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Roles of long noncoding RNAs in human inflammatory diseases
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Chemokines, cytokines, and inflammatory cells mediate the onset and progression of many diseases through the induction of an
inflammatory response. LncRNAs have emerged as important regulators of gene expression and signaling pathways. Increasing
evidence suggests that lncRNAs are key players in the inflammatory response, making it a potential therapeutic target for various
diseases. From the perspective of lncRNAs and inflammatory factors, we summarized the expression level and regulatory mechanisms
of lncRNAs in human inflammatory diseases, such as cardiovascular disease, osteoarthritis, sepsis, chronic obstructive pulmonary
disease, asthma, acute lung injury, diabetic retinopathy, and Parkinson’s disease. We also summarized the functions of lncRNAs in the
macrophages polarization and discussed the potential applications of lncRNAs in human inflammatory diseases. Although our
understanding of lncRNAs is still in its infancy, these data will provide a theoretical basis for the clinical application of lncRNAs.
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FACTS

● Inflammatory response caused by chemokines, cytokines, and
inflammatory cells mediates the onset and progression of
many diseases.

● LncRNAs are a class of RNA molecules that are longer than 200
nucleotides that control inflammation-related gene expression
at chromatin modification, mRNA stability, miRNA sponge, and
signaling pathways.

● LncRNAs can regulate macrophage polarization.

OPEN QUESTIONS

● What are the mechanisms of lncRNAs and inflammatory
factors on human inflammatory diseases?

● How are lncRNAs involved in the progression of human
inflammatory diseases?

● How can we target lncRNAs to alleviate inflammatory
response in human disease?

INTRODUCTION
Inflammation is an adaptive response triggered by noxious stimuli
and conditions, such as infection and tissue injury. Participation of
chemokines, cytokines, and different inflammatory cells is
required to progress this complex protective mechanism to
control harmful factors and eliminate damaged tissues [1].
However, sustained and uncontrolled immune reactions promote
chronic inflammation and lead to chronic diseases [2]. Many
studies have shown a close link between inflammation and many
diseases, including cardiovascular disease, osteoarthritis, sepsis,

chronic obstructive pulmonary disease, asthma, acute lung injury,
diabetic retinopathy, and Parkinson’s disease. Many studies have
shown that chemokines and cytokines involve in the progress of
the diseases, such as IL-1β, IL-6, IL-8, IL10, TNF‑α, and other
molecules. Despite recognizing the importance of inflammatory
dysregulation in chronic diseases, the underlying mechanisms of
inflammatory regulation remain poorly understood [3].
Long noncoding RNAs (LncRNAs) have emerged as potential

key regulators of the inflammatory response by modulating the
transcriptional control of inflammatory genes [4]. LncRNAs are a
class of RNA molecules longer than 200 nt believed to be a
byproduct of RNA polymerase II transcription with no biological
function. However, recent studies have shown that lncRNAs have
a conserved secondary structure and can interact with DNA, RNA,
and proteins [5, 6]. LncRNAs are classified according to their
functions: (a) signal lncRNAs, which are specifically associated
with signaling pathways and regulate downstream gene tran-
scription; (b) decoy lncRNAs, which interact with transcription
factors and remove them from chromatin; thereby influencing
transcriptional regulation; (c) guide lncRNAs, which bind to
protein complexes with regulatory effects or enzymatic activities
and direct them to target gene promoters or specific genomic
sites to regulate downstream signaling events and gene
expression; (d) scaffold lncRNAs, a ‘central platform’ connecting
various protein complexes, which are directed to a specific
genomic location or target gene promoter region to regulate
gene expression [7]. Specifically, lncRNAs can regulate a variety of
biological processes, including genetic imprinting [8, 9], chroma-
tin modification, RNA processing [10, 11], miRNA sponge [12],
mRNA degradation [13], and protein translation [14]. MiRNA
sponge, also known as competing endogenous RNA (ceRNA), can
regulate the expression of target genes by competitively binding
to miRNAs [15] (Fig. 1).

