
REVIEW ARTICLE OPEN

Sperm freezing damage: the role of regulated cell death
Erhan Hai1, Boyuan Li1, Jian Zhang1 and Jiaxin Zhang 1✉

© The Author(s) 2024

Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on
improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm
freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential
component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death
pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and
accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in
this field.

Cell Death Discovery          (2024) 10:239 ; https://doi.org/10.1038/s41420-024-02013-3

FACTS

● The main type of cell death in sperm freezing damage remains
to be determined.

● Oxidative stress is one of the most important causes of sperm
freezing damage.

● Oxidative stress can induce various types of regulated cell
death (RCD), including apoptosis and ferroptosis.

OPEN QUESTIONS

● Which types of RCD are driven by oxidative stress during
sperm cryopreservation?

● If multiple types of RCD appear during sperm cryopreserva-
tion, which one is most important?

● What are the biological pathways of critical RCD?

INTRODUCTION
Sperm are more prone to death than other types of cells,
especially during cryopreservation [1]. This is due to their highly
dense chromatin, which cannot respond to changes in the
microenvironment and other factors to generate genomic
responses that maintain important cellular functions, such as
ATP synthesis and the maintenance of redox homeostasis, and
protect the integrity of the plasma membrane [2]. Cell death can
be classified as accidental cell death (ACD) or regulated cell death
(RCD). ACD refers to the virtually instantaneous and uncontrollable
form of cell death corresponding to the physical disassembly of
the plasma membrane caused by extreme physical, chemical, or
mechanical cues. RCD refers to cell death that results from the
activation of one or more signal transduction modules and, hence,
can be pharmacologically or genetically modulated (at least

kinetically to some extent) [3]. During the cryopreservation
process, sperm may experience cell death caused by intracellular
ice crystals, oxidative stress, and other factors, collectively referred
to as sperm freezing damage [4–7]. Therefore, according to the
classification of cell death types, sperm freezing damage can be
divided into ACD caused by intracellular ice crystals and RCD
induced by oxidative stress [1] (Fig. 1).

RELATIONSHIP BETWEEN ACCIDENTAL CELL DEATH AND
SPERM FREEZING DAMAGE
Physical damage to the sperm plasma membrane caused by
intracellular ice crystals is considered one of the main factors that
contribute to the poor quality of frozen-thawed semen [1, 8–12].
The control of dehydration and application of osmoprotectants in
sperm cryopreservation are the main measures used to delay this
event (Fig. 1).

Control of dehydration
Conventional cryopreservation is the most widely used sperm
cryopreservation technique and includes manual and program-
mable freezing. In the manual freezing technique, 0.25- or 0.5-mL
plastic straws filled with extended semen are placed in contact
with liquid nitrogen (LN2) vapor 4–5 cm above the LN2 for no
longer than 15min (10 min is recommended) before being
immersed in LN2 for storage [11]. Programmable freezing is a
method of gradually freezing/cooling sperm in two or three steps
within 2 to 4 h using a programmable biofreezer [13].
The formation of intracellular ice crystals depends on the

cooling rate. During the slow cooling process, sperm dehydration
is controlled by the increase in osmotic pressure caused by
extracellular ice crystals. Excessive dehydration can cause unex-
pected sperm death (osmotic damage, structural loss), called the
“solution effect” [14]. In addition, extracellular ice crystals may
cause physical damage to sperm [8]. A faster cooling rate can
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prevent sperm from dehydrating, which can lead to the formation
of intracellular ice crystals, which is fatal to sperm [15]. Therefore, a
suitable cooling rate is particularly important for sperm and
requires a balance between the sperm dehydration rate and the
formation of intracellular ice crystals during sperm freezing, which
is known as the “two-factor hypothesis” [10].

Permeable cryoprotectants
For many cell types, including mammalian oocytes and
embryos, the osmotic behavior of cells during freezing can
be predicted from numerical models. Therefore, the probability
of intracellular ice crystal formation under different linear
cooling rates can be estimated [15]. This model suggests that
cell freezing damage is caused by the formation of intracellular
ice crystals. By combining cryomicroscopy with observation, it
is possible to visualize the formation of intracellular ice crystals
in oocytes and embryos subjected to different cooling rates
[14]. However, experimental observations of mammalian sperm
cryopreservation with glycerol are inconsistent with model
prediction results [16–20].
The application of glycerol as a permeable cryoprotectant marks

a significant advance in semen cryopreservation [21]. Similar to
other permeable cryoprotectants, glycerol can undergo hydration
reactions with water-based solvents, increasing the viscosity of
intracellular fluids and thereby inhibiting the formation of ice
crystals to a certain extent and protecting cells [22]. Morris et al.
[23, 24] observed the ultrastructure of frozen human and horse
semen subjected to cooling rates ranging from 0.3 to 3000 °C/min
using freeze-fracture electron microscopy and freeze substitution.
Intracellular ice crystals were not detected at any cooling rate, and
glycerol played a major role in this process.

