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Imaging-based anticancer drug screens are becoming more prevalent due to development of automated fluorescent microscopes
and imaging stations, as well as rapid advancements in image processing software. Automated cell imaging provides many benefits
such as their ability to provide high-content data, modularity, dynamics recording and the fact that imaging is the most direct way
to access cell viability and cell proliferation. However, currently most publicly available large-scale anticancer drugs screens, such as
GDSC, CTRP and NCI-60, provide cell viability data measured by assays based on colorimetric or luminometric measurements of
NADH or ATP levels. Although such datasets provide valuable data, it is unclear how well drug toxicity measurements can be
integrated with imaging data. Here we explored the relations between drug toxicity data obtained by XTT assay, two quantitative
nuclei imaging methods and trypan blue dye exclusion assay using a set of four cancer cell lines with different morphologies and
30 drugs with different mechanisms of action. We show that imaging-based approaches provide high accuracy and the differences
between results obtained by different methods highly depend on drug mechanism of action. Selecting AUC metrics over IC50 or
comparing data where significantly drugs reduced cell numbers noticeably improves consistency between methods. Using
automated cell segmentation protocols we analyzed mitochondria activity in more than 11 thousand drug-treated cells and
showed that XTT assay produces unreliable data for CDK4/6, Aurora A, VEGFR and PARP inhibitors due induced cell size growth and
increase in individual mitochondria activity. We also explored several benefits of image-based analysis such as ability to monitor cell
number dynamics, dissect changes in total and individual mitochondria activity from cell proliferation, and ability to identify
chromatin remodeling drugs. Finally, we provide a web tool that allows comparing results obtained by different methods.
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INTRODUCTION
Large-scale drug screens provide valuable data for understanding
drug mechanisms of action [1, 2], cancer cell vulnerabilities [3],
development of novel drugs [4, 5] and drug repurposing [6]. The
ability to kill specific cancer cells is a conventional indicator of
anticancer drugs efficacy, however studies often rely on different
methods to measure cell viability. Thus, several largest datasets
provide drug toxicity data measured by methods, which rely on
NADH activity, ATP or protein levels: Genomics of Drug Sensitivity
in Cancer (GDSC) uses resazurin and CellTiter-Glo [3], Cancer
Therapeutics Response Portal uses CellTiter-Glo [1], and NCI-60
uses sulforhodamine B assay [7]. These methods rely on indirect
measurement of drug toxicity, and sometimes can be unreliable
because drugs may influence cellular metabolic activity or protein
levels without change in cells quantity [8–10]. Direct counting-
based methods, such as trypan blue dye exclusion, are used to
identify number of surviving cells. However, such methods
constitute a laborious task for an operator, may give non-
reproducible results and are not suitable for large-scale studies.
Novel drug screens utilize more direct approaches such as
measurement of DNA-barcoded cells in PRISM study [11] or real-

time measurements of cell occupied area by IncuCyte or
xCELLigence [12, 13]. Data obtained by different methods may
have poor agreement [14, 15] due to changes in cell metabolism
[8], adhesion, cell size and morphology [12], or drug influence on
substrate used for measurement. Optimizing the consistency
between NADH or ATP-based assays, measurements of cell area or
LIVE/DEAD assays was addressed by numerous studies, providing
either protocol optimizations, metric selection or method
combination [16–19].
Advances in microscopy and image processing algorithms led

to new high-content screening methods using fluorescence
microscopy [20], that also allow viable cell counting [21–26].
Microscopy provides the most direct approach to measure cell
proliferation and drug toxicity [21], as it does not require extensive
processing of cells, such as trypsinization and cell lysis, and highly
customizable by the use of fluorescent stains and proteins which
allows measurement of cell cycle and cell death [27], protein
activity [28–30], cell differentiation [31], metabolite levels and
cellular morphology [32]. However, accurately segmenting single
cells or nuclei is still a difficult task due to different growth
patterns and drug-induced morphological changes.
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Although relations between most common cell viability
measurement methods were vastly explored before, there is still
little data on how cell viability measurements using imaging-
based methods correspond with other cell viability assays. Such
data is essential for reliable integration of drug screen data from
studies that used different readout methods and for selecting the
appropriate study design. Thus, the main aim of this study was to
compare cell viability measurements made by XTT colorimetric
assay, which is similar to MTT and WST, but does not require a
solubilization step, trypan blue dye exclusion and quantitative
imaging to provide proper solutions for integrating data obtained
by different methods. To determine number of cells by
fluorescence microscopy we stained cell nuclei with Hoechst-
33342 or utilized cells with continuous expression of fluorescent
H2B-mRuby protein that allows automated nuclei counting. Since
drug mechanisms of action and cell morphology can influence
imaging results [33] we utilized different anticancer drugs and
cancer cell lines. Here we explore how the mechanisms of action
for different drugs affect differences in viability measurements
performed by different methods and whether the results depend
on a cell type used. All data is available through a web ShinyApp
https://lebedevtdeimb.shinyapps.io/Mikheeva2023/.