Received: 6 July 2023 Revised: 30 April 2024 Accepted: 2 May 2024

1Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001 Shanxi, China. 2Shanxi Province Clinical
Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001 Shanxi, China. 3Department of
Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China. ✉email: zhangyl@sxent.org; zcmsxmu@sxent.org

www.nature.com/cddiscovery

Official journal of CDDpress

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-02002-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-02002-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-02002-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-02002-6&domain=pdf
http://orcid.org/0000-0002-0871-1363
http://orcid.org/0000-0002-0871-1363
http://orcid.org/0000-0002-0871-1363
http://orcid.org/0000-0002-0871-1363
http://orcid.org/0000-0002-0871-1363
https://doi.org/10.1038/s41420-024-02002-6
mailto:zhangyl@sxent.org
mailto:zcmsxmu@sxent.org
www.nature.com/cddiscovery


In this review, we summarized the data on the expression level
and regulation mechanisms of lncRNAs and inflammatory factors
in human inflammatory diseases, focusing on transcription
regulation, mRNA stability, miRNA sponge, and signaling path-
ways. Although our understanding of lncRNAs is still in its infancy,
these examples may provide meaningful insights regarding the
role of lncRNAs in human inflammatory diseases.

ROLES OF LNCRNAS IN CARDIOVASCULAR DISEASE
Atherosclerosis and coronary artery disease (CAD) are primary
inflammatory cardiovascular diseases that have a significant
impact on the global health of humans [16, 17]. Recent studies
have elucidated the regulatory mechanisms of lncRNAs and
inflammatory factors in atherosclerosis and CAD (Fig. 2).

Transcription regulation
Oxidized LDL (ox-LDL) plays a crucial role in atherosclerosis by
acting on multiple cells, such as endothelial cells (ECs), macro-
phages, and smooth muscle cells (SMCs) [18]. Ox-LDL could
stimulate the inflammatory response in ECs and SMCs by
increasing the production of VCAM-1 (vascular cell adhesion
molecule-1), MCP-1 (monocyte chemotactic protein 1), IL-1β, IL-6,
IL-8, IL-18, and TNF-α, while decreasing the levels of lncRNA-FA2H-

2. FA2H-2 could downregulate MLKL expression by interacting
with the promoter of the MLKL gene. FA2H-2 downregulation or
MLKL overexpression can significantly aggravate inflammatory
responses. The results suggested that FA2H-2 and MLKL may be
potential therapeutic targets in atherosclerosis [19]. Khyzha et al.
also found that lncRNA-CCL2 was upregulated in atherogenesis
patients and inflammatory ECs. LncRNA-CCL2 increases CCL2
mRNA levels by interacting with the RNA-binding protein
HNRNPU, associates with transcription initiation, and promotes
vascular inflammation [20]. Additionally, lncRNA HIF1A-AS2 was
highly expressed in atherosclerotic mice. HIF1A-AS2 knockdown
could attenuate inflammatory response by blocking USF1 binding
to the ATF2 promoter region in ox-LDL-exposed ECs, SMCs, and
HCAECs [21].

Regulation of mRNA stability
Numerous RNA-binding proteins (RBPs) may influence the metabolic
processes of target RNAs, including splicing, localization, stability,
and translation [22]. Human antigen R (HuR) is one of the most
studied RBPs with a regulatory impact on RNA metabolism [23]. The
lncRNA AK136714 was elevated in the plaque and plasma of the
atherosclerosis patients. AK136714 knockdown could decrease IL-1β,
IL-6, and TNF-α levels by binding directly to HuR to maintain mRNA
stability, thereby protecting the endothelial barrier [24].