REGULATED CELL DEATH AND SPERM FREEZING DAMAGE
However, 40–50% of sperm still die after freezing, and surviving
sperm subpopulations after thawing are also affected and are
unable to perform normal physiological functions [13, 25–28].
The development of sperm cryopreservation technology has

significantly improved the quality of frozen semen and prevented
a large proportion of sperm ACD caused by intracellular ice crystal
formation [10, 21–24]. However, approximately 40–50% of sperm
still experience mortality following cryopreservation. Furthermore,
the surviving subpopulations of sperm demonstrate functional
impairments upon thawing, compromising their ability to perform
normal physiological functions [13, 25–28]. Interestingly, fresh
semen (with a total motility of over 70–80%) that is considered of
sufficient quality for freezing also has a mortality rate of
approximately 20% after ejaculation and has significant individual
[29, 30] and seasonal differences in freezability [31, 32]. In
addition, the freezability of semen is not only related to the sperm
itself but also to the seminal plasma [33]. These findings indicate
that sperm are highly vulnerable to death, and a certain
development process exists that may be accelerated by freezing.
Importantly, this process can be modulated, and its characteristics
do not meet the definition of ACD. Therefore, we speculate that
RCD plays an important role in sperm freezing damage.

RCD regulated cell death
The first scientific observation of RCD occurred in 1842 when Karl
Vogt noticed that the notochord of tadpoles disappeared during
development and found that the disappearance of such cells had
physiological significance during the developmental stage.
When the term “apoptosis” emerged in 1972, research on RCD
began to increase [34]. In the twenty-first century, multiple types

Fig. 1 Types of cell death that may occur during sperm cryopreservation. The occurrence of ACD due to intracellular ice crystal formation
has potentially been avoided with the widespread application of glycerol. Among RCD, apoptosis is the only type that has been definitively
identified in sperm cryopreservation damage, although its inductive mechanisms remain elusive. Although the term “ferroptosis” has not yet
been explored in sperm cryopreservation research, it may be highly relevant to sperm freezing damage. Additionally, as oxidative stress is also
associated with necroptosis, cuproptosis, and ADCD, these represent potential areas of investigation in sperm freezing damage research.
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of non-apoptotic RCD were discovered, such as necroptosis [35]
and ferroptosis [36].
There are two distinct forms of RCD, although the underlying

molecular mechanisms exhibit considerable overlap. RCD is involved
in two diametrically opposed scenarios. On one hand, RCD can occur
in the absence of any exogenous environmental perturbation, hence
operating as a built-in effector of physiological programs for
development or tissue turnover. These completely physiological
forms of RCD are generally referred to as programmed cell death
[3, 37, 38]. On the other hand, RCD can originate from perturbations
of the intracellular or extracellular microenvironment that are too
intense or prolonged for adaptative responses to cope with the stress
and restore cellular homeostasis [39]. In general, cells will trigger one
or more types of RCD in response to different stressors, especially
oxidative stress [40].

Sperm freezing damage and oxidative stress
Oxidative stress is one of the most important causes of sperm
freezing damage, resulting in damage to the structural and
functional integrity of sperm. Its essence is an imbalance of
intracellular oxidation-reduction reactions [41, 42]. Reactive
oxygen species (ROS) are a class of highly reactive oxidative free
radicals that are produced by normal physiological processes and
play an important role in cell signaling and tissue homeostasis
[43]. The production of ROS in mature sperm primarily occurs
through two distinct pathways. One pathway involves the
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
system, which is located on the sperm plasma membrane. The
other pathway is associated with electron leakage from the
mitochondrial electron transport chain, which serves as the
primary source of ROS production in sperm [8, 44–46]. The role
played by ROS depends on their concentration in sperm; only
when the concentrations are at an appropriate level can sperm
exert normal physiological functions [47]. Under physiological
conditions, ROS ensure the stability of chromatin and protect DNA
from damage during sperm development and maturation.
Additionally, ROS can activate the cAMP pathway and its
downstream signaling cascade, which is important for sperm
capacitation and forward movement [41, 43, 45, 46]. However,
when the ROS level increases, sperm undergo oxidative stress,
causing plasma membrane lipid peroxidation and mitochondrial
damage. Lipid aldehydes produced by lipid peroxidation bind to
proteins in the mitochondrial electron transport chain, triggering
an increase in ROS in a self-perpetuating cycle and further causing
DNA damage, which is referred to as “oxidative damage”
[41, 43, 47–49].
The oxidative stress experienced by sperm during freezing can

be divided into two aspects. The first aspect is the consumption of
antioxidants. Sperm support their movement through a high
mitochondrial metabolic rate. Due to the extreme differentiation
of sperm cells, the highly dense chromatin cannot produce an
antioxidant response in the genome. Additionally, during the
initial support of cells, most sperm cell cytoplasm is absorbed,
resulting in a lack of cytoplasmic antioxidants, including enzymes
and small-molecule ROS scavengers [2]. The second aspect
pertains to the disruption of the extracellular microenvironment.
To accommodate changes within this microenvironment during
the freezing process, including cooling and dehydration, sperm
decrease their metabolic rate, thereby enhancing their chances of
survival. However, during the freezing and thawing stage, as the
microenvironment conditions and metabolic rate recover, ROS
surge during a short period of time, and if not controlled, sperm
will undergo oxidative stress and eventually die [8, 46, 50].
Oxidative damage can induce various types of RCD [3, 40, 51, 52],
including apoptosis [53, 54] and ferroptosis [36, 55, 56]. Oxidative
damage is not only the cause of various types of RCD, but also
results from RCD.