RESULTS
XTT measurements significantly differ from quantitative
nuclei imaging
To determine differences between some assays for measuring cell
viability cancer cell lines of various origins: lung adenocarcinoma
H1299, glioblastoma LN-18, ovarian adenocarcinoma SK-OV-3 and
neuroblastoma SH-SY5Y were treated with different inhibitors and
measured cell viability using four different methods (Fig. 1A). We
used previously established H1299 and SH-SY5Y cells with H2B-
mRuby expression [30] and introduced H2B-mRuby marker to LN-18
and SK-OV-3 cells by lentiviral transduction. Since not all cell
population can be uniformly transduced (Figs. 1B and S1), which
may affect assay results, we also used imaged-based counting using
nuclei staining with Hoechst (Fig. 1A). Across different experiments
the percentage of H2B-mRuby positive nuclei was stable and varied
for H1299 cells between 93 and 97%, for SK-OV-3 between 60 and
76%, for SH-SY5Y between 55 and 68%, and for LN-18 between 26
and 34% (Fig. S1). Trypan blue dye exclusion assay (TB) allowed us to
determine the exact quantity of viable cells and was later used as a
benchmark. In order to account for different cell death mechanisms
induced by anticancer drugs we selected six commonly used drugs
with various mechanisms of action: doxorubicin, etoposide,
dasatinib, gefitinib, panobinostat and azacitidine (5-Aza) (Table S1).
The difference between measurements obtained by different

methods varied depending on a cell line and drug used. For
example, the difference between SK-OV-3 and H1299 sensitivity to
dasatinib was much higher when measured by XTT than using
H2B-mRuby nuclei counting (Fig. 1C). The XTT assay produced
exaggerated cell viability values in contrast to the results obtained
by other methods, as observed for all cell types treated with
etoposide or 5-Aza (Fig. 1D). However, in the case of 5-Aza, the
difference in response was observed primary by non-toxic drug
concentrations were XTT measurement provided higher readouts
than in DMSO control (zero drug concentration). Data for all
comparisons can be viewed using ShinyApp https://
lebedevtdeimb.shinyapps.io/Mikheeva2023/.

Variance in IC50 values is caused by combination of particular
drug and method
To quantitatively compare cell viability data we calculated IC50 (as
concentration at which cell viability is reduced to 50%) and AUC
values and then examined correlations between values obtained
by different methods (Table S2). Correlation between IC50 values
obtained from TB assay and H2B-mRuby or Hoechst nuclei

counting were significant (r= 0.76 and 0.72; p values < 0.0001)
(Figs. 2A, S2, and S3). Correlations between XTT and TB or H2B-
mRuby assays were not significant (r= 0.28 and 0.36; p values >
0.08). However, when we compared the AUC values, correlations
between each method pair were significant (Fig. 2B), even for TB
and XTT assays (r= 0.76; p value < 0.0001), which had the weakest
correlation for IC50 values (Fig. 2A). In general, comparing AUC
values dramatically improved correspondence between data
obtained by different methods (Fig. 2B). To investigate whether
the cell origin or drug type drives the differences between IC50
values for selected methods, we compared differences in IC50
values for each treatment with mean IC50 values for a particular
drug (Fig. 2C). As the result, we observed that XTT results had the
highest number of identified outliers (at least twofold change in
IC50) (Fig. 2C, D). Seven out of eleven outliners among all drugs
and cell lines were for dasatinib, suggesting that particular
method-drug combinations have higher influence on differences
between measurements than the cells origin. We had not
detected any outliners for AUC values, meaning that AUC values
have less dependency on a method used to determine cell
viability (Figs. S2 and S3).
Since drugs had significant effect on measurement variation

between methods, we additionally compared measurements
obtained by H2B-mRuby imaging and an XTT assay using H1299
cells and a panel of 30 drugs with different mechanisms of action.
Overall, the Spearman’s correlation between methods was sig-
nificant (r= 0.77; p value < 0.0001) (Fig. 3A). The highest differences
between methods were caused by cell cycle inhibitors palbociclib,
alisertib and adavosertib, DNA-damage repair inhibitor talazoparib
and PKC inhibitor staurosporine (Table S2). We observed that the
highest differences between measurements were caused by lower
drug concentrations that reduced cell proliferation by less than
50%. For some drugs, for example palbociclib or talazoparib, unlike
for drugs such as dactolisib, XTT assay failed to detect increasing
drug toxicity (Fig. 3B). Data for all 30 drugs can be viewed using
ShinyApp https://lebedevtdeimb.shinyapps.io/Mikheeva2023/.
To verify that similar relationship between methods is relevant

