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Colorectal cancer (CRQ) is a highly prevalent and lethal malignancy worldwide. Although immunotherapy has substantially

improved CRC outcomes, intolerance remains a major concern among most patients. Considering the pivotal role of the tumor
microenvironment (TME) in tumor progression and treatment outcomes, profiling the TME at the transcriptomic level can provide
novel insights for developing CRC treatment strategies. Seventy-seven TME-associated signatures were acquired from previous
studies. To elucidate variations in prognosis, clinical features, genomic alterations, and responses to immunotherapy in CRC, we
employed a non-negative matrix factorization algorithm to categorize 2595 CRC samples of 27 microarrays from the Gene
Expression Omnibus database. Three machine learning techniques were employed to identify a signature specific to
immunotherapy. Subsequently, the mechanisms by which this signature interacts with TME subtypes and immunotherapy were
investigated. Our findings revealed five distinct TME subtypes (TMESs; TMES1-TMESS5) in CRC, each exhibiting a unique pattern of
immunotherapy response. TMES1, TMES4, and TMES5 had relatively inferior outcomes, TMES2 was associated with the poorest
prognosis, and TMES3 had a superior outcome. Subsequent investigations revealed that activated dendritic cells could enhance the
immunotherapy response rate, with their augmentation effect closely associated with the activation of CD8' T cells. We successfully
classified CRC into five TMESs, each demonstrating varying response rates to immunotherapy. Notably, the application of machine
learning to identify activated dendritic cells helped elucidate the underlying mechanisms contributing to these differences. We
posit that these TMESs hold promising clinical implications for prognostic evaluation and guidance of immunotherapy strategies,

thereby providing valuable insights to inform clinical decision-making.
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INTRODUCTION

Colorectal cancer (CRC) ranks as the third most prevalent
malignancy globally and constitutes the second leading cause of
cancer-related mortality [1, 2]. The standard therapeutic approach
for CRC primarily includes radical resection in conjunction with
chemotherapy, immunotherapy employing immune checkpoint
inhibitors (ICls), and radiotherapy. Owing to their notably high
long-term remission rates, ICls have progressively evolved into the
predominant modality for CRC treatment [3]. However, individual
differences in patient responses to ICls exist [4, 5]. Consequently,
in pursuit of precision medicine for CRC, it is necessary to
elucidate the mechanisms underlying patient-specific responses
to ICls.

The tumor microenvironment (TME) refers to the internal and
external surroundings in which tumor cells exist; it plays a
crucial role in the occurrence, progression, and metastasis of
tumors. It consists of stromal and various other cells, such as
cytotoxic T cells [6], dendritic cells (DCs) [7, 8], and cancer-
associated fibroblasts (CAFs) [9]. The TME plays a pivotal role in
determining clinical outcomes and responses to ICls [10-14].
Traditionally, cytotoxic T cells are considered crucial anti-tumor

immune cells [6]; however, their transition into exhausted
T cells can potentially diminish response rates to ICls [15].
Within the TME, tumor-infiltrating immune cells exhibit a
dualistic function [12, 13]. Understanding the distinctive TME
features of CRC will help formulate more precise treatment
strategies.

Several gene expression-based classification frameworks have
been proposed to classify CRC into subtypes with distinct
molecular and clinical features [16-18], such as consensus
molecular subtypes (CMS) [16] and CRC intrinsic subtypes (CRIS)
[17]. Various indicators, including PD-L1 [19], CXCL9 [20], and
IFN-y [21], have been employed as predictive markers for
immunotherapy effectiveness. However, these classification
frameworks and indicators are yet to be validated in robust
models. Accordingly, we developed an innovative classification
framework that integrated CRC and TME elements to effectively
stratify immunotherapy responses and discern predictive factors.
Through the correlation of these classification frameworks and
factors, we successfully elucidate the potential mechanisms
underlying the variations in immunotherapy efficacy across CRC
subtypes.
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RESULTS

Five tumor microenvironment subtypes of colorectal cancer
were identified via unsupervised clustering

In the training cohort, variations in specimen collection times,
institutions, and sequencing platforms could introduce possible
batch effects affecting real-world data accuracy. To ensure reliable
results, we assessed and mitigated these batch effects in the
datasets (Fig. STA). Outlier samples within the training cohort were
identified using hierarchical cluster analysis, resulting in 2595 sam-
ples after excluding 24 outliers. Signature scores were calculated
by averaging the gene expression levels across 91 signatures.
Using hierarchical clustering based on signature scores to filter
91 signatures, we retained 77 signatures that exhibited robust
correlations (Fig. TA). Univariate Cox proportional hazard model-
ing revealed an association between these signatures and CRC
prognosis, with 51 signatures indicating a protective effect,
whereas nine were unfavorable (Fig. S1B).

