, to achieve
unbiased sequencing of microbiome, we used both ran-
dom hexamer and oligo d(T)23VN primers for reverse
transcription, using approximately 1/10 total RNA
extracted from a single throat swab as input. Secondly, we
reduced the total time of library construction to around
2 h (Fig. 1a), which enables TRACE-seq to be more
compatible for clinical use, especially when substantial
numbers of specimens require investigation. Third, we
developed a tailored analytical pipeline of TRACE-seq to
simultaneously identify known and unknown pathogens
and at the meanwhile to characterize host transcriptional
response in a single metatranscriptomic profiling reaction
(Fig. 1b). This new pipeline allowed us to obtain rich
information from the metatranscriptomic data generated
by the modified TRACE-seq.

Sensitive detection of SARS-CoV-2 genome
Since the throat swab samples were from patients with

confirmed or suspected COVID-19, we asked whether the
untargeted metatranscriptomic sequencing could yield a full
genome sequence of SARS-CoV-2 virus. After removing

Fig. 1 Workflow of TRACE-seq enables metatranscriptomic sequencing for clinical diagnosis. a A wet lab protocol of TRACE-seq starting with
total RNA extracted from throat swabs of COVID-19 patients. b A dry lab pipeline including known and unknown pathogen identification and host
response characterization.
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low-quality reads and human reads, the remaining reads
were mapped to the SARS-CoV-2 reference genome
Wuhan-Hu-1 (accession number: NC_045512). Sequencing
covered the reference genome from 7134 bp to 29,903 bp
(23.86%–100%), with a genome-wide average sequencing
depth from 0.69× to 129,901× (Supplementary Table S1).
Subsequent correlation analysis revealed that the propor-
tion of obtained reads of SARS-CoV-2, the coverage to the
reference genome, the average sequencing depth and the
median sequencing depth all showed a significant negative
correlation with the cycle threshold (Ct) value of SARS-
CoV-2 in all samples (Spearman test, P < 0.01) (Fig. 2a). In

addition, the nearly whole genome sequence (> 99%) could
be acquired from mapping-based approach for most sam-
ples with the Ct value below 35 (n= 12, 85.7% of 14 sam-
ples with the Ct value below 35), with the average
sequencing depth of 16,900× (from 28.3× to 129,901×,
median depth 1894.96×). Moreover, in 7 samples (50%),
genomes were completely covered (Fig. 2b; Supplementary
Fig. S1 and Table S1).

Reconstruction of full-length genome of SARS-CoV-2
To determine the accuracy of this method in de novo

acquisition of pathogen genome, after de novo assembly

Fig. 2 Genome coverage of SARS-CoV-2. a Correlation between SARS-CoV-2 sequencing data and Ct values. From the left to the right: the
correlation between the ratio of SARS-CoV-2 reads, the coverage of SARS-CoV-2 genome, the average sequencing depth, the median sequencing
depth, and the Ct value of each sample. Linear regression indicates the relationship between the sequencing data and the Ct value of samples.
b Genome coverage of sequenced samples across the SARS-CoV-2 genome. The x-axis represents the viral genome position, the y-axis represents the
log10 depth of each site. Lines in blue represent the median sequencing depth, and areas in gray represent 25th to 75th percentile of sequencing
depth. c De novo assembly results of SARS-CoV-2. The x-axis represents each sample, and the y-axis represents log10 lengths of contigs matching
SARS-CoV-2. Boxplots represent the length distribution of contigs matching SARS-CoV-2. Dots in different colors represent the number of error bases
(shown in legends) in each contig relative to previously known genome sequences.
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from non-human reads and BLAST, contigs matching
SARS-CoV-2 with a length ≤ 100 bp were discarded, and
thus 64 contigs were determined to be SARS-CoV-2
genomes or genome fragments. These contigs ranged
from 185 bp to 29,835 bp in length, with an average length
of 6437 bp. As the Ct value of SARS-CoV-2 increases,
SARS-CoV-2 contigs tended to be much more in number
and shorter in length. Most of contigs (46, 71.9%) were
exactly the same with our previously known viral genomes
(Fig. 2c), and some (10, 15.6%) had 1 base difference
(mismatch or gap) and the rest had 2–12 base differences.
In samples with SARS-CoV-2 Ct value lower than 32,
almost full-length genome (29,776–29,835 bp) were
obtained just from de novo assembly. Thus, TRACE-seq
could enable the de novo assembly of the complete gen-
ome of unknown pathogens and be readily utilized to
identify emerging pathogens in patients with unknown
etiology of infection and efficiently complement routine
diagnostics.