Sperm freezing damage and apoptosis
Apoptosis is the only RCD marker of sperm freezing damage [57].
Many studies show that changes in apoptotic markers, such as
activation of the caspase family, phosphatidylserine (PS) externa-
lization, and the mitochondrial membrane potential, decrease
during sperm cryopreservation [4, 25, 58–64] and may involve
both intrinsic and extrinsic apoptotic pathways
[1, 9, 57, 60, 65, 66]. These two pathways can operate
independently, yet also demonstrate interconnectedness.

Apoptosis
Extrinsic apoptosis: There are two main receptors for apoptosis
on the cell membrane, FAS and tumor necrosis factor (TNF)-
related apoptosis-inducing ligand receptor (TRAIL-R), which are
associated with the FAS-associated via death domain (FADD)
[67–70]. When FAS and TRAIL-R bind to their ligands (FAS-L and
TRAIL), conformational changes occur, which further lead to
conformational changes in FADD. The altered conformation of
FADD causes the precursor state of Caspase 8/10 to mature, and
the activated Caspase 8/10 further activates Caspase 3/7 to induce
apoptosis and cleave the BH3 interacting domain (Bid) death
agonist to form a truncated Bid (t-Bid) [71–74].

Intrinsic apoptosis: t-Bid binds to the mitochondrial membrane,
activating the BCL2-associated X (BAX) apoptosis regulator and
BCL2 antagonist/killer 1 (BAK1; commonly known as BAK) located
on the mitochondrial membrane [71, 72]. Bax and Bak are
inhibited by pro-apoptotic and anti-apoptotic members of the
BCL2 family and BCL2-like 1 (BCLXl). When Bax and Bak cannot be
inhibited and are activated, they induce mitochondrial outer
membrane permeabilization (MOMP) and release cytochrome C
[75–77]. Cytochrome C binds to the precursor of Caspase 9 and
apoptotic peptidase activating factor 1 to form an apoptotic body.
Such apoptosomes can induce the maturation of Caspase 9 and
further activate Caspase 3/7, leading to cell apoptosis [78].

Potential factors inducing apoptosis in sperm
freezing damage. Although apoptosis has been confirmed to
occur in sperm freezing damage, the specific regulatory mechan-
isms remain unclear. Notably, the activation of Caspase 3 during
sperm cryopreservation is highly correlated with the degree of
lipid peroxidation [79, 80]. Therefore, in this section, we discuss
the potential mechanisms underlying lipid peroxidation-induced
apoptosis during this stage (Fig. 2). ROS elevation induces
cardiolipin peroxidation on the inner mitochondrial membrane
(IMM), leading to the separation of cytochrome C and its release.
The IMM also regulates MOMP through the mitochondrial
permeability transition pore (mPTP), releasing cytochrome C and
activating downstream cascades to complete apoptosis [81]. In
addition, lipid peroxidation products regulate apoptosis by
activating different signaling pathways, including the nuclear
factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK),
and protein kinase C (PKC) signaling pathways. The NF-κB family is
widely involved in inflammation, cell death, and the stress
response [82]. Lipid peroxidation products can inhibit the
degradation of I kappa B to maintain NF-κB activity, and NF-κB
can phosphorylate the anti-apoptotic protein Bcl-2, rendering it
inactive during lipid peroxidation [83, 84]. The MAPK signaling
pathway is responsible for cell signaling in response to various
stimuli, including oxidative stress [85]. Lipid peroxidation products
can form adducts with extracellular regulated kinases, c-Jun-N-
terminal kinases, and p38, which activate MAPKs, induce caspase
maturation, and initiate the apoptosis process [86, 87]. The PKC
signaling pathway is a key factor regulating cell signaling
transduction, such as cell proliferation, differentiation, and
apoptosis [88]. Lipid peroxidation products can activate PKCδ,
which is further cleaved by Caspase 3 to generate a constitutively
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active catalytic fragment, amplifying the apoptotic cascade
reaction [89].

