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Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal
diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and
treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular
processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis
of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In
this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal
diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying
potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.
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FACTS

● Epigenetic modifications have been increasingly linked to the
pathogenesis of various ocular diseases, such as keratitis,
glaucoma, age-related macular degeneration, and diabetic
retinopathy, among others.

● Methylation is a key regulator in the pathogenesis of corneal
diseases, including inflammation, fibrosis, and neovasculariza-
tion, making it an attractive potential therapeutic target.

OPEN QUESTIONS

● What are the major alterations of methylation and demethyla-
tion at the DNA, RNA, and protein levels in corneal diseases
and how these dynamics contribute to the pathogenesis of
corneal diseases?

● Are there any potential biomarkers of methylation that can
enhance the diagnosis and treatment of corneal diseases?

INTRODUCTION
As a phenomenon that is beyond genetics, epigenetic changes
can dynamically manifest in response to developmental, environ-
mental, and nutritional cues without altering the gene sequence
[1, 2], they can influence the regulation of gene expression,
phenotypes, and metabolic abnormalities [3]. Currently, three
primary mechanisms are recognized to regulate gene expression:
DNA methylation (and demethylation), histone modifications and
non-coding RNA regulation [4]. With continuous advances in
sequencing technology, epigenetics is now being used in various
areas of research. Epigenetics offers a partial explanation for

diseases [5] including cardiovascular [6], endocrine diseases [7],
and autoimmune diseases [8] as well as many other complex
pathophysiological processes such as inflammation [9], immunity
[8] and neovascularization [10]. Epigenetic factors offer a partial
explanation for diseases and may help to explain their onset and
progression. Additionally, these factors support emerging epige-
netic therapies for diseases [11, 12]. The past decade witnessed
the increasing importance of epigenetics in eye development and
ocular diseases [13–15]. Unlike inherited genetic modifications,
which remain static, epigenetic changes are dynamic and can be
influenced by environmental conditions, individual lifestyle, and
diseases [16, 17]. Therefore, methylation modifications play a
crucial role in the interaction between external factors and the
genome.
Methylation is a crucial aspect of epigenetic modifications,

whereby a methyl group is transferred from reactive compounds
like S-adenosylmethionine (SAM) to other molecules by the action
of methyltransferases. Specifically, these enzymes can modify
diverse substrates such as DNA [18], RNA [19] and proteins [20].
And these biomolecules can undergo chemical modification
through methylation processes, forming methylation products
that impact protein functions and regulate gene expression and
shutdown [21, 22]. Different forms of methylation can uniquely
regulate epigenetic phenomena and play critical roles in cellular
behaviors [21]. Clinically, epigenetic modifications have been
increasingly linked to the pathogenesis of various ocular diseases,
such as keratitis, glaucoma, age-related macular degeneration,
and diabetic retinopathy, among others [12, 23, 24]. Furthermore,
roles of methylation modifications in ocular physiopathology have
also been pointed out [25].
The eye is a vital visual organ that comprises several essential

structures, including the cornea, lens, vitreous, retina, optic nerve,
and others (Fig. 1). The cornea is a transparent tissue located at

Received: 30 November 2023 Revised: 24 March 2024 Accepted: 25 March 2024

1Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China. 2These authors contributed equally: Yutong Xia, Kuangqi Chen.
✉email: idrshen@zju.edu.cn; idrtong@zju.edu.cn

www.nature.com/cddiscovery

Official journal of CDDpress

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-01935-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-01935-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-01935-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41420-024-01935-2&domain=pdf
http://orcid.org/0000-0002-4891-8801
http://orcid.org/0000-0002-4891-8801
http://orcid.org/0000-0002-4891-8801
http://orcid.org/0000-0002-4891-8801
http://orcid.org/0000-0002-4891-8801
http://orcid.org/0000-0002-1562-6749
http://orcid.org/0000-0002-1562-6749
http://orcid.org/0000-0002-1562-6749
http://orcid.org/0000-0002-1562-6749
http://orcid.org/0000-0002-1562-6749
https://doi.org/10.1038/s41420-024-01935-2
mailto:idrshen@zju.edu.cn
mailto:idrtong@zju.edu.cn
www.nature.com/cddiscovery


the front of the eye and consists of five distinct layers, arranged
from anterior to posterior: the corneal epithelium (CE), Bowman’s
layer, corneal stroma, Descemet’s membrane, and the endothe-
lium (Fig. 1). Functionally, the cornea serves as the ocular initial
mechanical and immune barrier, transmitting external light to the
retina to generate vision. Moreover, it not only transmits essential
light for vision but also refracts light, providing focus to images
[26]. Therefore, any damage to or illness of the cornea can result in
severe vision loss or blindness [27]. Currently, although methyla-
tion has been extensively studied in posterior segment diseases,
its potential role in anterior segment diseases has not been much
emphasized. Moreover, recent researches have highlighted the
impact of DNA methylation, N6-methyladenosine (m6A), and other
methylation mechanisms on corneal functions, including cell
migration, as well as corneal-related diseases, such as keratitis
[28, 29], corneal would [14, 30, 31]. Despite the relative wealth of
information on the transcriptional regulation of corneal cells and
differentiation, reviews describing the potential of methylation in
corneal diseases (CDs) are scarce and it is unclear how methylation
modifications exactly affect corneal gene expression and CDs.
Our review aims to summarize the role of methylation in CDs,

emphasizing the importance of DNA, RNA, and histone methyla-
tion in the cornea. Additionally, we provide insight into the
pathogenesis of methylation-related CDs to offer new perspec-
tives for their treatment.

METHYLATION MECHANISM AND FUNCTION
Classifications of methylation
The methylation pattern is determined by a dynamic balance of
methylation and demethylation [32, 33], regulated by specific
enzymes: “writers” or methyltransferases, “erasers” or demethy-
lases, and recognized by “readers” or methylation-dependent
binding proteins [21]. Various forms of methylation modifications,
along with related modification factors, can play critical roles in
corneal functions and health (Table 1).