Unbiased identification of putative pathogens in addition
to SARS-CoV-2
It is widely reported that coinfection (multi-species

infection) contributes to enhanced morbidity and mor-
tality, especially in elderly and immunosuppressed influ-
enza patients8,9. Thus, we were curious to see if our
metatranscriptomic sequencing approach could capture
other pathogens in addition to SARS-CoV-2. Indeed,
alignment of TRACE-seq data to microbe reference
databases identified many bacteria, fungi, and viruses in
both patient and healthy samples (Fig. 3a). To assess
whether COVID-19 patients and healthy individuals have
different microbe community in their throat, principal
coordinates analysis (PCoA) was conducted using relative
abundance of the microbiome. We observed that COVID-
19 patients harbored a throat microbiome quite different
from that of healthy individuals (Fig. 3b). The relative
abundance of probable respiratory pathogens was further
investigated.
Among the probable respiratory pathogens listed in

Fig. 3c, Stenotrophomonas maltophilia, Haemophilus
parainfluenzae, Staphylococcus aureus, Streptococcus
pneumoniae, Haemophilus influenzae, and Acinetobacter
baumannii are common commensal organisms of the
normal oropharynx; however, they can also become
opportunistic pathogens and cause infectious diseases,
such as endocarditis, bacteremia, and pneumonia10–13.
Serratia marcescens, Klebsiella pneumoniae, Steno-
trophomonas maltophilia, Pseudomonas aeruginosa,
Neisseria meningitidis, and Legionella pneumophila cause
disease infrequently in normal hosts but can be a major
cause of infection in patients with underlying or immu-
nocompromising conditions14–19. Mycoplasma pneumo-
niae is a type of “atypical” bacteria that commonly causes

mild infections of the respiratory system20. The Myco-
bacterium tuberculosis complex (MTC or MTBC) is a
genetically related group of Mycobacterium species that
can cause tuberculosis in humans or other animals21. As
for identified fungi, Candida dubliniensis and Candida
albicans are both opportunistic yeast and can be detected
in the gastrointestinal tract in healthy adults; they were
also known to cause respiratory diseases22–24. Human
gammaherpesvirus 4 is one of the most common viruses
in human. It is best known as the cause of infectious
mononucleosis25,26, and is also constantly detected in
lungs of patients with idiopathic pulmonary fibrosis27.
In our results, a relatively high abundance of Serratia
marcescens, Staphylococcus aureus, Stenotrophomonas
maltophilia, Acinetobacter baumannii, Pseudomonas
aeruginosa and Candida dubliniensis were identified in
several SARS-CoV-2-positive samples compared with
negative samples, which indicated potential coinfection.
Nevertheless, these data by themselves could not prove
that COVID-19 patients were coinfected by these identi-
fied microorganisms; these data have to be carefully
interpreted in the clinical context.

Expression profiles of antibiotic resistance genes
Antimicrobial resistance has become a global issue.

Pathogens with antibiotic resistance are increasing and
many pathogens are becoming multidrug resistant28,29.
To characterize antibiotic resistance gene expression
profiles, we aligned metatranscriptomic reads against the
Comprehensive Antibiotic Resistance Database
(CARD)30. On average, transcripts of ~124 antibiotic
resistance genes were identified in SARS-CoV-2-positive
samples, while only ~15 genes were identified in negative
samples. According to the CARD, the identified antibiotic
resistance genes confer resistance to 28 classes of anti-
biotics. Almost all resistance gene classes were more
abundant in COVID-19 patients compared to healthy
individuals. Genes conferring resistance to beta-lactam
(including penam, cephalosporin, monobactam, penem,
etc.), aminoglycoside, tetracycline, phenicol, rifamycin,
fluoroquinolone, and macrolide were the most abundant
(Fig. 3d). Overall, the distinct microbiome, emergence of
potential coinfection, and the elevated abundance of
antibiotic resistance genes provide new data for estab-
lishing clinical therapeutic scheme during the treatment
for COVID-19 patients.