Fig. 1 The cellular mechanisms of lncRNAs. 1) LncRNA has a conserved secondary structure and can interact with DNA, RNA, and proteins; 2)
LncRNAs are classified as a Signal lncRNAs, which are specifically associated with signaling pathways and regulate downstream gene
transcription; b decoy lncRNAs, which interact with transcription factors and remove them from chromatin; thereby influencing transcriptional
regulation; c guide lncRNAs, which bind to protein complexes with regulatory effects or enzymatic activities and direct them to target gene
promoters or specific genomic sites to regulate downstream signaling events and gene expression; d scaffold lncRNAs, a ‘central platform’
connecting various protein complexes, which are directed to a specific genomic location or target gene promoter region to regulate gene
expression. 3) LncRNA can participate in the regulation of a variety of biological processes, RNA processing, miRNA sponge (ceRNA), mRNA
stability, and protein translation.
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Regulation of miRNA sponge
Overexpression of the lncRNA MALAT1 could promote the
production of IL-6, IL-8, and TNF-α through regulation of the
miR-590/STAT3 axis, thereby enhancing the inflammatory activ-
ities of ECs [25]. However, MALAT1 knockdown could aggravate
atherosclerotic lesion formation in mice via regulating miR-503/
CXCL10 [26]. This suggested that the same lncRNA has different
mechanisms of action in various species. Wang et al. also found
that lncRNA NEAT1 was significantly increased in atherogenesis
patients and ox-LDL-treated THP-1 cells. NEAT1 knockdown could
decrease IL-1β, IL-6, COX2, and TNF-α protein levels by targeting
miR-342-3p [27]. Additionally, lncANRIL and H19 were highly
expressed in CAD patients. ANRIL promotes the expression of IL‐6,
IL‐8, NF‐κB, TNF‐α, ICAM‐1, VCAM‐1, and COX‐2 by regulating miR‐
181b/NF‐κB in HCAECs [28]. H19 knockdown alleviated cell
inflammation by regulating the miR-20a-5p/HDAC4 axis [29].
Meanwhile, abdominal aortic aneurysm (AAA) is recognized as a
chronic vascular inflammatory disease. H19 was upregulated in
AAA tissue samples from mice. H19 may promote AAA formation
by regulating the let-7a/IL-6 axis [30].

Regulation of signal pathway
LncRNA-MAP3K4 expression was upregulated in the vessel walls.
LncRNA-MAP3K4 knockdown reduced the expression of IL-1β,
TNF-α, and COX2 expression through the p38 MAPK signaling
pathway in ECs [31]. However, lncRNA NEXN-AS1 was decreased in
human atherosclerotic plaques. Overexpression of NEXN-AS1 may
inhibit TLR4 oligomerization, the NF-κB pathway, and inflamma-
tory response in ECs [32].

Uncertain regulatory mechanisms
Li et al. found that lncRNA ENST00000416361 is highly expressed
in CAD patients. ENST00000416361 knockdown markedly down-
regulated IL-6 and TNF‑α levels in human umbilical vein
endothelial cells, but the specific underlying mechanism has not
been elucidated [33]. In summary, lncRNA could regulate
inflammatory factors in atherosclerosis and CAD through complex
regulatory mechanisms and serve as a new therapeutic target.

ROLES OF LNCRNAS IN OSTEOARTHRITIS DISEASE
In the elderly, osteoarthritis (OA) is a prevalent degenerative joint
disease. The mechanisms of inflammation in bone and joint tissue
are complex [34]. Recent research indicates that lncRNA con-
tributes to the development of osteoarthritis (Fig. 3).

Regulation of miRNA sponge
LncDLEU1, LOXL1-AS1, and LINC00265 were upregulated in OA
specimens and OA chondrocytes. DLEU1 could promote the
proliferation of chondrocytes and increase the secretion of IL-6, IL-
8, and TNF-α by regulating miR-671-5p [35]. LOXL1-AS1 silencing
attenuated proliferation and inflammation via targeting miR-423-
5p/KDM5C in chondrocytes [36]. Similarly, LINC00265 knockdown
inhibited OA chondrocyte apoptosis and inflammation by acting
as a miR-101-3p sponge [37].
IL-1β-treated OA chondrocytes were frequently used as a

model for chondrocyte injury. LINC02288, lncRNA SNHG14, and
MALAT1 were upregulated in OA specimens and IL-1β-treated
OA chondrocytes. Linc02288 knockdown significantly reduced

Fig. 2 Roles of lncRNA in cardiovascular disease.
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the apoptosis of OA chondrocytes and the production of pro-
inflammatory cytokines by targeting the miR-374a-3p/RTN3 axis.
Similarly, SNHG14 knockdown could inhibit cell apoptosis and
decrease COX2, iNOS, TNF-α, and IL-6 expression by targeting
miR124-3p [38, 39]. MALAT1 overexpression could modulate IL-
1β-induced chondrocyte viability and cartilage ECM degradation
by regulating miR-145/ADAMTS5 axis [40]. Additionally, LPS-
stimulated chondrocytes were also used as a model for OA.
LncRNA HOTAIR was upregulated in OA cartilages and LPS-
stimulated CHON-001 chondrocytes. HOTAIR depletion inhibited
LPS-induced apoptosis and inflammation by regulating the miR-
1277-5p/SGTB pathway [41]. Nevertheless, many low-expressed
lncRNAs also play key roles in the development of OA. MEG3 and
NEAT1 were downregulated in LPS-treated chondrocytes. MEG3
overexpression resulted in cell proliferation and inhibited
inflammation via targeting miR-141 and the AKT/mTOR signal-
ing pathway [42]. NEAT1 can inhibit the expression of
inflammatory cytokines, osteogenesis‑related proteins, and
NLRP3 [43]. However, the underlying specific mechanism of
NEAT1 and NLRP3 in OA has not been elucidated and requires
further investigation. In conclusion, lncRNAs can regulate the
expression of inflammatory factors and may represent a new
therapeutic target in OA.