DNA methylation. Actually, DNA methylation has been the most
extensively studied epigenetic phenomenon to date and has been
significantly translated into clinical applications for early diagnosis
and therapy [21, 34]. Mechanistically, as a modification that does
not alter the DNA sequence, DNA methylation plays a critical role
in tissue-specific gene expression, genomic imprinting,

chromosome stability, and more [35]. DNA methyltransferases
(DNMTs) are responsible for catalyzing DNA methylation, and act
as the transfer of methyl groups from SAM to the fifth carbon of
DNA cytosine residues [36]. This results in a chemical modification
where methyl groups are covalently bonded to the cytosine
residues [37]. Different types of DNA methylation include
5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), N6-
methyladenine and others [38, 39], with 5mC being the most
common type, and its DNA methylation status is influenced by
specific regulatory molecules.
The “writer” proteins are key players in DNA methylation and

include DNMT1, DNMT3A, DNMT3B and DNMT3L (Fig. 2). DNMT1 is
critical for maintaining normal levels of DNA methylation. It targets
double-strands DNA molecules that have only one methylated strand,
playing a role in methylating the newly synthetic strand during
semiconservative DNA replication [33]. DNMT3A and DNMT3B are
two de novo methyltransferases that are capable of catalyzing the
initial methylation of CpG sites [40]. The DNMT3L enzyme promotes
DNMT3A/B but is itself catalytically inactive [35, 37, 41]. Previously,
DNA demethylation was considered a passive process. However, the
discovery of the Ten-eleven translocation dioxygenases (TETs) protein
family reveals an active process that plays an important regulatory
role (Fig. 2) [42, 43]. Regarding “reader” proteins, the three primary
types of DNA methylation-binding proteins are members of the
Methyl-CpG-Binding Domain (MBD), Kaiso, and Set and Ring Finger-
associated (SRA) families [44–48] (Fig. 2).
Functionally, DNA methylation is crucial for preserving the stability

of eukaryotic genomes and controlling vital physiological processes,
such as the cell cycle and cellular development [33, 49, 50].
Numerous factors regulate gene expression, and the role of
methylation in gene expression has been disputed. DNA methylation
can regulate gene expression in many ways such as altering DNA
conformation, enhancing DNA stability, and modifying chromatin
structure. Specifically, promoter methylation can alter gene expres-
sion, leading to various pathogenic processes that ultimately result in
numerous eye diseases, including CDs [31, 51].

DNA hypomethylation and hypermethylation. DNA hypomethyla-
tion is a significant DNA methylation state, alongside hypermethy-
lation. It generally describes a relative situation where there is a
decrease from the “normal” level of methylation [52]. Loss of
methylation leads to euchromatin formation associated with
highly transcriptionally active regions of DNA, increasing the risk

Fig. 1 The anatomy of the eye and cornea. The eye is an important visual organ that contains the cornea, lens, vitreous, retina, optic nerve,
and other significant structures. The cornea is a transparent tissue at the front of the eye, which is composed of five distinct layers from
anterior to posterior: CE, Bowman’s layer, corneal stroma, Descemet’s membrane, and the endothelium. Each layer of the cornea is crucial to its
function since it not only acts as the first mechanical and immune barrier to the eye but also transmits and converges external light to the
retina to produce vision. (Figure was created with BioRender.com).
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of genomic instability [53]. In contrast to DNA hypomethylation,
the addition of methyl groups to an excessive number of cytosine
bases at gene promoters leads to repressed transcriptional activity
[54]. Hypomethylation and hypermethylation play crucial roles in
regulating gene expression, maintaining genome stability, and
controlling important biological processes [55–57].

The role of CpG islands (CpGi) in DNA methylation. Methylated
cytosines are non-randomly distributed in the genome. In
mammals, DNA methylation primarily occurs at the cytosine 5’
of the CpG dinucleotide [58]. CpG dinucleotides have been
demonstrated to be scattered throughout the DNA of mammals or
in clusters known as CpGi [59]. Over 70% of genes, including
housekeeping genes, have their promoters located within CpGi
[60, 61]. Methylation reduces the expression of downstream target
genes [62], but has the opposite effect in specific cases [63].
Methylation levels at CpG sites can vary under different
conditions. The density of CpG dinucleotides, the nature of the
target gene, its location and degree of methylation all affect the
outcome of methylation [64–66]. Methylation of CpGi in or around
gene promoters is an essential pathway to gene silencing and
imprinting [67–69]. In general, gene promoters of active genes
have demethylated CpG regions, whereas silenced or low-
expressed genes have hypermethylated regions. By specifically
methylating certain CpG sites, certain circumstances may cause
some genes to be transcriptionally suppressed [31]. DNA
methylation was once thought to indicate transcription repres-
sion, and specific transcription factors (TF) are needed for gene
transcription in eukaryotes. Methylation of CpGi can prevent TF
binding and silence genes [40]. Conversely, TF binding can also
prevent DNA methylation [70]. There is ongoing debate about
how epigenetic modifications are inherited in mammals. A recent
study revealed that methylation of CpGi can be passed down
across generations by changing DNA methylation in mice. This
discovery leads to new research on the role of methylation [71].