To explore differences in the TME within CRC, we utilized the
NMF algorithm to identify score differences in the training cohort
and stratified the patients accordingly. CRC exhibited notable
differences in the TME when k=5 (Fig. 1B). Consequently, the
patients were categorized into five TME subtypes (TMES1-TMES5).
The t-distributed stochastic neighbor embedding (t-SNE) analysis
revealed a prominent distinction between TMES1 and
TMES3-TMES5, whereas TMES2 exhibited extensive distribution
(Fig. 1C). The heatmap further highlighted the score differences
among TMESs (Fig. 1D). Similar differences in scores were
observed in validation cohorts (Fig. S1C), and our submap analysis
confirmed the reliability of the classification (Fig. S1D). Notably,
these TMESs were associated with overall survival (OS; Fig. 1E,
Fig. STE). TMES2 was associated with the poorest prognosis,
whereas TMES3 demonstrated a superior outcome, and TMES1,
TMES4, and TMES5 had relatively inferior outcomes (Fig. 1E).

We also characterized the relationship between the TMESs and
key signatures (Fig. 1F). TMES1 and TMES5 demonstrated an
intermediate prevalence of signatures, with TMES1 showing a
notable IFN-y score. TMES2 demonstrated elevated pro-tumor
signatures, including macrophages and angiogenesis scores, but
lower levels of anti-tumor signatures, including cytotoxic T cell
numbers, IFN-y levels, and CYT scores, which were lower than
those of TMES3. TMES3 had a significantly increased abundance of
anti-tumor signatures, particularly cytotoxic T cell numbers, CD8*T
cell numbers, IL-12 levels, and leukocyte infiltration. In contrast,
TMES4 exhibited the lowest levels of various signatures, including
cytotoxic T cells, leukocyte infiltration, CYT, and IFN-y levels.

TMESs are conserved across various cancers

Transcriptomic data from pan-cancers were analyzed to validate
the applicability of our classification framework across various
cancers. The TCGA cohort contains over 10,000 tumor samples
from 33 cancers. To account for tissue-specific effects, we
eliminated them from the TCGA cohort (Fig. 2A). Our
transcriptomic-based classification framework successfully helped
stratify the TCGA cohort into five subtypes, closely matching the
training cohort (Fig. 2B). Independent validation in a pan-cancer
cohort (GSE2109), encompassing 2158 adenocarcinomas, further
confirmed the robustness of the classification framework (Fig. S2A, B).
Within the TCGA cohort, substantial variations in TMES scores were
evident (Fig. 2C), especially for BLCA, KIRC, LIHC (liver hepatocellular
carcinoma), and SKCM (Fig. 2D). Furthermore, we observed
heterogeneity in the distribution of TMESs among different cancers
(Fig. 2D, E).

Previous studies have established classification methods based
on anti-tumor immune signatures. For example, a study employed
29 functional gene expression signatures (Fges) to create four
conserved microenvironment subtypes across 24 tumors [10].
Another study categorized 33 cancers into six immune subtypes
using the activity levels of five representative signatures [22].
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Consequently, we investigated the correlation between TMESs and
these classification methods. Notably, TMES2 and TMES4 exhibited
appreciable enrichment of “F” and “D” within Fges subtypes, while
TMES3 showed higher ratios of “IE/F” and “IE” (Fig. 2F). Furthermore,
over 60% of TMES1 samples were categorized as “C2" in immune
subtypes; TMES3 had higher proportions of “C2" and “C3,” and
TMES4 was predominantly enriched “C1.” TMESs exhibited lower
ratios of “C4,” “C5,” and “C6" (Fig. 2G).

Despite their presence in diverse cancers, the clinical relevance
of TMESs requires further evaluation. We assessed the prognostic
implications of the TMESs in both pan-cancer and individual
cancers. In individual cancers, TMES2 survival was shortened (Fig.
$2C), while TMES3 and TMES1 showed superior prognoses in
multiple cancers (Fig. S2C). Subsequently, we conducted a
comparative analysis of the prognostic impact of TMESs along
with other classification methodologies. All three methodologies
were associated with the OS of patients in the pan-cancer analysis
(Fig. S2C-E). When analyzed for individual cancers, the TMESs
were significantly associated with OS in BLCA, KIRC, LIHC, and
SKCM (Fig. S2C-E).