ROLES OF LNCRNAS IN SEPSIS
Sepsis is an unusual systemic reaction to a common infection,
representing a pattern of immune system response to injury [44].
Increasing evidence suggests that lncRNAs are involved in the
development of sepsis (Fig. 4).

Regulation of miRNA sponge
LPS-treated HK2 cells can generally simulate sepsis-induced AKI.
The lncRNA NKILA and TapSAKI were upregulated in LPS-treated
HK2 cells. NKILA silencing protected HK2 cells against LPS-induced
impairments by regulating the miR-140-5p/CLDN2 axis. TapSAKI
knockdown could reduce IL-6 and TNF-α by regulating the miR-
22/PTEN axis [45, 46]. Additionally, NEAT1 was upregulated in LPS-
treated RAW264.7 cells. Overexpression of NEAT1 may aggravate
inflammation by modifying the miR-495-3p/STAT3 and miR-211/
PI3K/AKT axes [47]. However, TUG1 was downregulated in LPS-
treated PMVECs. Overexpression of TUG1 improved sepsis-
induced pulmonary injury, apoptosis, and inflammation via
targeting miR-34b-5p/GAB1 [48].

Regulation of mRNA stability
LIN28 is an RNA-binding protein that participates in many
biological processes [49]. Ni et al. found that HOTAIR increased
IL-1β, IL-6, and TNF-α levels by binding lin28 to enhance
PDCD4 stability in LPS-induced H9C2 cells. HOTAIR knockdown
alleviated cardiac function injury and reduced secretion of
inflammatory factors in septic cardiomyopathy [50].

Uncertain regulatory mechanism
Yang et al. found that LncRNA CRNDE and UCA1 were highly
expressed in sepsis patients. CRNDE is positively correlated with
IL-1β, IL-8, and TNF-α. CRNDE may induce an inflammatory
response in sepsis by directly regulating the TLR3/NF‐κB
pathway; however, functional experiments are necessary to
confirm this hypothesis [51]. UCA1 positively correlates with IL-6,
IL-17, and TNF-α, but the exact mechanism is unknown. Wang

Fig. 3 Roles of lncRNA in osteoarthritis disease.
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et al. found that UCA1 directly regulated several miRNAs and
pathways, such as miR‐122 and the PI3K/AKT pathway [52, 53].
This implied that the specific mechanism of UCA1 in sepsis still
needs validation. Similarly, lncRNA Gm33647 was downregu-
lated in alveolar macrophages. The knockdown of Gm33647
could increase the expression of IL-6, IL10, and TNF-α. The
precise functions of Gm33647, however, require further inves-
tigation [54]. In summary, lncRNAs can regulate the expression
of inflammatory factors and may represent a new therapeutic
target in sepsis.

ROLES OF LNCRNAS IN RESPIRATORY INFLAMMATORY
DISEASES
Respiratory diseases are primarily caused by harmful gases and
particles, such as particulate matter (PM2.5) and cigarette smoke
extract (CSE). Chronic obstructive pulmonary disease (COPD),
asthma, and pneumonia are common respiratory diseases partly
caused by inflammatory responses [55]. Recent studies have
shown that lncRNAs contribute to the development of respiratory
diseases (Fig. 5).

Regulation of transcription
Long-term exposures to PM2.5 can cause or aggravate respiratory
tract inflammation. Tan et al. found that LOC101927514 was
upregulated in human bronchial epithelial cells (HBECs) treated
with PM2.5. The nucleus-localized LOC101927514 promoted the
transcription of IL-6 and IL-8 by binding p-STAT3, thereby
aggravating the inflammatory state of the cells [56].