Apoptosis is not the only evidence of RCD in sperm
freezing damage. Oxidative stress is one of the most important
causes of sperm freezing damage. However, in previous studies,
researchers only focused on the impact of apoptosis on sperm
during this period, ignoring other types of RCD. This limitation
may also be one of the reasons for the slow development of
sperm cryopreservation technology. Apoptosis is the only RCD
marker of sperm freezing damage. However, some studies suggest
that apoptosis may not be the main factor that causes death in
frozen-thawed sperm.
Z-VAD-FMK (Z-VAD) is a pan-caspase irreversible inhibitor that

inhibits RCD caused by the caspase family, including apoptosis
[90]. Ideally, Z-VAD could markedly reduce the death indicators of
frozen-thawed semen, including improved vitality and plasma
membrane integrity. However, the addition of Z-VAD before
freezing had no significant effect on the integrity of the plasma
membrane of frozen-thawed bovine sperm, and the addition of
Z-VAD after thawing had no significant effect on the viability of
bovine sperm [91]. In addition, similar conclusions were drawn
from the frozen semen of dogs; regardless of whether Z-VAD was
added before or after freezing, sperm motility and plasma
membrane integrity were not improved [92]. Annexin V/propi-
dium iodide (PI) double staining is a commonly used method for
detecting apoptosis [93] and is widely used in studies of sperm

freezing damage [94]. Annexin V can bind to PS, and PI is a nucleic
acid dye that only enters cells when the cell membrane is
damaged. Therefore, the Annexin V/PI double staining method
can label early apoptotic cells (Annexin V+, PI−) and late
apoptotic cells (Annexin V+, PI+). However, when cells undergo
a type of regulated necrosis other than apoptosis, only early
apoptotic cells can be used as apoptotic markers. This is because
when regulated necrosis occurs with loss of plasma membrane
integrity, Annexin V enters the cell and binds to PS [95, 96].
Therefore, the sperm sorted by Annexin V immunomagnetic
beads (Annexin V+) [97, 98] may not be entirely apoptotic. In
addition, the decrease in mitochondrial membrane potential in
frozen-thawed sperm may not be entirely caused by apoptosis,
and necrostatin-1 can also rescue the decrease in mitochondrial
membrane potential induced by oxidative stress [99]. Moreover,
DNA fragmentation, as a marker of late apoptosis, does not show
significant changes during sperm cryopreservation and thawing
[60, 100]. It is important to clarify that, whereas lipid peroxidation
may trigger sperm apoptosis, the process of apoptosis itself does
not induce lipid peroxidation [55].

Sperm freezing damage and ferroptosis
The response to oxidative stress is a key pathway determining the
fate of cells. Among the factors that cause oxidative stress in cells,
oxidative modification of lipids in biological membranes, espe-
cially lipid peroxidation, is an important regulator of cell fate.
Widespread lipid peroxidation leads to cell death through a type

Fig. 2 Potential mechanisms of apoptosis in sperm freezing damage. Currently, the triggering factors of apoptosis during sperm
cryopreservation remain elusive. We hypothesize that they may be associated with oxidative stress in mitochondria and the products of lipid
peroxidation.
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of RCD called “ferroptosis” [101]. Although the term “ferroptosis”
has not yet been mentioned in studies of sperm freezing damage,
sperm possess many prerequisites for inducing ferroptosis, and
changes in some key indicators are also reported in relevant
research.

Ferroptosis. Ferroptosis is a newly discovered type of RCD
characterized by a lethal level of iron-dependent lipid peroxida-
tion, which is associated with the oxidation of polyunsaturated
fatty acids bound to phospholipids (PUFA-PLs) on the biological
membrane [36, 55, 56]. Oxidation-reduction and iron regulation
comprise the central framework of ferroptosis [55], which is
independent of the caspase family and the necrosome, and
manifest as a necrotic morphology [36]. The resistance of cells to
ferroptosis is mainly reflected by their ability to scavenge
membrane lipid peroxides. Solute carrier family 7member 11
(SLC7A11)-reduced glutathione (GSH)-glutathione peroxidase 4
(GPX4) is the main regulator of ferroptosis [55].
GPX4 is a selenoprotein that uses GSH to reduce oxidized PUFA-

PLs and inhibit ferroptosis [102]; the synthesis of GSH requires the
uptake of cystine by SLC7A11. Therefore, GPX4 and SLC7A11 are
also major targets for inducing cell ferroptosis [36, 103, 104]. In
addition, independent anti-ferroptosis mechanisms of GPX4 have
been discovered in recent years. Coenzyme Q10 (CoQ10) is the
second endogenous mechanism of resistance to ferroptosis and
exists throughout the entire biological membrane. Reduced CoQ10

can reduce lipid peroxides through self-oxidation, and then
ferroptosis suppressor protein 1 regenerates reduced CoQ10

through NADPH [105, 106]. The oxidation of PUFA-PLs is driven
by the formation of hydroxyl radicals through the Fenton reaction
between Fe2+ and H2O2 [107, 108], which depends on the
concentration of the labile iron pool (LIP) in cells [109]. Iron
regulation is the key to ferroptosis. On one hand, Fe3+ binds to
transferrin and enters the cell membrane via transferrin receptor 1,
subsequently being released into the cytoplasm [110–116]. On the

other hand, ferritin bound to Fe3+ forms autophagosomes via
microtubule-associated protein 1 light chain 3 (LC3) and
autophagy-related proteins 5 and 7 (ATG5/7) and combines with
lysosomes to form autophagosomes. Relevant enzymes degrade
proteins and release Fe3+, leading to an increase in LIP
concentration and LIP accumulation, which triggers ferroptosis
[117].