Characterizing clinical features of TMESs

To infer the clinical and biological implications of TMESs, we
investigated the correlations between TMESs, clinical features, and
biological processes. TMES3 was more prevalent in female
patients with right-sided lesions, higher histopathological grades,
and higher microsatellite instability (MSI) ratios (Fig. 3A). In
contrast, TMES2 was predominantly associated with left-sided
lesions and advanced stages (lll and V).

We focused on transcriptomic data and performed gene set
enrichment analysis, providing substantial insights into the
biological understanding of TMESs (Fig. 3B). TMES1 showed
strong activation of the WNT, apoptosis, P53, and mismatch
repair pathways. TMES2 exhibited upregulation of metabolism-
related and cancer-related pathways, especially glucose meta-
bolism and the JAK-STAT pathway. TMES3 strongly upregulated
fatty acid metabolism, cancer-related pathways, cytokine path-
ways, and the mTOR pathway. In contrast, most biological
processes, except for the MAPK pathway, were suppressed in
TMES4. TMES5 displayed remarkable activity in metabolic path-
ways, with upregulation of the PI3K and PPAR pathways.
Additionally, we used the ESTIMATE algorithm to evaluate the
TME status. TMES3 had the highest immune score and lowest
tumor purity, whereas TMES2 exhibited a relatively abundant
stromal composition (Fig. 3C). We also correlated TMESs with the
CMS and CRIS subtypes (Fig. 3D).

Using Cox proportional hazard analyses of the training cohort,
we sought to determine the potential variations in outcomes
among TMESs. TMES2 was notably associated with an unfavorable
prognosis, whereas TMES3 was significantly associated with a
favorable prognosis. Similarly, TMES1, TMES4, and TMES5 were
associated with a favorable prognosis (Fig. 3E). Importantly, TMES
exhibited stronger prognostic associations than the CMS and CRIS
subtypes (Fig. 3E-G), indicating their robust ability to predict CRC
outcomes.

Genomic landscape of TMESs

Genomic alterations in driver genes can affect anti-tumor
immunity and TME activity. Therefore, we explored the association
between driver gene mutations in CRC TMESs [23]. Initially, we
analyzed the association between the driver gene’s mutation
frequency and TMESs (Figs. 4A and S3A). We observed higher
mutation frequencies in APC, TP53, and KRAS across various
subtypes. Mutations in PTEN and PIK3CA were prevalent in TMEST,
whereas BRAF mutations occurred in TMES3, consistent with their
known association with MSI tumors [24]. We characterized
the mutation status of the driver genes in validation cohort 1
(Figs. 4B and S3B). Driver genes showed relatively high mutation
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ratios in TMES3, whereas only a few genes were frequently

mutated (i.e, NRAS and SMAD2) in TMES2 (Fig. 4B).

Next, we investigated the relationship between CNV and TMESs
in validation cohort 1. Somatic CNV did not differ between the
TMESs (Fig. 4C). Figure 4D, E illustrate the chromosomal locations
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of driver genes and alterations in CNVs. Notably, GNAS amplifica-

tion and SMAD4 deletion were the most prominent CNV

alterations in driver genes (Fig. 4E). Although CNV alterations in
driver genes varied across subtypes, BRAF displayed an amplified
state (Fig. S3C). Moreover, we observed heterogeneity in the
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immunogenicity of TMESs, including TMB, SNV, LOH, aneuploidy,
neoantigen load, and leukocyte fraction (Fig. 4F—K).

Dynamic evolution of TMESs in immunotherapy

As the TME directly affects the efficacy of ICls, we investigated
the relationship between TMESs and ICl responses to assess
their potential predictive value. The TIDE scores of CRC against
ICls were assessed by utilizing the TIDE algorithm and

SPRINGER NATURE

correlating them with TMESs. Waterfall plots clearly illustrate
the correlation between TIDE scores and TMESs (Fig. 5A).
Patients were divided into responders and non-responders
based on their TIDE scores, and the roles of TMESs in ICI
responses were compared. Notably, TMES2 responders
accounted for only 11.8-14.6% (Fig. 5B), while TMES5 had
a higher responder proportion, in the range of 61.3-78.0%
(Fig. 5B). Similar trends were observed in three independent ICI

Cell Death Discovery (2024)10:162
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cohorts (Figs. 5C-E and S4A-C), where TMES2 had the lowest
percentage of responders (6.1-29.7%, Fig. 5E), while TMES3 and
TMES5 had higher percentages, ranging from 13.0-42.9 and
15.0-60.0%, respectively (Fig. 5E). These results indicate that
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algorithm. D Sankey diagram linking TMES, CMS, and CRIS subtypes.
TMES, CMS, and CRIS subtypes.