Characterization of host response to SARS-CoV-2
Distinguishing infection from colonization remains

challenging. Because host transcriptional profiling has
emerged as a promising diagnostic tool for infectious
diseases31,32, we next tested whether the host response to
SARS-CoV-2 could be simultaneously characterized by
TRACE-seq-mediated metatranscriptomic analysis from
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throat swabs. As shown in Fig. 3a, a substantial percentage
of the reads are derived from human, and an average of
11,460 human genes with FPKM > 1 were detected per
sample (Fig. 4a; Supplementary Fig. S2a, b). Based on the
host gene expression profiles, the relationships between
samples were inspected using a multidimensional scaling
(MDS) plot (Fig. 4b). As expected, SARS-CoV-2-positive
samples were clearly separated from negative samples. In
addition, SARS-CoV-2-positive samples could be divided
into two subgroups. Further investigation revealed that
the two subgroups could also be separated according to
viral load (defined by the Ct value of SARS-CoV-2 ORF1b
region target): subgroup 1 with higher viral load
(Ct: 21.97–30.25, except sample D15 (Ct= 32.5)), and
subgroup 2 with lower viral load (Ct: 30.51–37.31). To
characterize the host responses to different SARS-CoV-2
viral loads, we performed differential gene expression
analysis between low SARS-CoV-2 viral load and negative

samples, as well as between high viral load and negative
samples. We identified 522 differentially expressed genes
between low viral load and negative samples, among
which 251 genes were up-regulated in low viral load
samples (upper panel, Fig. 4c; Supplementary Fig. S2c).
We also identified 402 differentially expressed genes
between high viral load and negative samples, among
which 225 genes were up-regulated in high viral load
samples (lower panel, Fig. 4c; Supplementary Fig. S2d).
Gene Ontology (GO) enrichment analysis identified that
the top up-regulated biological processes in low viral load
samples are cell surface receptor signaling pathway,
locomotion, response to external stimulus, defense
response and immune response, chemotaxis, movement
of cell or subcellular component, localization of cell,
positive regulation of NF-kappaB import into nucleus,
etc., which indicated that host responses in these patients
mainly consist of immune response and recruitment of

Fig. 3 Microbiome profiles in COVID-19 patients and healthy individuals. a Histogram showing percentage of reads mapping to human, viruses,
bacteria, and fungi for the individual samples. b PCoA of microbiome using relative abundance at the genus level. c Heatmap showing relative
abundance of potential respiratory pathogens identified in SARS-CoV-2-positive and -negative samples. RPM, reads per million non-host reads.
d Heatmap displaying relative abundance of antibiotic resistance genes in SARS-CoV-2-positive and -negative samples.
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Fig. 4 Profiling of host transcriptional response. a Bar plot showing gene numbers detected in each sample. b MDS plot showing variation
among samples based on host transcriptional profiles. c Volcano plots showing differentially expressed genes between low SARS-CoV-2 viral load
and negative samples (upper), and between high SARS-CoV-2 viral load and negative samples (lower), respectively. Significantly up- and down-
regulated genes (padj < 0.05, |log2FoldChange| > 1) are highlighted in red and blue, respectively. d Bar plots of the most enriched GO terms in low
and high SARS-CoV-2 viral load samples, respectively. e Heatmap presenting the significantly up-regulated immune response-related genes in SARS-
CoV-2-positive samples compared to negative samples.
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the immune cells. Nevertheless, the top up-regulated
biological processes identified in high viral load samples
were defense response, response to external stimulus,
biotic stimulus and other organism, immune response,
and response to cytokine, etc., which indicated that host
responses in these patients were dominated by strong
immune response (Fig. 4d; Supplementary Fig. S2d).
Further investigation of immune response revealed a
subset of up-regulated genes in both low and high viral
load samples involved in IL1B-associated inflammatory
response (IL1B, CXCR1, CXCR2, FOS, C5AR1, TLR4,
CEBPB, MEFV, FPR1, FPR2, SLC11A1, PROK2, PTGS2,
OSM, SERPINA1, TNFRSF10C). Besides, several inflam-
matory response-related genes (CCRL2, NFAM1, FFAR2,
AOC3, MMP25, FCER1G, SIGLEC1, TLR2, TLR8,
MYLK3) were mainly up-regulated in low viral load
samples, and most of them encode proteins functioning as
receptors. In addition, several inflammatory response-
associated genes (CCL3, NOS2, NUPR1, ALOX5AP) were
mainly up-regulated in high viral load samples. Moreover,
another subset of genes up-regulated in both low and high
viral load samples (ISG15, EGR1, IFIT1, IFIT2, IFIT3,
IFITM1, IFITM2, IFITM3, RSAD2) were enriched in type
I interferon signaling pathway, with two genes (ISG20,
OASL) mainly up-regulated in high viral load samples
(Fig. 4e). These results were highly consistent with the
previously reported host response to SARS-CoV-233–35.
Overall, metatranscriptomic data obtained via TRACE-
seq of throat swab samples demonstrate reliable char-
acterization of host transcriptional response to the
infection of SARS-CoV-2.