for high-throughput drug screens and not unique to our case we
compared drug sensitivity data for the drugs from three databases:
GDSC1/2 [3], CTRP [1] and PRISM [6]. Cell viability in GDSC1/2 and
CTRP were measured by colorimetric or luminometric assays:
resazurin and Syto60 in GDSC1, and CellTiter-Glo in GDSC2 and
CTRP. In PRISM dataset cell lines were labeled by DNA-barcodes and
then pooled drug assays were performed and cell proliferation was
measured by sequencing and enumerating the number of DNA-
barcodes. As expected GDSC1/2 and CTRP datasets had high
correlation scores, however PRISM had considerably weaker
correlations with both GDCS1/2 and CTRP (Table S3). Only 7 drugs
had R > 0.3 when PRISM data was compared with GDSC1/2 and 5
drugs did not have significant correlation for one of the
comparisons (Fig. 3C). Notably the weakest correlations were for
panobinostat and ruxolitinib, which also demonstrated high
difference between measurement methods in our study (Table S3).

Difference in cell viability measurements depends on drug-
induced mitochondrial activity
As other studies suggested the elevated results of cell viability
assays can be caused by increased mitochondria activity or by
drug directly affecting substrate [10, 34–37]. Thus, we selected 15
drugs with highest and lowest differences between XTT and H2B-
mRuby measurements and treated H1299 cells. Each drug was
used in two concentrations which inhibited cell proliferation, and
72 h after drug treatment we stained cells with tubulin and nuclei
stains to measure cell morphology, and with potential-dependent
TMRE fluorescent stain to measure mitochondrial activity. Cell
morphology changes and mitochondria activity for single cells
were calculated using combination of Cellpose [38] and CellPro-
filer [39] pipelines. Several drugs, such as palbociclib, talazoparib,
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alisertib and axitinib significantly increased cell size, area occupied
by mitochondria (Fig. S4) and overall TMRE staining intensity (Fig.
3D, E). Moreover, we detected an increase in TMRE signal when it
was normalized by area occupied by mitochondria (Fig. 3E),
meaning that these drugs not only increase overall cell size and
thus integrated mitochondria activity per cell, but also individual
mitochondrial activity. We did not detect such increase in
mitochondrial activity for cell treated with other drug at toxic
concentrations, except for dasatinib, meaning that this effect is
specific to certain drugs. TMRE fluorescence normalized by area
positively correlated (r= 0.59; p value= 0.02) with ratios between
AUC values obtained by XTT assay and H2B-mRuby imaging (Fig.
3F). We also tested the effect of drugs added in growth medium

without cells on absorption in XTT assay due to drug absorption
properties or interaction with XTT, but we did not detect any
significant changes in the readouts. These data provide systematic
verification that selective increase in mitochondria activity caused
by certain drugs affects readouts by metabolic-based assays.

H2B-mRuby imaging reveals different cell death dynamics
The use of H2B-mRuby provides a non-invasive way to observe the
dynamics of cell proliferation throughout the experiment.
Although other methods like XTT or Hoechst staining also allow
to measure dynamics they can significantly affect cellular
processes and may cause additional toxicity. The dynamic analysis
of cell viability revealed several types of responses based which

Fig. 1 Cell viability measurement by different methods. A. Experiment design scheme. TB- trypan blue exclusion assay. B Representative
images of cells, expressing H2B-mRuby protein (red). C, D Dose-dependent changes in cell viability measured at 72 h after drug treatment by
XTT, trypan blue exclusion and nuclei counting using Hoechst staining or H2B-mRuby cells. Data presented as means and SD values for four
repeats. Data was grouped by different cell lines for a single method (C) or by different methods for a single cell line (D). Concentrations are
provided in logarithmic scale. Dasatinib was used in 25–5000 nM range, etoposide and 5-azacytidine in 0.25–20 µM range. All data were
normalized on cell viability measurements for cells mock-treated with 0.1% DMSO.
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couldn’t be predicted by endpoint analysis at 72 h. Our results
highlight that interpretation of IC50 values at defined time point
should take into account proliferation rate of particular cell line.
For example, although gefitinib at 5 µM reduced SH-SY5Y cell
numbers by two times, it failed to prevent cell proliferation
(Fig. 4A) and actual proliferation inhibition occurred only at 20 µM.
On the other hand, for SK-OV-3, which have slower proliferation
rate, the two-fold drop in cell number at 72 h indicates full
proliferation inhibition (Fig. 4B). In some cases, measuring cell
number dynamics can help to distinguish drugs that actively kill
cells and not just slow down proliferation. For example, we
detected reduction in number of nuclei for SH-SY5Y treated with
etoposide after 24 h and for SK-OV-3 treated with gefitinib or