RNA methylation
As a crucial regulator of transcriptional expression, RNA methyla-
tion occurs in many types of RNAs, including messenger RNA
(mRNA) (Fig. 3A) and transfer RNA. Functionally, RNA methylation
and its associated signaling pathways are involved in numerous
biological activities, such as cell differentiation, the stress response
[72]. RNA methylation occurs in at least 150 forms across diverse
RNA molecules [73]. Among them, m6A and C5-methlcytidine are
the most widely studied. m6A refers to the methylation modifica-
tion of the nitrogen atom (N) at position 6 of adenine (Fig. 3B), and
it represents the most prevalent mRNA modification in humans
and other mammals [74] (Fig. 3A), accounting for up to 50% of
RNA methylation [75]. There is specific research on m6A in the eye,
making it a popular area of research in biology [76].
“Writer” proteins influence reversible RNA methylation similarly

to how they regulate DNA methylation. Methyltransferase-like 3
(METTL3), Methyltransferase-like 14 (METTL14), and Wilms tumor 1
associated protein (WTAP) [77] (Fig. 3C) make up the majority of
the m6A methyltransferase complex. Their primary function is to
catalyze the m6A modification of adenosine on mRNA [78].
METTL3, as the pioneer RNA methyltransferase discovered, plays
essential catalytic roles in m6A methylation, and METTL14 may
augment METTL3’s catalytic activity [79].
The discovery of Fat mass and obesity-associated protein (FTO) as

a m6A demethylase sheds light on the fact that m6A can be
dynamically regulated, suggesting its importance in normal devel-
opment and the pathogenesis of diseases [80]. Since then, FTO and
AlkB homolog 5 (ALKBH5), both belonging to the AlkB family of
Fe(II)/a-ketoglutarate-dependent dioxygenases, have been recog-
nized as “eraser” proteins that remove m6A RNA modifications [81,
82] (Fig. 3C). Demethylases remove methylation from m6A-modified
bases, regulating intracellular homeostasis and cellular damage
repair [21, 81]. This highlights the dynamic and reversible nature of
m6A modification. Specific biological functions can be carried out
through this process, m6A-modified mRNAs necessitate particular

Fig. 2 The primary type and mechanism of DNA methylation. DNA methylation is catalyzed by DNMTs, facilitating the transfer of methyl
groups from SAM to the fifth carbon of DNA cytosine residues. This results in the chemical modification of methyl groups through covalent
bonding. The role of methylation modifiers such as “writers” (DNMT1, DNMT3A, DNMT3B), “erasers” (TETs) and “readers” (MBD1-2), have been
widely reported, with some of them also participating in CDs. (Figure was created with BioRender.com).
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RNA-binding proteins referred to “reader” proteins which include
IGF2 mRNA binding proteins (IGF2BP1/2/3), the YTH domain protein
family (YTHDC1/2, YTHDF1/2/3), eukaryotic initiation factor 3 (eIF3)
and others [83] (Fig. 3C). The YTH domain, discovered within over
200 proteins, including YTHDC1, YTHDC2, YTHDF1, YTHDF2, and
YTHDF3 [84], binds proteins and recognizes m6A-modified bases,
initiating pathways for RNA degradation and miRNA processing. This
is a common type of RNA base modification that mainly regulates
RNA stability, splicing, degradation, translation, and other processes
[85, 86] (Fig. 3C).

Histones methylation
Post-translational modifications (PTMs) are a frequent means of
modifying proteins and changing their functions. Methylation, as a
type of protein PTMs, significantly impacts cellular physiology and
pathogenesis [87]. It affects the structure and activity of the
modified protein as well as the interaction with other proteins
[88], thereby regulating the translation, localization and signal
transduction of the protein.
Indeed, methylation can occur on both histones and non-histones

[87, 89]. Histones bind with DNA to create nucleosomes, which
consist of 147 base pairs of DNA coiled around the histone core
particles. Sequences of nucleosomes make up chromatin in
eukaryotic cells. The histone core particle is composed of two
molecules each of the histones H2A, H2B, H3, and H4. Histones are
proteins that are highly conserved, having flexible N- and C-terminal
domains along with a conserved globular domain (Fig. 4A). Most
histone cores are globular, with less rigid N-terminus tails that can be
modified by various types of modifications such as acetylation,
methylation, and phosphorylation [90–93] (Fig. 4B).
The histone modifications are found in various residues of

histone H3 and histone H4 [87]. It is regulated by histone
methyltransferases (HMTs) [94] and histone demethylases (HDMs)
(Fig. 4C). To be more specific, lysine methyltransferases (KMTs) are

responsible for histone methylation, which trigger monomethyla-
tion, dimethylation, and trimethylation [95]. The majority KMTs
contain the SET domain, which forms the methylation complex
with the help of certain structural subunits and sustains the
activity of KMTs [96]. HDMs can be roughly divided into two
groups: Lysine-specific demethylase (LSD) and JmjC domain-
containing family (JMJD) (Fig. 4C). Specifically, LSD1 can remove
the mono-dimethylation modification of histones H3K4 and H3K9,
while JmiC can remove the trimethylation modification of lysine
[97, 98]. The discovery of the first histone demethylation
modifying enzyme, LSD1, occurred in 2004 [99]. Henceforth, the
dynamic regulation of histone methylation via histone methylases
and demethylases was brought into the limelight. Methylated
histones are recognized by proteins with methyl-binding domains
[21, 100]. Functionally, as the most common protein modification,
it can affect cell fate in ways other than just at the transcriptome
or protein level [101]. Histone methylation can potentially repress
or even activate transcription, depending on lysine that gets
methylated. To regulate gene transcription, methylation of
histones H3 and H4 occurs at distinct sites and varying degrees.
The scientific community has widely accepted that the activation
of genes is attributed to trimethylation or dimethylation of H3K4,
H3K36, and H3K79, while methylation of histone H3K9 is known
for its association with gene repression [102]. Additionally, protein
methylation modifies arginine and lysine residues in non-histone
proteins to regulate cellular signal transduction via MAPK, WNT,
BMP, JAK-STAT, p53 and NFkB pathways [87, 103, 104]. These
discoveries have furthered our understanding of epigenetic
regulation. However, it is poorly understood how HMTs and
HDMs act in the mammalian eye, multiple studies have
investigated the connection between transcription and expression
of specific genes during CDs, along with corresponding HMTs and
HDMs involved [105–107] (Fig. 4C). For instance, the transcrip-
tional activation of Enhancer of Zeste Homolog 2 (EZH2), which is