Key evidence of ferroptosis in sperm freezing damage. The mature
sperm plasma membrane is abundant in polyunsaturated fatty
acids (PUFAs), which not only maintain membrane fluidity but are
also susceptible to oxidation. Consequently, membrane lipid
peroxidation serves as a significant indicator of sperm freezing
damage and may be associated with the Fenton reaction
[118–122] (Fig. 3). Trolox and deferoxamine (DFO) are widely
used inhibitors in ferroptosis research. Trolox can reduce lipid
peroxides, whereas DFO chelates free iron ions, thereby decreas-
ing LIP levels and suppressing the Fenton reaction [123]. The
addition of Trolox to diluents safeguards the quality of frozen
semen from both healthy individuals and patients with oligos-
permia [124] and also improves the plasma membrane integrity,
acrosome integrity, and mitochondrial membrane potential of
thawed rabbit semen [125]. Trolox also provides greater structural
integrity (plasma membrane and mitochondria) and motility to
frozen-stored ram spermatozoa [126]. In studies involving the
induction of sperm oxidation models, DFO has been able to rescue
sperm motility and reduce lipid peroxidation levels [127]. When
Trolox and DFO are administered simultaneously, sperm motility
parameters that are reduced during oxidative stress are signifi-
cantly improved by up to 20% [128]. Additionally, α-lipoic acid
(ALA) is an antioxidant widely used in sperm diluents that
enhances the quality of thawed semen in humans [129, 130] and
goats [131]. Interestingly, ALA is also considered a ferroptosis
inhibitor, inhibiting ferroptosis by scavenging free radicals and
chelating free iron ions [132, 133].

Fig. 3 Potential mechanisms of ferroptosis in sperm freezing damage. The crucial regulatory components of ferroptosis, as well as the
effects of ferroptosis-related inhibitors and activators on sperm, have been elucidated by numerous studies. Therefore, the role of ferroptosis
in sperm freezing damage deserves further attention.
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The redox and iron regulatory pathways of ferroptosis play
crucial roles in the process of sperm cryopreservation (Fig. 3). The
reduction of membrane lipid peroxides by GPX4 utilizing GSH is
essential for thawed sperm survival [134]. The expression level of
GPX4 in fresh semen can predict the quality of frozen sperm [135],
and GSH content decreases during sperm freezing [136]. The
synthesis of GSH in spermatozoa relies on the transport of cystine
by SLC7A11 rather than the transsulfuration pathway [137].
Therefore, in addition to adding GSH to the diluent, the
supplementation of cystine and cysteine can also significantly
improve the quality of cryopreserved semen [137–141]. The
beneficial effects of CoQ10 on sperm cryopreservation have been
widely validated, particularly by a recent study demonstrating that
thawed human spermatozoa exhibit a significant increase in
necrotic cells that were rescued by exogenous CoQ10 addition
[142]. Sun et al. [143] conducted a proteomic analysis of
spermatozoa from dairy goats with different freezability and
found that differentially expressed proteins were enriched in the
ferroptosis pathway. Interestingly, ferritin expression was lower in
the high-freezability group than in the low-freezability group. It is
possible that when spermatozoa are exposed to oxidative stress,
Prominin2 promotes the loading of ferritin into multivesicular
bodies and its subsequent extracellular release via exosomes,
serving as a mechanism driving cellular resistance to ferroptosis
and avoiding severe ferroptosis levels [144].
Interestingly, research shows that dead sperm can be harmful to

live sperm [1, 145, 146]. Therefore, sperm freezing damage may
include the transmission of death from dead sperm in addition to

environmental factors [146]. Obviously, this transmissible death is
a type of RCD, but transmissibility is not a general characteristic of
apoptosis [147–152], as it can only occur under certain
circumstances [152–154]. In a model of cysteine starvation and
SLC7A11 inhibition-induced ferroptosis, somatic and cancer cells
exhibited comparable levels of ferroptosis propagation capacity
[147], which adds weight to the importance of ferroptosis in
sperm freezing damage.

Sperm freezing damage and other types of RCD
Current research on sperm freezing damage is still limited, and the
underlying mechanisms remain to be elucidated. Given that
oxidative stress is associated with various types of RCD in addition
to apoptosis and ferroptosis, necroptosis, cuproptosis, and
autophagy-dependent cell death (ACCD) may also be potential
areas of investigation (Fig. 4).