doxorubicin after 48 h (Fig. 4A, B). Similar relations were observed
using other cell lines, irrespective of their proliferation rates. For
example, even though gefitinib reduces overall number of H1299
cells, cell continue to proliferate in the presence of the drug (Fig.
4C), similar to SH-SY5Y (Fig. 4A). Dasatinib on the other hand fully
inhibits proliferation of LN-18 cells (Fig. 4D) similar to effects of
etoposide on SH-SY5Y (Fig. 4A). However, the use of fluorescent
protein may be restricted by drug fluorescence, such as in case of
2500 nM of doxorubicin, which caused a false increase in cell
numbers at 24 and 48 h due to high accumulation of fluorescent
drug in cells (Fig. 4B). Cell proliferation dynamics for each
treatment can be view using ShinyApp https://
lebedevtdeimb.shinyapps.io/Mikheeva2023/.

Fig. 2 Correlation of IC50 and AUC between different assays. A Dot plots comparing IC50 and AUC values for different methods. Each point
corresponds to cells treated with particular drug, most prominent outliners are annotated. Spearman’s correlation R and p-values are provided
under each graph. H2B- values obtained by nuclei counting using H2B-mRuby, TB- trypan blue exclusion assay, das- dasatinib, dox-
doxorubicin, pan- panobinostat. B Heatmap of pairwise Spearman’s correlations for IC50 and AUC values obtained by different methods.
C, D Log2 IC50 differences heatmaps. For each cell lines and drug respective IC50 values were normalized on mean IC50 value for that drug
across all cell lines. IC50 values were grouped by cell lines (C) or by drug (D). Color shows log2 difference between IC50 value and the mean
IC50 for that drug and thus shows how sensitive particular cell line to a drug. Differences between IC50 value and the mean IC50 higher than
fourfold are marked as purple. Stars highlight outliner cases when the differences between IC50 value and the mean IC50 of drug (C) or cell
line (D) are more than twofold.
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H2B-mRuby fluorescence can be used to identify chromatin
remodeling drugs
When we processed H2B-mRuby images, we also noted that
several drugs caused an increase in H2B-mRuby fluorescence
intensity. Across all cell lines, this increase was prominent when

cells were treated with panobinostat and this effect was
concentration-dependent (Fig. 5A, B). We hypothesized that
increase in H2B-mRuby fluorescence may be due to increase in
H2B-mRuby expression, which is controlled by human PGK
promoter [40], after HDAC inhibition by panobinostat. Viral
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promoters often get silenced in cells and HDAC inhibitors are
known to be able to reactivate HIV-1 gene expression during
latent infection stage [41]. To verify, that this effect was caused by
HDAC inhibition we additionally tested another HDAC inhibitor
belinostat. It increased H2B-mRuby signal intensity in a similar
manner as panobinostat (Fig. 5C). To check if this effect is specific
to HDAC inhibitors we measured H2B-mRuby intensity under all
30 tested drugs for H1299 cells (Table S4). We found that well
described chromatin remodeling drug JQ-1 that inhibits BET also
significantly increased H2B-mRuby fluorescence (Fig. 5C, D). All
other drugs, except HSP90 inhibitors geldanamycin and 17-DMAG,
did not have significant effect on H2B-mRuby signal intensity (Fig.
5C, D). None of the drugs except doxorubicin were fluorescent by
themselves in used concentrations as was tested on H1299 cells
without H2B-mRuby (Fig. S5). For selected drugs that increased
H2B-mRuby fluorescence we additionally measured their effect on
expression of H2B-mRuby, hygromycin resistance gene and WPRE

signal encoded by lentiviral vector using real-time PCR. Panobino-
stat, belinostat and JQ-1 increased expression of all measured
genes at least two-fold (Fig. S6). HSP90 inhibitors 17-DMAG and
geldanamycin had no effect on gene expression, meaning
increase in H2B-mRuby fluorescence probably occurs due to
increased protein stability or translation efficacy, but not because
of epigenetic regulation. These findings suggest that a fluorescent
protein expressed as a transgene can be additionally used to find
drugs with chromatin remodeling properties. H2B-mRuby inten-
sity distribution for each treatment can be viewed using ShinyApp
https://lebedevtdeimb.shinyapps.io/Mikheeva2023/.