Fig. 3 The primary types and mechanisms of RNA methylation. A The methylation modifications occurring at different sites of mRNA reflect
the diversity of RNA methylation. B The most representative RNA methylations are m6A. Cm6A is catalyzed by the “writers” (METTL3/METTL14/
WTAP) and removed by FTO and ALKBH5 “erasers”. In addition, YTHDC1, YTHDC2 and YTHDF1/2/3 serve as m6A methylation-dependent
binding proteins, acting as “reader” to regulate RNA stability, splicing, degradation, and translation functionalities. (Figure was created with
BioRender.com).
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a fundamental element of HMTs, triggers histone H3 lysine 27
trimethylation [108, 109] which is recognized to have a significant
impact on corneal scarring [110]. Similarly, altered expression
levels of Disruptor of telomeric silencing-1 like (Dot1L) which is
correlated with H3K79 that results in keratitis [107]. We strongly
believe that further investigation into protein methylation
modification should be undertaken in CDs.
Different methylation levels correlate with disease severity, and

they can act as vital epigenomic markers for the development of
effective diagnostic, prognostic and predictive biomarkers for
diseases such as cancers [111], neurological diseases [112]. Recent
studies have focused more on the effects of methylation
modifications in ocular diseases [113]. Our review offers an in-
depth exploration of the topic by covering a broad range of
processes, including CE repair, ocular fibrosis, and the oxidative
stress and inflammatory response caused by different methylation
levels. we specifically highlight the significance of methylation
modification in relation to the cornea.

METHYLATION IN CORNEAL PHYSIOLOGY AND PATHOLOGY
Modification factors vary in cornea
The role of methylation modifiers such as writers (DNMT1,
DNMT3A, METTL1, METTL3), erasers (TET1, FTO and ALKBH5) and
readers (Methylated CpG binding protein 2, YTHDF1-3, YTHDC1-2)
in ocular tissues have been widely reported [81, 114–117]. The

expression of these methylation modifiers, namely DNMT1,
DNMT2, DNMT3A, DNMT3L, and FTO, can vary during both normal
corneal physiological activities and pathological processes
[28, 30, 118] (Tab.1). Specifically, DNMTs catalyze DNA methylation
modifications in the eye and are involved in various tissues of the
preocular segment, including the human cornea, conjunctiva, lens
anterior capsule, trabeculae, and related cells. In particular,
DNMT1, 2, 3A, and 3L proteins are expressed in the human
cornea, with DNMT2 preferentially present in corneal endothelial
orientation [118]. Therefore, studying the function of DNMTs in
the cornea is crucial. Moreover, different methylation regulators
may also be expressed differently in different CDs [119]. Thus, it
appears that factors that modify methylation can impact corneal
function under both healthy and pathological circumstances.
Additionally, these factors can also regulate corneal cell function
by activating and expressing specific genes associated with
methylation modifications (Fig. 5).

Regulation of corneal physiology and pathogenic processes
It is crucial to understand how methylation modification affects
ocular cellular physiology, and pathology. The majority of ocular
diseases in humans have also been linked to methylation
dysfunction [120] and CDs continue to be a major cause of vision
loss worldwide. The cornea, a transparent tissue with refractive
capacity, has to maintain the homeostasis of five layers in order to
function normally [121]. These layers are the epithelium,

Fig. 4 The mechanisms of histone methylation. A Each of the histones H2A, H2B, H3, and H4 has two molecules in the histone core particle.
Histones are highly conserved proteins with flexible N- and C-terminal domains as well as a conserved globular domain. B Histones combine
with DNA to form nucleosomes, which then assemble into chromatin in eukaryotic cells. Most histones have globular cores, with flexible “tails”
extending from their N-termini. C Histone methylation is regulated by HMTs such as SUV39H1, DOT1L, EZH2 and HDMs such as LSD1 and
JMJD. Several studies have explored the association between the biological processes during CDs and corresponding HMTs and HDMs. (Figure
was created with BioRender.com).
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Descemet’s membrane, corneal stroma, Bowman’s layer, and a
monolayer of metabolically active but mitotically inactive
endothelial cells [27, 122]. Every layer of cells is vital for the
proper functioning of the cornea, the epithelium serves as a
protective barrier and helps to maintain a smooth surface and
Bowman’s layer provides additional support to the stroma below
it. The corneal stroma is the thickest layer and is responsible for
the corneal strength and transparency. Descemet’s membrane
acts as a basement membrane and provides support for the
endothelial cells, which regulate fluid balance in the cornea
[27, 123, 124]. Without any one of these layers, the corneal normal
functioning would be compromised.
Methylation regulators may affect the mechanisms of corneal

physiology, including corneal differentiation, pathogenic pro-
cesses, and homeostasis. According to Sasamoto et al., knock-
down of TET2 in CECs led to a considerable reduction in 5hmC
peak distribution, and effected proteins involved in corneal

differentiation, including KRT78, MYEOV and MAL [125]. Further-
more, recent research has shown that methylation-induced
genetic differential status is linked to the differentiation of
induced pluripotent stem cells into CECs [126]. Induced pluripo-
tent stem cells produced from corneal limbal epithelium cells are
more likely to differentiate into limbal-like stem cells than those
derived from fibroblasts, possibly due to epigenetic methylation
changes in genes related to limbal epithelium cells (such as NTRK1,
which codes for TrkA) [127]. Furthermore, it appears that DNA
methylation regulatory factors are closely related to corneal
functions such as enhancing the expression of tight junction-
related genes like claudin 6 and claudin 9 [128].
Methylation modifications play crucial roles in the pathophy-

siological processes of several complex CDs (Table 1 and Fig. 5),
including inflammation [129], immunity [130], neovascularization
[30] and stromal remodeling [131] (Fig. 5). For instance, Luo et al.
discovered that upregulation of DNMT1 and DNMT3B during