Sperm freezing damage and necroptosis. Necroptosis is a type of
regulated necrosis characterized by obvious necrosis morphology,
including cell swelling, plasma membrane rupture, and spillover of
intracellular components [3]. Activation of necroptosis is asso-
ciated with receptor-interacting serine/threonine kinase 1 and 3
(R1PK1/3) and mixed lineage kinase domain-like pseudokinase
(MLKL) [155–159]. Similar to apoptosis, necroptosis can also
induce cell death by detecting disturbances in the intracellular
and extracellular microenvironment through FAS and TRAIL-R
[160, 161]. In in vitro experiments, low concentrations of H2O2

usually induce apoptosis. However, as the concentration of H2O2

Fig. 4 Potential mechanisms of necroptosis, cuproptosis, and ADCD in sperm freezing damage. Although the roles of necroptosis,
cuproptosis, and ADCD in sperm freezing damage remain unclear, some studies suggest they could serve as potential targets for future
research.
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increases, RCD shifts from apoptosis to necroptosis [162].
Considering the surge of ROS during sperm cryopreservation,
we speculate that necroptosis is correlated with sperm freezing
damage, but there is currently no relevant research to verify this
speculation.
Caspase 8 serves as a switch between apoptosis and

necroptosis. When Caspase 8 is activated, it inhibits the
phosphorylation of RIPK1 and RIPK3, leading to apoptosis.
However, when Caspase 8 is inactivated, RIPK1 and RIPK3 mutually
activate their phosphorylation and subsequently activate down-
stream MLKL, triggering necroptosis [155, 156, 158, 163, 164].
Therefore, the inability of Z-VAD to rescue increased numbers of
frozen-injured sperm may not be a dose-dependent problem [91]
but may be due to the amplification of necroptotic signaling while
inhibiting apoptosis [165, 166]. Moreover, sperms, as a type of
highly metabolizing cell, produce a large amount of ROS in
mitochondria, which is necessary for necroptosis [167]. Although
there is currently no research on the effect of necroptosis on
sperm freezing damage, necroptosis occurs in sperm in some
male reproductive diseases. For example, varicocele, which causes
male infertility, seriously affects semen quality, and the expression
of RIPK1 and RIPK3 in the sperm of varicocele patients was
significantly increased compared to a control group [168]. In
addition, necrostatin-1 significantly improved the cryopreserva-
tion quality of spermatogonial stem cells [169], indicating that
male germ cells are prone to necrotic apoptosis during
cryopreservation.

Sperm freezing damage and cuproptosis. Similar to iron, copper
ions play a crucial role as an integral component of cells and
tissues in the male reproductive system. In relatively small
quantities, copper serves as an essential cofactor for numerous
biologically active molecules. However, its excessive accumulation
can lead to metabolic disturbances, potentially compromising
male fertility [170]. Cuproptosis, a type of cell death defined in
2022, primarily relies on the intracellular accumulation of copper
ions. These ions directly bind to lipidated proteins involved in the
tricarboxylic acid (TCA) cycle, resulting in their aggregation and
dysfunction, which in turn disrupts the TCA cycle and triggers
protein toxic stress, ultimately leading to cell death [171].
Certain studies on human sperm demonstrate a negative

correlation between copper content in seminal plasma and sperm
motility parameters [172, 173]. Knazicka et al. [174] point out that
high doses of Cu2+ have a negative impact on the motility and
mitochondrial activity of bull sperm. Roychoudhury et al. [175]
also show that excessive copper sulfate inhibits the motility and
membrane integrity of rabbit sperm, altering sperm morphology.
Similarly, Rebrelo et al. [176] observed similar results in human
sperm exposed to Cu2+ concentrations of 100 μg/mL. However,
the occurrence of cuproptosis during sperm cryopreservation
remains elusive. The degree of lipid peroxidation in sperm exhibits
a dose-dependent relationship with copper ion levels [177], which
is evidently associated with ferroptosis, suggesting two potential
pathways. On one hand, copper ions can generate hydroxyl
radicals through the Fenton reaction, driving lipid peroxidation
[178]. On the other hand, copper ions can induce autophagic
degradation of GPX4 to trigger ferroptosis [179]. Crucially, whether
copper ion overload occurs in sperm freezing damage remains to
be determined.

Sperm freezing damage and autophagy-dependent
cell death. Autophagy is a catabolic process that degrades
cytoplasmic substances through lysosomes, often serving as a
cellular response mechanism to stress, particularly oxidative stress
[180]. Autophagy is regarded as a double-edged sword, capable of
protecting cell survival by eliminating damaged organelles
yet also potentially leading to cell death [181]. The role of
autophagy in cell death can be categorized into two types: 1)

ACCD, which relies on autophagic mechanisms and manifests as
unrestricted degradation of cellular contents leading to cell
disruption, belonging to RCD; and 2) autophagy-mediated cell
death (AMCD), which depends on other types of RCD and serves
as a foundation for initiating other types of RCD [3, 182].
LC3 is a crucial component of the autophagy pathway. Upon