DISCUSSION
Our results show, that although XTT assay and imaging methods
often produce different results, the use of AUC metric overall
provides consistent comparisons. Although IC50 is a convenient

Fig. 3 Drugs affect XTT measurements depending on their mechanism of action. A Correspondence between normalized cell viability of
H1299 cells measured by XTT and H2B-mRuby imaging. Each dot represents the mean values between three repeats for each drug
concentration. Cell viability values were normalized on values for cells mock-treated with DMSO. B Dose-dependent response of H1299 to
talazoparib (1–25 µM), palbociclbib (0.1–10 µM) and dactolisib (10–500 nM). C Spearman’s correlations of AUC values between PRISM GDSC1/2
and CTRP2 datasets. Circle area is reverse proportional to correlation p value. D Staining and segmentation of H1299 cells treated with DMSO,
palbociclib (Palb) or talazoparib (Talaz) for 72 h. In live cells tubulin was stained by Tubulin Tracker DeepRed (gray), nuclei with Hoechst-33342
(blue), and mitochondria with TMRE (magenta). Cell borders and areas occupied by mitochondria in each cell were determined by Cellpose
and CellProfiler software. Total mitochondria signals (integrated TMRE fluorescence) for each cell are indicated by numbers. E Distribution of
integrated TMRE signal per cell (total mitochondria activity) and TMRE signal per cell normalized to area occupied by mitochondria
(normalized mitochondria activity) in H1299 cells treated with drugs or DMSO for 72 h. For each drug data for two toxic drug concentrations
(indicated in Table S1) was combined. Dots show mean values for each biological repeat (n= 4) and SD based on repeats is provided. For each
repeat four automatically selected imaging fields were analyzed. On average 650 cells were used to calculate each distribution. P-values were
calculated using Mann–Whitney test by comparing mean values for each image with DMSO. F Correlation between the ratio of AUC obtained
from XTT assay measurements to H2B-mRuby imaging and drug effect on mean mitochondria activity normalized to area occupied by
mitochondria. Size of each dot is proportional to mean cell area as calculated by CellProfiler and color is proportional to total mitochondria
activity induced by a drug.

Fig. 4 Measurement of cell proliferation dynamics using H2B-mRuby. Graphs show change in a number of identified nuclei for different
drug concentration depending on time after start of the treatment of A SH-S5Y, B SK-OV-3, C H1299, and D LN-18 cells. Most representative
drugs are shown for each cell line, data for other treatments can be viewed at https://lebedevtdeimb.shinyapps.io/Mikheeva2023/. Data
presented as means and SD values based on four repeats. Nuclei counts were normalized to the nuclei counted before the start of the
treatment.
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metric which offers an easily interpretable value it should be used
with caution when comparing values from different datasets,
especially obtained by different methods. We propose that it is
more reliable to compare either concentrations which reduce
proliferation by more than 20% or use AUC metric. The limitations

of IC50 calculation can be somewhat bypassed by considerable
increase of the number of drug concentrations used in a test,
however this can significantly increase the cost and time for large-
scale tests. Our findings are consistent with the results of other
studies, which show that AUC or other area-based metrics, like
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DSS, produce more reliable results, especially for prediction of
drug sensitivity [42, 43].
The variance between measurements performed by different

methods also depended on a treatment selection, especially for
cytostatic drugs [19, 44], knockdown of some genes [45] or
radiation exposure [10] as has been shown before. For example,
palbociclib is known to induce cell size growth [46] and
accumulation of mitochondria, thus resulting in false results
obtained by methods relying on mitochondrial activity [35]. We
showed that palbociclib as well as other cell cycle inhibitors not
only induced mitochondria accumulation due to increased cell
size, but also increased mitochondrial activity itself. This effect we
observed not only for well-established cell cycle inhibitors such as
palbociclib and alisertib, but also for PARP inhibitor talazoparib
and VEGFR inhibitor axitinib. Since these inhibitors can induce
DNA-damage response and lead to G2/M arrest [47, 48], increased
cell size (Fig. S4) and senescence [49, 50] in some cell types, we
assumed that senescent phenotype could be responsible for
increased mitochondrial activity. However, we detected senescent
cells only for cells treated with axitinib, and other drug which
increased mitochondria activity failed to induce senescence (Fig.
S7). There are several studies suggesting that increased cell size
leads to higher mitochondria mass [51, 52]. We see that area
occupied by mitochondria is larger in bigger cells (Figure S4),
which can mean that mitochondria mass remains the same but
they are more spread out in cytoplasm. In our experiments we also
detected an increase of total mitochondria activity per cell (Fig.
3E), meaning either increase in mitochondria mass or activity of
individual mitochondria. Although we cannot strictly distinguish
between changes in mitochondria mass and activity of individual
mitochondria, given previously published studies [51, 52], we
think it is more likely that several processes happen as cells grow
in size. Thus, as a cell grows mitochondria occupy larger area
within the cytoplasm, increase their mass and activity of individual
mitochondria. High-content imaging allows to accurately distin-
guish effects on cell viability as number of nuclei, area occupied
by mitochondria, total mitochondria activity as integrated
intensity per cell, and changes in individual mitochondria activity
as signal normalized by area occupied by mitochondria in each
cell. For example, dasatinib reduces cell size, which results in
slightly decreased overall mitochondria signal, however dasatinib-
treated cells had higher mitochondrial activity per occupied area,
suggesting potentially different mechanisms of dasatinib action
compared to similar inhibitors such as bosutinib [53]. The higher
variance between methods readouts observed for dasatinib may
connected to both decrease in mitochondria activity and cell size,
but also due to cells forming tight clumps, which negatively
affects nuclei segmentation accuracy.
One of the concerns with the use of H2B-mRuby for cell