Regulation of miRNA sponge
LncRNA RP11-86H7.1 was also significantly upregulated in PM2.5-
treated HBECs. RP11-86H7.1 could promote the inflammatory
response by miR-9-5p/NFKB1 axis [57]. Additionally, lncRNA MEG3
was upregulated in COPD patients. MEG3 knockdown alleviated CSE-
triggered apoptosis and inflammation (IL-1β, IL-6, and TNF-α) by
targeting miR-218 [58]. While SNHG5 expression was low in COPD
tissues. Overexpression of SNHG5 could weaken the effects of CSE on
proliferation, apoptosis, and IL-1β, IL-6, and TNF-a levels in 16HBE cells
via miR-132/PTEN axis [59]. Additionally, acute lung injury (ALI) is a
life-threatening syndrome characterized by excessive inflammation
and apoptosis of alveolar epithelial cells. SNHG16 was upregulated in
the LPS-treated WI-38 cell model. SNHG16 could mediate the JNK and
NF-κB pathways by the miR-146a-5p/CCL5 axis in acute pneumonia
[60]. In contrast, lncGAS5 was downregulated in the lung tissues in
LPS-induced acute lung injury (ALI) mice and LPS-treated MLE-12 cells.
GAS5 suppresses inflammatory responses and apoptosis of alveolar
epithelial cells by targeting miR-429/DUSP1 axis [61].
These data suggested that lncRNAs can regulate the expression

of inflammatory factors and may represent a new therapeutic
target for respiratory inflammatory diseases.

ROLES OF LNCRNAS IN DIABETIC RETINOPATHY
Diabetic retinopathy (DR) is a serious complication of diabetes that
can lead to blindness [62]. Inflammation and apoptosis are
hallmarks of DR, but their regulatory mechanisms are poorly
understood. Herein, we summarized the lncRNA regulatory
mechanism in DR (Fig. 6).

Fig. 4 Roles of lncRNA in sepsis disease.
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Regulation of miRNA sponge
High glucose (HG)-induced cells were frequently used to establish
DN cell models. LncHCP5, lncNEAT1, lncOGRU, and lncKCNQ1OT1
were upregulated in serum samples of diabetic nephropathy and
HG-treated HGMCs. HCP5 knockdown may weaken inflammation
by modulating the miR-93-5p/HMGA2 [63]. NEAT1 knockdown
may inhibit DN progression through the miR-423-5p/GLIPR2 axis
[64]. Similarly, OGRU knockdown ameliorated DR progression via
miR-320/USP14 [65]. KCNQ1OT1 knockdown suppressed prolifera-
tion, inflammation, and oxidative stress via the miR-147a/SOX6
axis [66].

Regulation of signal pathway
HG may increase IL-1β, IL-6, and TNF-α levels in cells, whereas DR
and high glucose (HG)-induced cells elicit a decrease in lncRNA
MEG3. MEG3 overexpression can inhibit apoptosis and inflamma-
tory response by inhibiting the NF-κB signaling pathway [67].
Moreover, transforming growth factor-β1 (TGF-β1) significantly
contributes to renal fibrosis. TGF-β1 induced HK2 cells served as
the cell model. LncATB was highly expressed in TGF-β1 induced
HK2 cells. ATB knockdown may inhibit inflammation through the
SMAD2/3 signaling pathway [68].

Uncertain regulatory mechanisms
LncRNA GAS5 was highly expressed in HG‑treated cells. GAS5 may
suppress apoptosis and inflammation by regulating SERCA2b.
However, the specific mechanism of GAS5 requires further
investigation [69]. These findings suggested that lncRNAs can
regulate the expression of inflammatory factors and may
represent a new therapeutic target for DR.

ROLES OF LNCRNAS IN PARKINSON’S DISEASE
Parkinson’s disease (PD) is an age-related neurodegenerative
disease [70]. The accumulated evidence confirms that lncRNA is
involved in the progress of PD (Table 1).

Regulation of miRNA sponge
Serum SNHG7 levels were upregulated in PD patients. Down-
regulation of SNHG7 decreased IL-6, IL-1β, and TNF-α levels by
regulating miR-425-5p/TRAF5/NF-KB signaling pathway [71].
Interestingly, physical activity contributed to the elevated expres-
sion of HOTAIR in APP/PS1 mice. HOTAIR inhibited the expression
of IL-1β, IL-6, and TNF-α by targeting miR-130a-3p. This implies
that moderate exercise can effectively reduce the symptoms of
Alzheimer’s disease [72].