autophagy activation, LC3-I is lipidated and converted into LC3-II.
The ratio of LC3-II/LC3-I is widely used as a marker of autophagy
activation [181]. Under environmental stress conditions such as
incubation with H2O2, cooling at 4 °C, and the freeze-thaw process,
the ratio of LC3-II/LC3-I in sperm is upregulated, indicating the
activation of autophagy [183]. Interestingly, autophagy plays
different roles under different oxidative stress conditions. Blocking
autophagy in sperm exposed to H2O2 leads to deterioration in
sperm quality and metabolic parameters, as well as an increase in
cell death markers [184]. On the other hand, the use of autophagy
inhibitors such as chloroquine and 3-AM significantly improves the
survival rate of sperm stored at 4 °C for 96 hours and cryopre-
served in liquid nitrogen [183]. It is evident that maintaining
normal autophagy flux is crucial for sperm survival, and both
autophagy deficiency and excessive autophagy can lead to sperm
death. To attribute cell death to ADCD, the following criteria must
be met: 1) there must be an elevation of autophagic flux during
the cell death process; 2) the cell death process must be reversible
through genetic or pharmacological inhibition of autophagy; 3)
the death process must depend on at least two autophagy-related
molecules, thereby excluding the possibility of individual mole-
cules mediating cell death independently of autophagy; and 4)
the death process must not be accompanied by other forms of cell
death [182]. The elevation of autophagic flux and the rescue effect
of inhibitors suggest that ADCD occurs in sperm freezing damage.
However, CoQ10 can also rescue autophagy-mediated necrotic
cells in human thawed sperm [142]. Therefore, the relationship
between ADCD and sperm freezing damage requires further
elucidation, particularly in distinguishing ADCD from AMCD during
this process.

Crosstalk between different types of RCD in sperm
freezing damage
RCD is a major therapeutic target for various human diseases.
However, the therapeutic results of inhibiting the initiation of a
single RCD signal are sometimes unsatisfactory, which may be
related to the highly interconnected nature of signaling modules
of different types of RCD in addition to factors such as drug
delivery and dose effects [3, 185–188]. Therefore, in the study of
sperm freezing damage, it is not only necessary to distinguish
which RCD is the primary one but also to clarify the crosstalk
between different RCDs to maximize the quality of thawed sperm.
Lipid peroxidation not only acts as an executor of ferroptosis but
also induces apoptosis through its downstream products. The
overloading of copper ions can induce both cuproptosis and
ferroptosis. Necroptosis and apoptosis share a common upstream
activation pathway, with Caspase 8 serving as a switch between
pathways. Necroptosis can increase the intracellular ROS level,
which can lead to lipid peroxidation and increase the risk of
triggering ferroptosis. In addition, the connection between
different types of RCD includes Ca2+ levels and autophagy.

Relationship between Ca2+ and various types of RCD. Intracellular
Ca2+ homeostasis plays a crucial role in sperm, ensuring their
normal physiological state and fertilization capability by
regulating physiological functions closely related to sperm
quality and male fertility potential, such as motility, fertilization,
and the entire reproductive process. Besides massive cell death,
the presence of a certain proportion of sperm in hyperactivated
or acrosome-reacted states within thawed sperm is also a
hallmark of sperm freezing damage. Although these states are
necessary for sperm during the entire fertilization process, their
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premature occurrence can deplete energy and acrosomal
enzymes, rendering sperm unable to effectively perform their
tasks during fertilization and leading to fertilization failure. Such
alterations in physiological state depend on the sperm’s ability
to uptake extracellular Ca2+. Therefore, both depleting Ca2+

from the culture medium and adding the Ca2+ chelator EGTA to
the thawing solution can enhance the fertilization capacity of
thawed sperm [189, 190]. Within the female reproductive tract,
the intracellular Ca2+ flux in sperm is tightly regulated by
CatSper. An increase in intracellular Ca2+ flux, mediated by
CatSper, can induce sperm hyperactivation, acrosome reaction,
oocyte chemotaxis, and zona pellucida penetration during the
fertilization process [191]. However, the expression of CatSper is
reduced during sperm cryopreservation [192, 193], suggesting
that the elevation of Ca2+ flux in cryopreserved sperm is
independent of CatSper. Intriguingly, this may be associated
with the development of some types of RCD.
Elevated Ca2+ influx resulting in morphological changes such

as osmotic stress and cell rupture is a hallmark event in
regulated necrosis, including necroptosis and ferroptosis [3].
MLKL forms a homotrimer through its amino-terminal coiled-
coil domain, localizes to the cytoplasmic membrane during
TNF-induced necroptosis, and activates downstream TRPM7 to
mediate Ca2+ influx [194]. Similar to necroptosis, the increase in
Ca2+ flux in cells undergoing ferroptosis precedes cell rupture,
which is associated with the formation of nanoscale pores on
the plasma membrane; however, the molecular mechanism
underlying the formation of these pores remains unclear
[147, 195, 196]. Recent studies show that treatment of sperm
with different concentrations of the SLC7A11 inhibitor sulfasa-
lazine (SS) significantly affects their motility [137]; in fresh horse
sperm, low concentrations of SS enhance motility, exhibiting a
phenomenon similar to hyperactivation, whereas high concen-
trations lead to decreased motility. However, for cryopreserved
sperm, motility is reduced regardless of inhibitor concentration.
Therefore, some phenotypic changes in cryopreserved sperm
resemble the development of regulated necrosis, progressing
from normal sperm to viable sperm with elevated intracellular
Ca2+ flux without rupturing (undergoing hyperactivation,
acrosome reaction, etc.) to dead sperm. Interestingly, intracel-
lular Ca2+ overload can trigger endogenous apoptosis, poten-
tially related to the mitochondria. Pretreatment of sperm with
Ru360 to block Ca2+ entry into mitochondria reduces Caspase 3
activation and phosphatidylserine externalization induced by
H2O2 stimulation [197]. Similarly, FAS-driven exogenous apop-
tosis is also associated with an increase in cytosolic Ca2+

[198–200].