counting is that cells have heterogeneous levels of transgene
expression, and since not all cells have detectable transgene
expression the changes in the number of H2B-mRuby positive
cells might not represent the changes in numbers of all cells. Also,
the introduction of transgene might make transduced cell
subpopulation more or less sensitive to a specific drug. However,
even though our cell lines had varied percentage of H2B-mRuby

positive cells (from 25 to 90%) and H2B-mRuby intensity, the
results between nuclei counting with H2B-mRuby were highly
consistent with nuclei counting using Hoechst staining or with
results of trypan blue exclusion assay. The main drawback of using
H2B-mRuby is the necessity of creating transgene cells, which
might not be possible in case of ex vivo drug screens using
patient-derived cells.
We describe several advantages of using H2B-mRuby: the ability

to non-invasively record cell proliferation dynamics and find
potential chromatin modulators. The proliferation dynamics can
improve drug classification based on whether they prevent cell
proliferation completely, reduce the initial cell numbers or allow
cells to proliferate even at slower rates. We showed that H2B-
mRuby intensity changes in response to chromatin remodeling
drugs, such as HDAC and BET inhibitors. Several studies also
suggested the possibility to use transgene expression to detect
drugs that affect cell epigenetics. These approaches used cells
with silenced GFP transgene and then drugs which affected
epigenetic factors reactivated GFP expression, increasing the
number of GFP positive cells [54–56]. We show that similar
approach works even if introduced transgene was not completely
repressed in the majority of cells, and expression of H2B-mRuby
under PGK promoter can be used as a potential reporter for
chromatin remodeling drugs. H2B-mRuby imaging or other
genetically encoded fluorescent protein can be used as a high-
through approach to identify drugs with chromatin remodeling
capacity, however it should be verified by gene expression
analysis, since some drugs such as HSP90 inhibitors can increase
protein fluorescence without affecting gene expression.
In conclusion, modern imaging-based approaches provide

several benefits to large-scale drug screens, such as higher cell
counting accuracy, ability to measure cell proliferation dynamics,
and perform additional measurement such as the use of H2B-
mRuby fluorescence intensity as reporter for chromatin remodula-
tion. We show that AUC metric provides more consistency when
comparing cell viability results obtained by imaging methods with
results of conventional assays. We also identify main reasons for
measurement differences, such as increased cell size, induction of
senescent phenotype or altered mitochondrial activity- factors,
which should be considered for consistent integration of imaging
data with existing large-scale drug screens.

METHODS
Cell culture, lentiviral transduction and materials
All cell lines are not in the list of commonly misidentified cell lines that are
controlled by the International Cell Line Authentication Committee. Table S1
contains list of reagents used for cell cultivation, cell densities used in
experiments and growth conditions for each cell line. Cells were routinely
checked for mycoplasma with Hoechst-33342 and DAPI staining, and to
prevent mycoplasma contamination cells were treated with EZkillTM
Mycoplasma Elimination Kit (HiMediaLabs) after defrosting. Lentiviral
preparation was performed as described previously [30] using pLentiPGK
Hygro DEST H2B-mRuby2 (Addgene #90236) [40] and then cells were
transduced to achieve at least 25% transduction rate. To ensure that we
generated stably transduced H2B-mRuby cells, cultured for two-three weeks
to ensure stable levels of H2B-mRuby expression and then created a

Fig. 5 Chromatin remodulating drugs induce H2B-mRuby fluorescence. A Representative images of nuclei H2B-mRuby fluorescence in
H1299 and SH-SY5Y cells treated with DMSO or 500 nM panobinostat (Pan) for 24 h. B Distribution of median H2B-mRuby fluorescence per
nucleus for H1299, SH-SY5Y, LN-18 and SK-OV-3 cells treated with panobinostat for 24 h. H2B-mRuby fluorescence was normalized to cells
treated with DMSO (zero concentration) and distribution was calculated based on average on 550 nuclei. On average three repeats were
performed for each condition and 4 automatically selected fields were imaged. SD is indicated as +- range from mean based on mean
fluorescence values for each repeat. C Distribution of median H2B-mRuby fluorescence per nucleus for H1299 cells treated with belinostat, JQ-
1, 17-DMAG and geldanamycin for 24 h. D Volcano plot showing differential increase in H2B-mRuby fluorescence for H1299 cells treated with
30 different drugs for 24 h compared to DMSO-treated cells. Each dot represents mean fluorescence for a drug used in particular
concentration (Table S4), maximum effects for statistically significant drugs are labeled. P values were calculated using Mann–Whitney test
based on mean values for each image and then Benjamini-Hochberg correction for multiple testing was applied (FDR).
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cryogenic stock of the cells. We used aliquots of cells from the same
cryogenic stock and cultivated them no longer than 4–5 weeks after thawing.
Cells expressing H2B-mRuby were then enriched using selection with 0.5mg/
ml hygromycin b (Sigma) and verified using fluorescence microscopy and
flow cytometry (LSRFortessa flow cytometer, BD Biosciences). All materials
used and their manufacturers are listed in Table S1.