TMES1-TMES5 can effectively predict the immunotherapy out-
comes for patients.

Immunotherapy can also affect and reshape the TME. There-
fore, dissecting the dynamic evolution of the TME during
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treatment can yield valuable insights into ICl treatment, and the
SKCM ICI cohort can be analyzed to assess TME evolution. Thus,
we analyzed the transcriptomic data from the SKCM ICl cohort
pre- and on-treatment. In the response group, TMES3 and
TMES5 emerged as the predominant subtypes, and these
subtypes remained unchanged or developed into similar
subtypes during treatment, whereas some non-responders to
TMES2 shifted to TMES5 (Fig. 5F). In contrast, most non-
responders in the non-response group remained unchanged
or transitioned toward TMES2 (Fig. 5G).

We tracked the microenvironmental changes in responders
and non-responders based on 29 Fges, and the results further
confirmed these evolutionary patterns (Fig. 5H, I). Generally,
responders exhibited an enriched immune composition and a
reduced proportion of malignant cells and stroma during
treatment (Fig. 5H), whereas, in non-responders, proportions

SPRINGER NATURE

of malignant cells and stroma remained constant or increased
(Fig. 51).

Machine learning-based identification of signatures
associated with immunotherapy

The TME composition is diverse, and its effects on tumors exhibit
heterogeneity. To further explore the mechanisms underlying
patient prognosis and differences in immunotherapy efficacy
among TMESs, we integrated multiple machine learning algo-
rithms to identify the most influential TME-related signature in
CRC. We applied three machine learning algorithms, namely
LASSO-Cox, RF, and SVM-RFE, to analyze the training cohort. They
identified 25, 15, and 44 signatures, respectively, with 10 signa-
tures being commonly identified across all three methods
(Fig. 6A-C). We evaluated the impact of these 10 signatures on
the prognosis of CRC (Fig. 6D), and the results revealed that
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STAT1_19272155, aDC, CSR_Activated, ICS5, and CD103pos played
prominent roles in the prognosis of CRC (Fig. 6E). Through further
comparison of the scores and survival differences of these five
signatures within TMESs, it was found that aDCs substantially
influenced the prognosis of all five TMESs (Figs. 6F, G and S5A-E).
Analysis of the validation cohort supported this finding (Figure
S5F-H). We assessed the predictive capabilities of five signatures
using ROC curves, and the results indicated that aDCs exhibited
the most outstanding predictive value (Fig. 6H).
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Previous studies have indicated that DCs play an anti-tumor role
by activating CD8'T cells through antigen presentation. aDCs
represent a functional state within DCs. Therefore, we hypothe-
sized that aDCs influence patient prognosis through immunolo-
gical effects. We performed a detailed analysis of the relationship
among aDCs and TMESs. The aDCs were enriched in TMES3 and
TMES5 but under-expressed in TMES2 and TMES4 (Fig. 6l). Our
research indicated a close association between TMESs and patient
prognosis (Fig. 1E) as well as immune therapy response rates
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Furthermore, aDCs were more abundant in responders (Fig. 6K).
Similar results were observed in the melanoma IClI cohort

high-aDC group were more likely to be associated with responders (Fig. 6L-0). In summary, we believe that TMESs may intervene in
and TMES3, whereas those in the low-aDC group were more patient prognosis by influencing the effectiveness of immune
strongly associated with TMES2 and non-responders (Fig. 6J). therapy through aDCs.