Fig. 5 The methylation balance is disrupted in corneal diseases. Maintaining the equilibrium between methylation and demethylation is
therefore necessary for sustaining proper cornea function. In corneal diseases, methylation modifications can trigger changes in corneal
function and related pathological processes. Regulatory factors for methylation modification can cause changes in methylation levels which,
in turn, can affect gene expression. Ultimately, these changes can lead to neovascularization, activation of ROS, and increased expression of
inflammatory-related factors. (Figure was created with BioRender.com).
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corneal epithelial wound healing (CEWH) affected corneal cell
proliferation and migration [62]. Regarding interferon’s function in
innate immunity, the cornea is not an exception [130]. In addition,
excessive METTL3 promotes m6A methylation to decrease
interferon synthesis, implying that methylation negatively mod-
ulates interferon response [132].
Abnormal angiogenesis is a prominent feature of many CDs,

including corneal dysgenesis. The central corneas are normally
avascular, but they become vascularized when they are exposed
to inflammation, infection, or hypoxia. Under certain pathological
conditions, the level of FTO through m6A mRNA demethylation is
increased in neovascularized corneas, specifically, silencing FTO
increases m6A methylation levels in proangiogenic genes, such as
FAK. This results in reduced RNA stability and faster RNA
degradation via YTHDF2, which attenuates suture-induced neo-
vascularization [30, 133]. In another study, the knockout of METTL3
inhibited corneal neovascularization in vivo, METTL3 enhances the
translation of specific target genes, including lrp6 and disheveled
1. This enhancement is mediated by YTHDF1. Moreover, the
involvement of these genes suggests that they may play a role in
regulating WNT signaling [134]. Additionally, knocking out METTL3
in corneal limbal stem cells promotes the proliferation and
migration of in vivo cells, resulting in fast repair of corneal injury
[135, 136]. During corneal injury, CECs also migrate more rapidly.
Corneal limbal stem cells possess the ability to regularly renew
and differentiate, and they migrate to the central cornea to
replace damaged or dead CECs [137]. This research highlight the
crucial role of m6A in regulating corneal injury repair and offers
new insights for the treatment of CDs [136].
Furthermore, infection, trauma, chemical or surgical damage to

the cornea can cause fibrosis in the cornea, leading to impaired
vision. Some studies discovered that corneal fibrosis may be
related to methylation levels [138, 139]. Promoter and histone
methylation could regulate the differentiation of keratinocytes
into wound-healing fibroblasts. Maspin enzyme, which is largely
epithelial in origin but is also present in corneal stromal
keratinocytes, is hypothesized to be downregulated during the
transformation of keratocytes to fibroblasts. This involved
promoter methylation on a CpGi and histone methylation of the
maspin gene [140, 141]. The scarring of the cornea is caused by
fibrosis of the tissue at the end of the process of corneal injury,
which may result in vision loss [121]. However, the mechanism
behind corneal scarring is still not well understood, and there is no
specific treatment to alleviate or cure corneal scarring. Current
treatment modalities are mainly corneal transplantation [142].
Recent efforts have focused on understanding the role of histone
methylation in corneal scar formation. EZH2 has been shown to be
upregulated in certain fibrotic diseases tissues [143]. A study
conducted by Liao et al. revealed that the expression of EZH2 was
upregulated in vitro (cellular models of corneal myofibroblasts),
high-throughput transcriptome sequencing revealed that blocking
EZH2 may inhibit corneal fibroblasts (CFs) activation by inducing
the expression of antifibrotic genes [110]. This process suggests
that effects of gene promoter and histone methylation may be
associated with corneal fibrosis.

Methylation and demethylation in dynamic equilibrium
Methylation and demethylation processes are in a state of
dynamic equilibrium. The methylation process can be influenced
by various factors, including genetics, individual characteristics,
and environmental influences such as aflatoxin B1 and air
pollution. While genetic factors are known to affect susceptibility,
non-genetic risk factors like DNA methylation modifications,
histone modifications, and inflammatory risk factors are also
gaining attention in this regard [144–147]. Methylation levels in
tissues are variable and dynamic [148, 149], with a balance
between establishing and eliminating methylation [33], which is
mediated by methyltransferases and demethylases [150] (Fig. 5).

DNA methylation and demethylation. During DNA demethylation
processes, the commonly occurring demethylase TET protein
tightly regulates DNA methylation modifications by promoting
active DNA demethylation and dynamically regulating the levels
of 5mC and 5hmC [151], thereby regulating the activation of
specific gene expression [152]. DNA methylation can turn off gene
expression, and demethylation can turn on gene expression [153].
Indeed, specific TF binding sites are present after some promoter
demethylation. These sites bind to non-coding DNA sequences
surrounding or covering the promoter region, affecting RNA
polymerase function, and blocking gene activation. In the case of
mTOR gene promoter methylation caused by alkali burns (Fig. 5),
rapamycin may erase or diminish the methylation so that certain
TF binding sites become accessible to the transcription factor [31].

RNA/Histone methylation and demethylation. The dynamic char-
acter of methylation is implied by the dynamic changes in
methylation regulatory factors such UHRF1 and TET3 [66, 154].
Regulatory molecules that maintain the dynamic balance of
methylation (such as METTL3/FTO) are expressed in different
tissues of the eye as well as in cornea [155]. Maintaining the
equilibrium between methylation and demethylation is critical for
proper cornea function. For instance, the methyltransferase
METTL3 plays a biological role in maintaining homeostasis in
mouse T cells and in differentiated T cell-mediated pathogenesis
[156]. Disrupting this balance may contribute to the development
of corneal immune diseases. The different sites and patterns of
histone methylation can evolve many methylation modification
patterns in cornea, which increase the complexity and diversity of
gene expression (Fig. 5). It is the duty of HMTs and HDMs to
maintain the level of histone methylation.
Furthermore, methylation is dynamic in different stages of the

host. For instance, post-translational methylation modifications in
aging ocular tissue are dysregulated. Several methylation meta-
bolites can accumulate in aged corneas, and other ocular tissue
[157]. The increased accumulation of methylated metabolites can
potentially impact methylome metabolism.
Overall, understanding the dynamic nature of methylation and

demethylation processes along with their regulation by factors like
genetics, environment, and enzymatic activities is crucial for
comprehending the complex mechanisms involved in gene
expression and tissue function.