Relationship between AMCD and various types of RCD. Autophagy
determines the cellular fate of sperm under various environmental
stresses. Exploring how autophagy induces other types of RCD
and serves as a switch between different RCDs is crucial for
understanding sperm freezing damage. The relationship between
autophagy and apoptosis in sperm cryopreservation remains
unclear. One possibility is that autophagy suppresses apoptosis, as
activation of autophagy can enhance sperm motility, reduce the
expression of mitochondrial outer membrane translocase
TOMM20 and PINK1, and inhibit the activation of Caspase 3 and
7, thus reducing apoptosis and promoting cell survival [201].
Another possibility is that autophagy promotes apoptosis, which is
a crucial step in the process of cell death, occurring mainly
through two orderly mechanisms. First, autophagy directly
induces cell death by phagocytosing apoptotic molecules or
organelles such as mitochondria. In this process, specific
autophagy-related proteins, like Fas-associated phosphatase 1
(Fap-1) and ATG5, interact with molecules in the apoptotic
signaling pathway to regulate the initiation and execution of
apoptosis. For instance, the degradation of Fap-1 enhances the

activity of the Fas receptor, thereby promoting the transmission of
apoptotic signals [202]; additionally, truncated fragments of ATG5
can directly act on mitochondria, driving the apoptotic process by
disrupting mitochondrial function [203]. Second, autophagy
molecules like ATG12 interfere with cellular survival mechanisms
by directly binding to apoptotic molecules, thus triggering
apoptosis [204]. This direct interaction impairs the function of
anti-apoptotic proteins such as Bcl-2 and Mcl-1, relieving their
inhibitory effect on apoptosis. This mechanism further intensifies
the apoptotic tendency of cells, ensuring the smooth execution of
the apoptotic program.
In necroptosis, the assembly and activation of the necrosome

are crucial, with its core consisting of RIPK1, RIPK3, and MLKL.
Autophagy machinery not only serves as a scaffold for the
necrosome but also indirectly promotes the progression of
necroptosis by degrading the apoptotic inhibitors c-IAP1 and
c-IAP2 [205]. As sperm require a significant amount of energy to
maintain their motility, sperm viability is generally positively
correlated with ATP levels. Interestingly, autophagy can function
as a switch between apoptosis and necroptosis, similar to Caspase
8, and this depends on the intracellular ATP content. When ATP
reserves decrease, autophagy tends to trigger necroptosis,
whereas when ATP is sufficient, autophagy may promote
apoptosis [206, 207]. Additionally, autophagosome membranes
and their associated proteins, such as p62, are also involved in this
switching mechanism, regulating the localization and activity of
molecules related to apoptosis and necroptosis and thereby
facilitating the transition between different cell death modes
[208].
Mitophagy may serve as one of the primary pathways for

AMCD during sperm cryopreservation. Mitochondria, the pri-
mary source of energy for sperm, play a crucial role in
maintaining sperm function through their quality control.
Mitophagy, as an important means of quality control, is closely
associated with sperm oxidative damage [209]. On one hand,
mitophagy helps maintain mitochondrial homeostasis in sperm
during cryopreservation, thereby suppressing apoptosis [201].
On the other hand, mitophagy may disrupt mitochondrial
energy production, leading to the generation of excessive ROS
in sperm during H2O2 incubation and the freeze-thaw process,
which can then induce apoptosis and necrosis—the latter which
can be rescued by CoQ10 [142]. Although the role of
mitochondria in ferroptosis remains controversial, mitophagy
may play a pivotal role in ferroptosis induction [210]. For
instance, mitochondrial autophagy effectors such as PINK1 and
DRP1 positively regulate ferroptosis [211]. However, the specific
mechanisms underlying how mitochondrial autophagy affects
the duration and intensity of lipid peroxidation in ferroptosis
require further investigation. Additionally, mitochondrial fusion
mediated by the fusion proteins MFN1 and MFN2 can also
promote kinase-induced ferroptosis in certain situations [212],
further highlighting the complexity of the interaction between
mitochondrial autophagy and ferroptosis. In many cases, the
occurrence of ferroptosis is highly dependent on autophagy
mechanisms, including ferritinophagy, mitochondrial autop-
hagy, and lipophagy. This type of ferroptosis is referred to as
autophagy-dependent ferroptosis [213].

CONCLUDING REMARKS
The essence of sperm freezing damage is sperm death. This
review summarizes the types of cell death that may occur after
sperm freezing damage and analyzes the correlation between
sperm freezing damage and ACD and RCD based on their
characteristics. Overall, understanding the role of each type of
RCD in sperm freezing damage may be the key to improving the
quality of thawed semen. This review provides a feasible direction
for future research on frozen semen.
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