(Fig. 5B). By analyzing the immunotherapy response rates of
patients with high/low-aDC groups, we found that patients in the
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aDCs cooperate with the anti-tumor function of CD8'T cells
Previous studies have suggested the potential involvement of
aDCs in immunotherapy; however, the specific mechanisms
remain elusive. We explored this involvement using two single-
cell ICl cohorts. The SCP2079 cohort, composed of 88 293 cells,
was organized into 27 clusters (Fig. 7A) representing 20 cell types
(Fig. 7B). We computed the relative proportions of cell types
according to the different immunotherapy responses in the ICl
cohort, revealing that the responders had a high abundance of
DCs (Fig. 7C, D). To evaluate the connection between aDCs and
immunotherapy, we conducted a subpopulation analysis of 4829
DCs (Fig. 7E) and identified 3162 aDCs (Fig. 7F). The increase in DC
numbers among responders was primarily attributed to the
increased abundance of aDCs (Fig. 7G, H). These consistent trends
were also confirmed in the GSE222300 cohort (Fig. S6A-F).
Further cell communication analysis revealed a prominent
association between aDCs and immunotherapy. In the cell
interaction network of responders, aDCs exhibited stronger
associations with anti-tumor cells, such as CD8'T cells, whereas
they demonstrated less communication with pro-tumor cells, such
as CAFs (Fig. 7I). Exploring receptor-ligand interactions, we
observed that aDCs and CD8'T cells primarily collaborated in
executing anti-tumor functions through APP|CD74 and COPA|
CD74 receptor-ligand pairs (Fig. 7J). In contrast, the cell interaction
network of non-responders suggested that aDCs interacted more
strongly with exhausted T cells and CAFs (Fig. 7K). Simultaneously,
exhausted T cells and CAFs antagonized the anti-tumor functions
of aDCs via the MIF | CD74 receptor-ligand (Fig. 7L). These results
highlight the relevance of aDCs and immunotherapy and
elucidate the underlying cell communication mechanisms that
synergize or antagonize aDCs function in immunotherapy.

DISCUSSION

In this study, a comprehensive analysis of the genomic and
transcriptomic data of CRC and the TME was conducted to classify,
reconstruct, and visualize CRC composition. The study yielded four
main findings: (1) it established a classification framework for CRC,
dividing it into five subtypes; (2) this classification framework
demonstrated pan-cancer conservativeness, making it applicable
to various types of cancers; (3) the framework was effective in
predicting the immunotherapy outcomes for CRC, contributing to
precision medicine in CRC; and (4) the study revealed the
mechanism by which aDCs promote immunotherapy through
CD8'T cells, offering new intervention targets for subsequent
research.

We performed an unsupervised analysis of transcriptomic data
from 2 595 samples, identifying five TMESs that remained
conserved across more than 10,000 tumor samples spanning 33
different cancers. These subtypes were closely linked to TME-
associated signatures and showed a commonality in immune
relationships across various cancer types. Notably, TMESs demon-
strated a substantial association with OS, outperforming other
classification methods such as Fges [10], immune [22], CMS [16],
and CRIS subtypes [17] in their correlation with OS.

Tang et al. categorized patients with CRC into four subtypes
based on immune contexts and found that these subtypes could
stratify patients with different prognoses [25]. However, they did
not further explore the association between these subtypes and
immunotherapy. In contrast, we conducted an in-depth analysis
of the relationship between TMESs and immunotherapy
response rates. In our study, the differences among TMESs were
also more pronounced. For example, TMES1 had the highest
IFN- y score and highly enriched PTEN and PIK3CA mutations.
Notably, these tumors strongly activated the pathways asso-
ciated with WNT, apoptosis, P53, and mismatch repair. These
observations indicate that the TMES1 tumor subgroup is likely to
respond to PI3K and mTOR inhibitors. The TMES2 tumor
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subgroup displayed poor prognosis, altered glucose metabolism,
and activation of the JAK-STAT pathway. Particularly, TMES2 cells
exhibited an extremely low response to immunotherapy. Thus,
targeting the metabolic pathway (antimetabolic therapy) could
be a potential therapeutic strategy for TMES2, although it
requires further validation through preclinical and prospective
trials [26]. TMES3 had a higher proportion of BRAF mutations and
MSI and longer survival. TMES3 was particularly sensitive to
immunotherapy, with upregulated fatty acid metabolism, cancer-
related pathways, cytokine pathways, and mTOR pathways.
These findings suggest diverse therapeutic options for TMES3.
TMES4 exhibited immunosuppression and significantly reduced
activity of key immune signatures such as cytotoxic T cell, and
IFN-y scores. The MAPK pathway was specifically overexpressed
in TMES4, suggesting that MAPK inhibitors are likely an
alternative treatment option [27]. TMES5 was associated with
metabolism-related pathways and had increased activity in the
PI3K and PPAR pathways. It demonstrated high sensitivity to
immunotherapy, rendering TMES5 a potential therapeutic target.
The TMESs were used to reclassify patients and identify novel
drug-candidate targets.