METHYLATION IN CDS
Keratitis
Current studies on methylation in keratitis focus mainly on Herpes
simplex keratitis (HSK), which is caused by the highly prevalent
Herpes simplex virus (HSV) [158]. Ocular disease brought on by
HSV-1 infection is typically manifested as HSK [159]. In developed
countries, HSV infection is a leading cause of corneal blindness
[160]. Various pathological processes, such as inflammation,
oxidative stress, neovascularization, and endothelial damage, can
result in corneal damage, clouding, vision loss, and even blindness
[159, 161]. Unfortunately, there are currently limited treatment
options available. Recent studies have demonstrated that
methylation-related mechanisms tightly regulate the establish-
ment of latency and reactivation of HSV-1. Due to the continuous
expression of latency-associated transcripts and simultaneous
transcriptional suppression of lytic genes, histone methylation
modifications are involved in the differentiation of active and
inactive genomic regions. This suggests the significance of histone
methylation in HSV-1 [105, 162]. As more is understood about the
role that HKM plays in herpes virus, it could become an
increasingly important epigenetic target for treating ocular HSV
infections.
When the host is infected with the virus, the innate and

adaptive immunity systems of the host inhibit HSV-1 replication
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and act as anti-infective role. However, the virus also damages the
host’s immune system, leading to herpes-related immune
inflammatory response in the corneal stroma that is mainly
regulated by the pro-inflammatory CD4 Th1 and Th17 cells
[163, 164]. A crucial balance exists between inflammatory T cells
and regulatory T cells (Tregs), such as Foxp3+ CD4 T cells between
other pro-inflammatory CD4 T cell subsets [163, 165, 166]. Studies
have demonstrated that the specific demethylation region in the
highly conserved intron 2 of Tregs is vital for the transcription of
the Foxp3 gene. When this region is demethylated, transcription
factors Ets-1 and CREB can bind to each other and act as
enhancers of sequential transcription of the Foxp3 gene [167, 168]
and Foxp3 gene expression is controlled by CREB/ATF sequence-
specific binding and CpGi DNA methylation, etc. [168]. Moreover,
5-Azacytidine (5-Aza) covalently binds to cysteine residues at
DNMT catalytic sites, ensuring the normal function of Tregs to
reduce corneal inflammation. An interesting finding of this
research was the 5-Aza therapy enhanced the function and
suppressive activity of Tregs, reducing lesions and effectively
controlling virus-induced inflammation [29]. Furthermore, oxida-
tive stress is considered as one of the critical factors in the
pathogenesis of CDs [169], including keratitis. In the progression
of HSK, the activity of superoxide dismutase continues to
decrease, while the levels of malondialdehyde and hydrogen
peroxide continue to increase [170]. Several investigations have
indicated that Dot1L may regulate oxidative stress, because Dot1L
plays a specific role in catalyzing the methylation of H3K79 in the
targeted genes [171, 172]. Moreover, Dot1L can be used to
regulate the expression of pro-inflammatory factors that involved
in the p38-MAPK pathway such as IL-1β, matrix metalloproteinases
(MMP)-1, MMP-2, IL-6 and MMP-9 in HSK [107]. Therefore,
reducing the formation of reactive oxygen species (ROS)
decreased corneal oxidative stress and inflammatory response,
suggesting that Dot1L could be a potential target for therapeutic
interventions to treat HSK.
Furthermore, in a study of global m6A levels, Hu et al.

discovered that the expression of METTL3 was considerably
higher in fungal-infected corneas than in normal corneas. This
suggests that m6A methylation may be implicated in the
transduction pathways of fungal keratitis by regulating several
critical signals, including the PI3K-Akt signaling pathway [28].
Above all, inhibiting methylation modification may limit pro-
inflammatory and pro-oxidative stress in numerous ways, thereby
preventing the onset of keratitis.

Corneal injury
The CE, which is the outermost layer of the cornea, can regenerate
and is especially sensitive to physical, chemical, and pathological
stimuli [173, 174]. CEWH is crucial for repairing the damage caused
to the cornea and restoring its integrity and transparency.
Recent studies have demonstrated that DNA methylation, RNA

methylation and histone methylation modifications can regulate
CEWH [62, 175]. Luo et al. found that corneal epithelial injury led
to higher levels of DNMT1 and DNMT3B expression, as well as
significant overall DNA hypermethylation modifications. Upregu-
lation of DNMT1 significantly increased the rate at which CE
injuries healed, as well as the ability of hCECs to proliferate and
migrate. The proposed mechanism is that DNA hypermethylation
decreases miR-200a and Cyclin-dependent kinase inhibitor 2B
(CDKN2B) expressions [62]. Furthermore, modifying mRNA with
5-Methylcytidine via NSUN-2 also affects CEWH. Knocking down
NSUN-2 delayed CEWH and inhibited hCECs proliferation and
migration in vitro [176].
DNA and RNA methylation, along with the upregulation of

histone methylation transferase suppressor of variegation 3–9
homolog 1 (SUV39H1), are involved in CEWH following corneal
injury. Specifically, SUV39H1 is crucial for controlling CECs
proliferation by suppressing p27 through H3K9me3-mediated

mechanisms during CEWH. Epigenetic modifications like SUV39H1
hold promise as potential therapeutic interventions to speed up
the process of corneal repair [175].
Corneal chemical injury is a common ophthalmic emergency,