Uncertain regulatory mechanisms
MALAT1 and TUG1 lncRNAs were upregulated in the serum of PD
patients. MALAT1 could increase the secretion of IL-1β, IL-6, and
TNF-α in LPS-treated PC12 cells and induce an inflammatory
response [73]. The underlying mechanism may involve sponging
miR155, miR124, or targeting NF-κB; however, more convincing
evidence is required [74, 75]. Similarly, the downregulation of
TUG1 significantly inhibited the expression of IL-6, IL-1β, and TNF-
α and improved the motor coordination of PD mice, although the
precise mechanism underlying TUG1 remains unknown [76]. The
data suggested that lncRNAs are involved in the inflammatory
response and may represent a potential therapeutic target.
Additional potentially functional lncRNAs have yet to be
identified in PD.

Fig. 5 Roles of lncRNA in respiratory inflammatory disease.
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ROLES OF LNCRNAS IN MACROPHAGE POLARIZATION
In short, lncRNAs and inflammatory factors play important roles in
the occurrence and development of human diseases, and the vast
majority of inflammatory factors are secreted by macrophages. It is
necessary to introduce how lncRNAs regulate the polarity of
macrophages to secrete corresponding inflammatory factors. Macro-
phages are the fundamental inflammatory cells. In the early stages of
tissue injury, macrophages initiate inflammation and manifest as an
M1 type to remove exogenous threats. In the later stages of
inflammation, M2 macrophages are polarized, recognize phosphati-
dylserine on apoptotic cells, eliminate apoptotic cells, and control
inflammation [77–80]. Recent studies have found that lncRNAs are
involved in the dynamic transformation of macrophages (Fig. 7).

Regulation of transcription
LncRNA Dnm3os and Cox2 were upregulated in monocytes. By
modulating histone H3K9-acetylation, overexpression of Dnm3os
induces inflammation, M1 polarization, and immune-related gene
expression [81]. Cox2 overexpression may enhance IL-6 level and
several critical regulators of M1 polarization through interaction
with hnRNP-A2/B1 [82]. However, GAS5 and PTPRE-AS1 were
negatively associated with the polarization of M2 macrophages.
GAS5 suppresses TRF4 transcription by recruiting the polycomb
repressive complex 2 (PRC2), inhibiting M2 polarization in
demyelinating diseases [83]. PTPRE-AS1 knockdown enhanced
M2 macrophage activation by binding directly to WDR5 to
modulate H3K4me3 of the PTPRE promoter [84].

Regulation of mRNA stability
Li et al. found that lnc-BAZ2B was upregulated in monocytes and
asthmatic children. Lnc-BAZ2B could promote the mRNA stability

of BAZ2B and the transcription of IRF4, thereby promoting the
activation of M2 macrophages in asthma [85].

Regulation of signal pathway
Exosomes have emerged as important M1 polarization signaling
mediators. Exosomal H19 significantly promotes the secretion of
IL-6 through CCL-2/CCR-2 signaling pathways and enhances the
activation of M1 polarization in Kupffer cells [86]. Du et al. found
that Mirt2 was positively associated with M2 macrophage
polarization. Mirt2 is associated with the ubiquitin-ligase TRAF6
and inhibits the activation of NF-κB and MAPK pathways, thus
promoting M2 polarization [87].

Uncertain regulatory mechanism
Huang et al. found that lncRNA TCONS_00019715 was upregu-
lated in M1 macrophages and positively associated with the
expression of M1 markers [88]. Additionally, lncRNA E330013P06
was upregulated in monocytes. E330013P06 overexpression may
enhance inflammatory responses and induce M1 differentiation
[89]. Moreover, exosomal lncRNA TUC339 was positively asso-
ciated with M2 macrophage polarization. TUC339 knockdown
leads to increased production of IL-1β, TNF-α, and CD86 and
inhibits M2 polarization in THP-1 cells [90].