Discussion
Although next generation sequencing holds a great

potential to directly detect known and unknown patho-
gens including viruses, bacteria, fungi, and parasites in a
single application, the laborious and time-consuming
steps in traditional RNA library construction procedure
hinders its clinical application. As a rapid and convenient
one-tube RNA-seq library construction method, TRACE-
seq showed comparable performance as traditional RNA
library preparation methods in terms of microbiome and
host transcriptome profiling (Supplementary Fig. S3), but
significantly lower the barrier for extensive application of
unbiased RNA-seq in clinical diagnosis. In addition,
multiplexing libraries by utilizing Tn5 transposase con-
taining barcoded adaptors could enable sample investi-
gation in a high-throughput manner, particularly when
comprehensive surveillance for emerging pathogens is
needed during a sudden disease outbreak.
It is very challenging to discriminate pathogens from

background commensal microbiota, since substantive
bacteria or fungi can colonize multiple body sites of
healthy individuals. The microbe present at a relatively

higher abundance in patients compared to healthy indi-
viduals is often considered as a pathogen, yet the abun-
dance threshold indicating infection is difficult to define
based solely on microbiome information. On the other
hand, host transcriptional profiling has been reported to
distinguish infectious and noninfectious diseases32 and to
further discriminate between virial and bacterial infec-
tions31. A previous study integrates host response and
unbiased microbe detection for lower respiratory tract
infection diagnosis in critically ill adults, using both RNA-
seq and DNA-seq but yet lacking antibiotic resistance
analysis3. Another study characterized microbial gene
expression profiles (including antibiotic resistance genes)
using nasal and throat swab samples, and host response
using blood samples during influenza infection36. To our
knowledge, this is the first study integrating unbiased
pathogen detection, antibiotic resistance, and host
response analyses in a single approach with throat swabs
from COVID-19 patients. In our results, SARS-CoV-2-
positive and -negative samples differed significantly in
both microbiome composition and host response. More-
over, TRACE-seq hold the potential to construct a net-
work of microbiome composition, antibiotic resistance,
and host response for characterizing the complex
host–microbiome interactions. Ideally, TRACE-seq data
can be utilized to develop a model combining pathogen
diversity metric, antibiotic resistance, and host transcrip-
tional classifier for infectious disease diagnosis. We believe
that the integrated information acquired from a TRACE-
seq library will deepen our understanding of pathogenesis,
improve diagnostic accuracy and more precisely inform
optimal antimicrobial treatment for infectious diseases
caused by not only SARS-CoV-2 but also other pathogens,
and eventually facilitate the utility of metatranscriptomic
profiling as a routine diagnostic method.

Materials and methods
Ethics statement
The study and use of all samples were approved by the

Ethics Committee of Wuhan Institute of Virology (No.
WIVH17202001).

Sample collection and nucleotide extraction
Respiratory specimens (swabs) collected from patients

admitted to various Wuhan health care facilities were
immediately placed into sterile tubes containing 3mL of
viral transport media (VTM). The swabs were deactivated
by heating at 56 °C for 30min in a biosafety level 2 (BSL 2)
laboratory at the Wuhan Institute of Virology in Zheng-
dian Park with personal protection equipment for bio-
safety level 3 (BSL 3) laboratory. Total nucleic acids were
extracted using QIAamp 96 virus Qiacube HT kit on
QIAxtractor Automated extraction (Qiagen, US) follow-
ing the manufacturer’s instructions.
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TRACE-seq library preparation and sequencing
TRACE-seq libraries were constructed using TruePrep®