and alkalis can penetrate ocular structures with high capacity,
resulting in burns that have a significant impact on vision.
Clinically, corneal alkali burns (CAB) can lead to a range of
complications such as delayed epithelial healing, conjunctival scar
formation, dry eye disease, vascularization and corneal clouding
[177]. The major pathological features following CAB are corneal
vascularization, inflammation, and fibrosis [178, 179]. Several
studies have shown that rapamycin, a mTOR receptor inhibitor,
can reduce corneal turbidity and neovascularization in CAB by
various signaling pathways like TGF-1/ERK [180, 181]. An interest-
ing study by Li et al. discovered that DNMT3B was primarily
responsible for methylation of themTOR gene promoter after CAB.
This resulted in the activation of the PI3K/AKT/mTOR signaling
pathway and overexpression of HIF-1α resulted in high Vascular
endothelial growth factor (VEGF) expression [31]. Further research
is needed to determine if mTOR can function as a practical
therapeutic target to mitigate neovascularization during CAB
therapy via the blockade of downstream pathways. Moreover, a
recent study demonstrates that the histone methylation also takes
part in CAB. Through lowering Forkhead-box protein O3a (FoxO3a)
mediated oxidative stress, inhibition of EZH2 prevents corneal
neovascularization [182]. In detail, EZH2, a core component of
HMTs, is responsible for histone H3 lysine 27 trimethylation [108].
More evidence points to the possibility that methylation-inhibiting
enzymes could slow the progression of several diseases.

Corneal dystrophies
Corneal dystrophies are rare genetic disorders that impact both
eyes. They occur due to the accumulation of specific substances
produced in various layers of the cornea. There are different
classifications of corneal dystrophies depending on anatomical
structure, clinical manifestations, and inherence patterns
[183, 184]. Currently, methylation studies on corneal dystrophies
are mainly conducted in Fuchs endothelial cell dystrophy (FECD),
with a few in Granular corneal dystrophy type 2 (GCD2) [185–187].
The most prevalent corneal endothelial dystrophy, FECD, is a

significant indicator and the leading cause of corneal transplant
surgeries among patients worldwide [188, 189]. FECD is a highly
prevalent, progressively bilateral disease [190]. Generally, the
gradual and persistent loss and dysfunction of endothelial cells in
both structures and function eventually result in corneal edema
[142, 191]. The corneal endothelial cells (CEnCs) are derived from
the neural crest and are in a specialized extracellular mesenchyme.
Many diseases that impact CEnCs can compromise corneal
function and visual acuity. Therefore, it is crucial to maintain a
specific physiological range of stromal hydration for clear vision
[192]. FECD is linked to several spontaneous and inherited
mutations, characterized by abnormal accumulation of extracel-
lular mesenchyme, but the underlying molecular pathogenesis of
it is unknown [187, 193]. DNA methylation has recently been
suggested to affect corneal endothelial metabolism, cytoskeletal
structure, and ion transport [186]. Some investigators have
speculated that DNA methylation patterns may contribute to
corneal edema and the resulting loss of corneal transparency in
FECD [12]. Besides, miRNA gene promoters are often affected by
abnormal DNA methylation in FECD. miRNAs, which are tiny non-
coding RNAs that have undergone extensive evolutionary
conservation, regulate not only fundamental biological processes
including development, stress, and metabolism but also the entire
course of disease development [194, 195]. The extracellular matrix
(ECM) inducible genes snail and ZEB1 are highly expressed in FECD
[119]. Therefore, a study confirmed that aberrant methylation of
miRNA promoters also contributes to FECD. MiR-199B hyper-
methylation completely silences the maturation transcript miR-
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199b-5p, increasing the expression of snai1 and ZEB1, as well as
activating the transforming growth factor β (TGFβ) signaling
pathway [119, 187]. These effects lead to increased ECM
deposition in FECD, suggesting a methylation-regulated mechan-
ism for ECM protein production and secretion by CEnCs.

Other CDs
In addition to the aforementioned CDs, methylation modification
has also been explored in a few other corneal conditions such as
keratoconus (KTCN), brittle cornea syndrome type 2 (BCS2) and
diabetic keratopathy.
KTCN is identified by progressive corneal dilation and thinning,

which causes vision impairment and significantly lowers patient’s
quality of life. The disease is influenced by a variety of factors,
including complex gene, individual differences, and environmen-
tal effects such as ultraviolet radiation [196–198]. Nonetheless, the
underlying cause or pathogenesis of KTCN remains unclear [199].
Additionally, there is growing interest in non-genetic factors, such
as epigenetic factors like DNA methylation modifications, are
gaining attention for their potential involvement in symptom
development. To investigate the epigenetic role of KTCN, Kabza
et al. performed DNA methylation sequencing and analysis of
corneas affected by KTCN. The study confirmed 112 differentially
methylated regions in the DNA, many of which overlapped with
the sensitive sites of KTCN. Furthermore, 12 genes including
WNT5A, IQGAP2, PARVB, WNT3, and RB1 were downregulated
[120, 200]. Intriguingly, a study showed that some of these genes
had been downregulated in the corneas from patients with KTCN
compared with non-KTCN [201]. Taken together, DNA methylation
may be a possible explanation causing KTCN. However, the
researchers discovered dysregulation of related genes, such as
TGFβ1, P4HB, and BCL2, in patients with KTCN when they
examined the mitochondrial DNA (mtDNA) methylation and
sequencing of those genes. No differences were found in the
mtDNA methylation sequencing, suggesting that the role of
mtDNA methylation modifications in KTCN was not responsible for
expression differences. The deeper mechanisms are worth
exploring [202].
Furthermore, BCS2 is an inherited connective tissue disorder

with PRDM5 being one of the most often mutated genes
[203, 204]. A study has identified H3K9me2 on the PRDM5 target
gene in CFs from BCS2 patients, suggesting that the mutation may
be responsible for the activation of CFs through the histoplasmo-
sis [205]. It appears that this mutation may exert epigenetic effects
via histone methylation, resulting in irreversible ocular damage.
In addition, diabetic keratopathy is characterized by impaired

CEWH, compromised barrier function, and diminished tear
secretion, among other features [206]. Recent research comparing
the DNA methylation patterns of limbal epithelial cells in primary
cultures from diabetic and non-diabetic individuals reveals
epigenetic changes in the diabetic cornea. These changes include
dual inhibition of WNT5A through DNA methylation and miRNA
activity suggesting that WNT5A serves as a novel stimulator for
CEWH and could be a potential target for improving wound
healing and stem cells in diabetic corneas [14]. Simultaneously,
this provides new evidence for the significant role of methylation
in CDs.