CONCLUSIONS AND PERSPECTIVES
In recent years, lncRNAs have highlighted the significance of
cellular functions such as stem cell maintenance, differentiation,
apoptosis, cellular homeostasis, and the inflammatory process
[91]. This paper summarized the expression level and key roles of
lncRNAs in inflammatory diseases. Firstly, lncRNA expression levels

Fig. 6 Roles of lncRNA in diabetic retinopathy disease.
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are also closely related to inflammatory diseases. For example,
atherosclerosis was positively associated with the high expression
of lncRNA-CCL2, lncANRIL, and lncRNA ENST00000416361. High
expression levels of lncDLEU1, LOXL1-AS1, and LINC00265 were
positively associated with osteoarthritis. High expression levels of
lncRNAs UCA1 and CRNDE were positively associated with sepsis.
Liu et al. also found that lncRNA H19, LINC00895, lnc-SRGAP2C-16,
lnc-HLA-C-2, lnc-APOC1-1, and lnc-B3GALT2-1 were associated
with the progression of chronic non-atrophic gastritis [92]. Ma
et al. revealed that MIAT promoted allergic inflammation in mice
with allergic rhinitis [93]. Liu et al. also found that NEAT1
knockdown may attenuate LPS-induced inflammation and apop-
tosis in HMEECs [94]. He et al. observed that H19 could promote
keratinocyte proliferation and inflammation in psoriasis [95]. Tian
et al. also identified that lncRNA CDKN2B-AS1 regulated inflam-
mation of ulcerative colitis [96]. These results suggested that
lncRNAs have a promising future as novel biomarkers for
inflammatory diseases. LncRNAs involved in vaginitis, cervicitis,
shoulder periarthritis, etc., have been rarely reported. However,
these inflammatory diseases also harm human health, necessitat-
ing urgent research on lncRNA. Moreover, lncRNAs are also
involved in various cancer types. For example, PCA3 and PCGEM1
are highly specific to prostate cancer [97, 98]. HOTAIR, ANRIL,
MALAT1, and LNP1 were positively associated with breast cancer
[99]. HNF1A-AS1, ANRIL, and H19 were positively associated with
lung cancer [100, 101]. These findings implied that lncRNAs might
serve as a new marker for cancer diagnosis. An increasing amount
of experimental data confirms that lncRNAs are associated with
cancer, and applications are on the horizon.
LncRNAs may regulate the release of inflammatory cytokines, the

activation of the cell signaling pathways, and the activation of
immune cells in inflammatory disease. The exact mechanism of
lncRNAs primarily involves transcription and post-transcriptional
regulation, including chromatin modification, mRNA degradation,
and miRNA sponging. The most prevalent method is miRNA
sponging. For example, MALAT1/miR-590, NEAT1/miR-342-3p,
DLEU1/miR-671-5p, LOXL1-AS1/miR-423-5p, and LINC00265/miR-
101-3p axes may regulate inflammatory gene expression and
subsequently participate in the development of related diseases.
Ma et al. found that lncRNA-associated ceRNA networks could
facilitate the diagnosis and treatment of Alzheimer’s disease [102].
Additionally, Zheng et al. found that lncRNA GAS5-mediated ceRNA
regulatory pathways may represent a novel insight and a potential
research direction for heart failure [103]. These findings support the
need for future research to find new lncRNA mechanisms.
Inflammatory diseases pose a grave threat to human health and

life, and their incidence is declining [104]. It is necessary to develop
lncRNA-based treatments for inflammatory diseases. There are some
promising applications of lncRNAs in the prognosis and treatment of
inflammatory diseases. Firstly, lncRNAs can be used as early
diagnostic indicators or treatment response markers [105]. HOTAIR,
GAS5, and HIX003209 have been identified as promising novel
biomarkers for RA [106]. Secondly, lncRNAs could be used as a
therapeutic strategy in inflammation-related diseases by artificially
manipulating the disease-related lncRNA level. Such as the efficient
delivery of microparticles coated with si-Neat1, resulting in a
significantly improved osteolysis effect [107]. Moreover, kaempferol
is a flavonoid compound with diverse biological activities, such as
antioxidant, anticancer, and anti-inflammatory properties. The ability
of kaempferol to weaken XIST expression and then inhibit
inflammation and extracellular matrix degradation in chondrocytes
implies that siRNA may replace conventional drugs in clinical
settings [108]. However, unlike protein-coding genes, lncRNAs are
poorly conserved across different species. The clinical significance of
these lncRNAs has not been completely established. Most of these
measurements were conducted between humans and animals and
have not been used in clinical research. The clinical application of
lncRNAs requires further development.Ta
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