RNA Library Prep Kit for Illumina (Vazyme, TR502-01)
according to the manufacturer’s instructions with several
modifications. Firstly, 1/10 volume of total nucleic acids
extracted from each swab was used for each library
without rRNA removal. Secondly, both random hexamers
and oligo(dT)20VN primers were used during the reverse
transcription process. Thirdly, we used N5 and N7 PCR
primer with a final concentration of 0.2 μM during the
PCR process. Lastly, after 18 PCR cycles, the library was
purified using 0.8× Agencourt AMPure XP beads (Beck-
man Coulter) and eluted in 20 μL nuclease-free water.
The concentration of resulting libraries was determined
by Qubit 3.0 fluorometer with the Qubit dsDNA HS
Assay kit (Invitrogen) and the size distribution of libraries
was assessed by Agilent 2100 Bioanalyzer. Finally, libraries
were sequenced on the Illumina Hiseq X10 platform
which generated 2 × 150 bp of paired-end raw reads.

NEBNext Ultra II RNA library preparation
NEBNext Ultra II RNA libraries were constructed using

NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB,
#E7770S) according to the manufacturer’s instructions.

Data preprocessing
Raw reads from sequencing were firstly subjected to

Trim Galore (v0.6.4_dev) (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/) for quality con-
trol and adaptor trimming. The minimal threshold of
quality was 20, and the minimal length of reads to remain
was set as 20 nt.

Host transcriptional profiling analysis
Clean reads were firstly mapped to human rRNA

sequences using Bowtie2 (v2.2.9)37, and then unmapped
reads were mapped to human genome (hg19) and tran-
scriptome using STAR (v2.7.1a)38. The FPKM value for
annotated genes was calculated by cuffnorm (v2.2.1)39,
and genes with FPKM > 1 were considered to be expres-
sed. Multidimensional scaling and differential gene
expression analysis were conducted using EdgeR
(v3.28.1)40 with gene count data generated by HTSeq
(v0.11.2)41. GO enrichment analysis for biological pro-
cesses was performed by DAVID (v6.8)42 with all sig-
nificantly up-regulated genes as input. Due to the
redundancy of enriched GO terms, GO terms and their P
values were further summarized using REViGO43. The
top 10 enriched representative GO terms were plotted.

Discrimination and de novo assembly of SARS-CoV-2
After removal of human reads, the remaining data were

aligned to the reference genome of Wuhan-Hu-1 (Gen-
Bank accession number: NC_045512) using Bowtie2

(v2.2.9)37 for SARS-CoV-2 identification. The coverage
and sequencing depth of SARS-CoV-2 genome were cal-
culated by Samtools (v1.9)44. On the other hand, to verify
that the method could screen for aetiologic agents and
obtain pathogen genome, all non-human reads were
processed for de novo assembly using MEGAHIT (v1.2.9)
with default parameters45, and then all contigs were
searched against NCBI nt database using blastn for clas-
sification46. As for accuracy of assembly sequences, con-
tigs determined to come from SARS-CoV-2 were
performed blastn (with the parameter “-outfmt 3”) to
display the differences with corresponding genome.

Microbiome analysis
After removing human reads, the remaining reads were

subjected to microbial taxonomic classification using
Kraken2 (v2.0.8-beta)47 with a custom database. To build
the custom database, standard RefSeq complete bacterial
genomes were downloaded through “kraken2-build
--download-library bacteria” and complete genomes of
human viruses and genome assemblies of fungi were
downloaded from NCBI’s RefSeq and added to the custom
database’s genomic library using the “--add-to-library”
switch. PCoA of relative abundances of microbial taxa at
the genus level was done using cmdscale command in R.
Distances between samples were calculated using
Morisita-horn dissimilarity index by vegdist command
from vegan package version 2.5–6 (https://CRAN.R-
project.org/package=vegan). The antibiotic resistance
genes were annotated by aligning the filtered metatran-
scriptomic reads to the CARD. Antibiotic resistance genes
with more than 10 completely matching reads were con-
sidered. The relative expression of antibiotic resistance
genes was determined as RPM (reads per million non-host
reads). All corresponding graphs were plotted using R
scripts by RStudio (v1.2.5033) (https://rstudio.com/).

Correlation analysis
The pearson correlation coefficients between TRACE-

seq and NEBNext Ultra II RNA kit sequencing data were
calculated using function rcorr() in Hmisc package in R,
based on microbial relative abundance at genus level
called by Kraken2 (v2.0.8-beta)47, and host gene expres-
sion profiles generated by cuffnorm (v2.2.1)39.
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