CONCLUSION AND PROSPECTS
Targeting risk factor genes
The identification of aberrantly methylated CpG loci and the
characterization of their distribution patterns, which are comple-
mentary diagnostic methods widely used in oncological and
immunological diseases [207, 208]. Similarly, the promoters of
various methylation-related key genes are closely associated with
CDs, such as mTOR gene in CAB and miRNA gene promoters in
FECD, which may be target for detection [31, 187]. This means that

identifying the differentially methylated loci for some genetic CDs
seems particularly crucial. Additionally, the methylation levels of
specific genes in peripheral blood could serve as biomarkers for
early disease diagnosis or for predicting drug efficacy. For
example, this could involve conducting screenings to detect lung
cancer at an early stage or evaluating the efficacy of VEGF-
targeted drugs on cancer cells [209, 210]. We must acknowledge
that more basic and clinical research are still needed for the
application of epigenetic modifications as non-invasive biomar-
kers in ophthalmology diagnosis.

Targeting metabolic synthesis
Metabolic substances such as SAM, folic acid [211] and vitamin
B12 [212] are necessary for DNA and chromatin alterations,
serving as methyl donors for DNA and histone methylation.
According to a study conducted by Lan et al., folic acid
supplementation significantly reduced the toxic effects of drugs
on the cornea [213], including in a clinical trial [214]. Moreover, the
methylation level is closely connected to changes in folate intake
[215]. Succinate and ferredoxin can also affect DNA and histone
demethylation enzymes. Specifically, high levels of succinate can
inhibit DNMT activity, leading to decreased DNA methylation
levels in cells [216]. Furthermore, succinate is significant in
signaling pathways related to inflammation, hypoxia, and
metabolism [217] that may take part in CDs. Therefore, metabolic
changes may result in global changes in the methylation-
associated genome. The corresponding changes in triggered
metabolites may imply potential therapeutic targets, and meta-
bolic changes can modulate specific loci and induce genes,
leading to persistent epigenetic modifications that can be
inherited between generations.

Targeting enzymes
Methylation-related regulators or inhibitors can influence the
expression levels of upstream and downstream factors by
affecting methylation balance in their promoters. Currently, the
treatment modalities for prevalent corneal pathologies primarily
strive to manage inflammation, prevent infection, and improve
visual acuity to the greatest extent feasible. Methylation regulatory
agents have the plausible ability to supplement the extant
therapies. Some researchers have hypothesized that combining
anti-VEGF with DNMT inhibitors may improve the treatment of
neovascularization-related ocular diseases [218, 219]. Clinically,
epigenetic therapies are more targeted and cause fewer side
effects than regular drugs. Some of these treatments have shown
promise in treating systemic diseases by inhibiting DNMTs and
may be a potential treatment for CDs. The DNMT inhibitors 5-Aza
(azacytidine; Vidaza) and 5-Aza-20-deoxycytidine (decitabine;
Dacron) have received FDA approval for the treatment of
cutaneous T-cell lymphoma and bone marrow cancer, respectively
[2, 220]. However, the use of epigenetic modalities to treat CDs is
still in clinical trials. For instance, EZH2 inhibitors (EPZ-6438) are
expected to become drugs for corneal scarring [110]. Future
epigenetic advancements may lead to a deeper understanding of
the pathophysiology of CDs. Since DNMT is associated with
diseases, it is possible that DNMT modulators will help us treat CDs
more effectively than current methods allow.

Perspectives
New technological advancements have renewed interest in using
methylation modifications to treat ocular diseases. Methylation, a
critical biochemical process, plays a crucial role in DNA and
histone modifications, corneal gene regulation and cell fate. It also
affects pathways associated with CDs. Some progress has been
made in studying methylation modifications in the eye, particu-
larly in the retina. There is a growing interest among researchers in
PTMs, including methylation and ubiquitination. Therefore, it is
necessary to examine more closely the specific role that
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methylation modifications play in the mechanisms of CDs. Studies
of methylation modifications on the cornea currently concentrate
on corneal cell differentiation, changes in gene expression and its
methylation sites in CDs, as well as changes in related regulatory
factors. As a result, disease genes are enriched for important
pathways and predictions. Lack of animal models for DNA
methylation editing, which targets de novo DNA methylation
editing by linking the action of CpGi, is the fundamental obstacle
to DNA methylation investigations. To further advance our
understanding of methylation modifications, in-depth studies
can be conducted using single cell sequencing and triple
sequencing techniques. On the one hand, it helps understand
the importance of methylation modifications for eye develop-
ment, which can be analyzed by methylation regulatory factors
such as transferases and demethylases, as previous studies on
zebrafish eye development clearly demonstrated the importance
of DNMTs and dynamic expression patterns [221, 222]. On the
other hand, it will enable better prognostic analyses, early
screening, diagnosis, and targeted treatment of CDs. More
importantly, it will provide novel treatment strategies for CDs,
particularly those that are unresponsive to conventional therapies.
Despite the progress made, challenges and questions remain. For
example, what are the profiles of methylation regulatory factors in
different types of corneal cells? How does each type of molecule
change in corneal and related ocular diseases? What are the main
contributing elements to complex CDs? Additionally, what roles
do non-CpG methylation, m6A-related RNA methylation, and
histone methylation play in corneal development and diseases? Is
there a close correlation between the effects of methylation
modifications? Finally, are there any side effects associated with
the concomitant use of related inhibitors for CDs treatment? These
considerations should be considered in future studies. Further-
more, it is crucial to conduct more extensive research to identify
target molecules and biomarkers, elucidate the pathogenesis of
epigenetically linked diseases and evaluate the safety and
effectiveness of new epigenetic therapies for treating CDs.
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