Drug treatment, AUC and IC50 calculation
Cells were seeded in indicated densities to 96-well plates for XTT and
imaging, and in 48-well plates for trypan blue exclusion assay 24 h before
drug treatment. All drug’s working solutions in DMSO were stored at −20 °C
as aliquots in concentrations at least 1000× to a maximum concentration
applied to the cells, all concentrations are listed in Table S1. On the same
day before cell treatment these solutions were unfrozen, thoroughly mixed
and checked for precipitates, each stock aliquot was unfrozen no more than
5 times. Then drugs dissolved in the growth medium as 10× stocks, and
appropriate amount of DMSO was added to equalize DMSO concentrations
for all treatments, and then drugs were added to the cells. DMSO
concentration did not exceed 0.1% for all treatments. After 72 h incubation
cell viability was analyzed using XTT, imaging or trypan blue exclusion assay.
Trypan blue exclusion assay was performed manually by two independent
researchers using Neubauer chamber. Prior to cell counting in Neubauer
chamber cells were washed with PBS, trypsinized at 37 °C and 5% CO2 for
5min and resuspended in complete medium. XTT assay was measured by
450 nm absorbance and 650 nm reference using Multiskan FC (Thermo-
Scientific, USA) after 4 h incubation at 37 °C and 5% CO2, reference signal for
each well and mean signal for wells containing only growth medium and
XTT were subtracted before normalization. For XTT and trypan blue dye
exclusion experiments were repeated three times. For nuclei staining 1 µg/
ml Hoechst-33342 was added and then cells were incubated at 37 °C and 5%
CO2 for 30min before imaging. For H2B-mRuby imaging cells were imaged
without any additional staining. Wells were treated independently two wells
in the same experiment, which were repeated three times. For each well six
fields were automatically selected with the same pattern for all wells.
Number of nuclei for each image was calculated using CellProfiler pipeline
and data was extracted using custom Python script. Then nuclei counts were
averaged for each repeat between six imaging fields. All results were
normalized to mean values of control treatment (no drug), control treatment
was considered as 100% and complete absence of cells as 0%. IC50 values
were calculated using four-variable non-linear regression in GraphPad Prism
9 software with top and bottom values set at 100 and 0. AUC values were
calculated using trapezoidal rule in Python. For cell dynamics number of
nuclei were also normalized to the number of nuclei at the start of
experiment for each repeat. All drug treatment data is available for viewing
via ShinyApp https://lebedevtdeimb.shinyapps.io/Mikheeva2023/.

Cell staining and fluorescence microscopy
Cells were imaged on 96-well plates using motorized Leica DMI8
fluorescence microscope (Leica, Germany). For nuclei staining 1 µg/ml
Hoechst-33342 was added, for tubulin and mitochondria imaging 1 µl of
Tubulin Tracker™ Deep Red (Invitrogen, USA) and 100 ng/ml TMRE
(Lumiprobe, Russia) were added, and then cells were incubated at 37 °C
and 5% CO2 for 30min before imaging. Hoechst-33342 was imaged with
excitation 325–375 nm and emission in 435–485 nm, TMRE and H2B-
mRuby were imaged with excitation 541–551 nm and emission in
565–605 nm, Tubulin Tracker™ Deep Red was imaged with excitation
590–650 nm and emission in 662–738 nm. For nuclei staining autofocus
was performed using Hoechst-33342 images, for H2B-mRuby protein using
bright field images, and for TMRE, tubulin, and nuclei staining. Plate layout
and autofocus were done using LAS X software. For each well (biological
repeat of drug treatment) four to six fields were automatically selected
with the same pattern for all wells. Image quality control was performed
manually by two researches and using custom Python scripts. Images with
low quality or presence of optical obstacles (areas with high background
signal and serum debris) were excluded from analysis. Senescence staining
was performed 144 h after drug treatment using β-Galactosidase Staining
Kit (Cell Signaling Technology, USA). Treatment with SCH772984 was used
as a positive control to induce senescence in cancer cells [57].

Nuclei and cell segmentation
Nuclei segmentation was performed in CellProfiler v4.2 [39]. First, we
performed manual control of image quality to remove unfocused images
or images with artifacts. Then images of Hoechst stained or H2B-mRuby2

labeled nuclei were corrected using CorrectIllumination module in
CellProfiler. Correction function was calculated and applied for each image
using background method with fit polynomial smoothing. To segment
nuclei, we used adaptive threshold strategy with Sauvola thresholding
method. Thresholding parameters for Hoechst-stained nuclei were selected
the same for each cell line, as staining intensity was the same. For H2B-
mRuby labeled nuclei parameters for object diameter and lower threshold
varied depending on fluorescence intensity for each cell line.
For mitochondria activity measurements we segmented cells using

combination of Cellpose v2 and CellProfiler v4 pipelines. First all images of
Hoechst, TMRE and Tubulin Tracker were corrected using CorrectIllumina-
tion module in CellProfiler. Correction function was calculated and applied
for each image using background method with fit polynomial smoothing.
Then for better cell segmentation, we merged grayscale TMRE and tubulin
images. These merged images were used for cell segmentation in Cellpose
with cyto2 pre-trained model. To account for cells of different sizes we
used two different object diameters for each image and for each image
two masks were generated: for smaller cells using diameter 35 pixels and
for big cells using diameter 150 pixels. Cellpose masks and other images
were then loaded into CellProfiler, which was used for initial nuclei
segmentation. Nuclei segmentation was also performed using two
different expected object diameters: for small and big nuclei. Then four
object sets (small cells, big cells, small nuclei and big nuclei) were
combined using CellProfiler pipeline. We selected cells that have identified
nuclei of respected size inside them, and then for each big cell we
compared areas occupied by objects belonging to those cells. Based on
that comparison we decided whether these are correctly identified big
cells, or a misidentified group of smaller cells. To identify areas occupied by
mitochondria we use images of TMRE staining and performed segmenta-
tion in Cellpose using cyto2 pre-trained model. Then we used CellProfiler
to assign segmented mitochondria areas to each cell based on overlap of
these objects, and measured TMRE intensities for each mitochondria area.
Image analysis data was processed using custom Python scripts and
visualized using ggplot2 in R and GraphPad Prism v9. Python code for
Cellpose and CellProfiler pipelines are available on GitHub https://
github.com/CancerCellBiology/Cell_count_methods.

Drug screen database analysis
Drug response data for GDSC1/2 [3], CTRP [1] and PRISM [6] drug screens
was downloaded from DepMap [58, 59] portal (https://depmap.org/portal/
). Drug response was downloaded as drug AUC values for each cell line.
First, we selected drugs present in GDSC2 dataset and then added data
from GDSC1 for the drugs which were not present in GDSC1, then we
selected drugs present in all GDSC1/2, CTRP2 and PRISM datasets. Next, we
calculated Spearman’s correlation for each drug between each pair of
datasets. For each pair we selected cell lines for which drug response data
were present in both datasets. The average number of cell lines used to
calculate correlation between datasets ranged from 267 to 464 cell lines.
Drugs were clustered using Euclidean metrics and Ward2 hierarchical
clustering, heatmap was generated using ComplexHeatmap R package
[60]. Code used for data analysis and data visualization is provided on
GitHub https://github.com/CancerCellBiology/Cell_count_methods.

Real-time PCR
Primers were chosen based on the viral insertion sequence, ensuring a
length of approximately 20 base pairs, absence of hairpins, and an
annealing temperature of 57 °C. Primers for measuring H2B-mRuby
expression were designed to amplify the part of the sequence were H2B
and mRuby are fused to avoid amplifying endogenous H2B mRNA. The
primer sequences are presented in Table S1. H1299 cells were cultivated at
a density of 60,000 cells per well in a 6-well plate and treated with the IC50
concentrations of drugs, which lead to enhance nuclear fluorescence. After
24 h cells were lysed by TRIzol Reagent (Ambion by Life Technologies) for
RNA extraction following the manufacturer’s guidelines. Subsequently,
5 μg of mRNA were used for the synthesis of cDNA. Real-time PCR was
performed in triplicate using Maxima SYBR Green Supermix (Thermo
Scientific, Waltham, MA, USA) and the CFX96 Real-Time System (Bio-Rad,
Hercules, CA, USA). Expression data was normalized to the expression
levels of human GAPDH.

Statistical analysis
Mann–Whitney test and t-tests were performed using SciPy Python
package and Benjamini-Hochberg correction for multiple testing was
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performed using statmodels Python package. Spearman’s correlation was
calculated using GraphPad Prism 9 and SciPy Python package. Mean, SEM
and SD values for cell viabilities were calculated in R and GraphPad Prism 9.

DATA AVAILABILITY
All data are available for viewing via ShinyApp https://lebedevtdeimb.shinyapps.io/
Mikheeva2023, and processed data are provided in supplementary tables, Python
and R codes, and CellProfiler pipelines are available on GitHub https://github.com/
CancerCellBiology/Cell_count_methods.
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