Multiple studies have used machine learning models to
evaluate the prognosis of patients with tumors and the efficacy
of immunotherapy [28-31]. We utilized machine learning to
examine immunotherapy-related signatures, elucidating the
mechanisms underlying the different responses of TMESs to
immunotherapy. Responders showed cooperation between aDCs
and immune-promoting cells against tumors, particularly in
promoting the activation of CD8+-T cells [32]. Conversely, in
non-responders, the function of aDCs was inhibited by CAFs and
exhausted T cells [33].

We constructed a classification system to stratify patients with
CRC and compare differences in clinical outcomes and immu-
notherapy efficacy between patients with different cancer
subtypes. The results indicated significant differences in OS and
responses to immunotherapy among patients with different
cancer subtypes, which may provide a reference for clinical
decisions. To provide precise treatment options for patients with
CRC, the patients’ gene expression profile has to be incorporated
into the model to determine the cancer subtype. Based on our
findings, the prognosis and proportion of response to immu-
notherapy are being evaluated to provide a reference for clinical
decisions.

Despite providing valuable insights, our study had a few
limitations. First, it relied on publicly accessible data, and further
validation using real-world data is needed. Second, owing to
intricate cell interactions, additional experiments are required to
confirm our findings regarding aDC-CD8™ T cell interactions. Third,
previous studies have reported that neoadjuvant therapy can
reduce the stage of CRC, thereby reducing local recurrence and
obtaining a better prognosis. However, we only evaluated the
predictive efficacy of the model for the response to immunother-
apy but did not test its utility in neoadjuvant therapy. Future
studies should acquire more data by conducting extensive
experiments that could lead to a comprehensive understanding
of TME mechanisms in immunotherapy.

In summary, we developed a classification framework utilizing
TME-related signatures to categorize CRC into five subtypes. This
approach has broader applications beyond CRC and reveals
distinct biological processes among TMESs, offering promising
therapeutic strategies for personalized treatment. Crucially, our
framework can help differentiate between immunotherapy
responders and non-responders. We utilized aDCs to elaborate
on the underlying mechanisms that drive the diverse immu-
notherapy responses among TMESs. Collectively, our findings have
appreciable clinical implications, aiding in prognosis assessment
and clinical decision-making and highlighting aDCs as a potential
therapeutic target for CRC.

SPRINGER NATURE



J. Xiang et al.

10

A B €
dothelial cell
2 20 < Epihelil call 20
 Goblet cell
jasma cell
ol4 o Exhausted T cell
o13 © Dendritic cell
Y *
o o o
il Pt ¢ LR emeen oy
g2 sl g o CAF g2
z0 . %n 20 iver bud hepatic cell & 0
2 o3 ¢ o Progenitor eell 2
o7 T
3 © Mesenchymal ce
o % < Cyiotonic CDS- T cell
. .
2e 26 ® Plasmacytoid dendritic cell
3 o DT cell
 Classical monocyte
2 o o Tiheell
20 [ 70
1SNE_I
E 10 F 10 g
10
=3
5 5 E
.0
ol
:
o 0 id o o 0
E o & i P
= el 2 17N =
s 8 5 @ i =
-5 tlo s 3 -5
1) . [ %&}c—cnm—m
o
o 12
o3
i I (" =
-15 »n -15 oC -1 P
=10 = [ 3 0 =10 5 [ 0 10 =5 [0 H 10
UMAP_1 UMAP_1 UMAP_I
J Response
EOER—— o0 0 ® o0 Y ) e o
40| Pl [ L [ ] B ® ®
wene ( X ] ® ® 000 o ® ® @ @ o®moe
s0c ooy | @8 © GI0IgI0 0 @ oo @ ® © G 060 O™
weiMseymict | @ @ e: @ 80 ® o e [ ] ® g 0@ ¢ O
- & - . ~ N Pa—
wcitisiguicat B @ @ 0 e © W [ 4 09GN ®® ® @ [ J ® © o O esissiies e 4
'
ADC|LGRS sem cll @ [ ] I;
N
ciic| @ @ 0WeEe 6 & © 0 000 0 o L aC e O com e ¢
aDC|Gobletec ® O 0 0®
acicar
Enterocyte  poomelial cell e Bl
Epithelial_cell @, ‘ ";‘M CD8 T cell
- — Y
qassxﬂl monocyte -
CAF @ aDC | Endotbelalcell
@eoc
Goblet_ @@l ADC| Cytotoie CDS T cel [
iDC
inC @ FpRe—" ) & :
‘Plas@cytoid_dendritic_cell - &
LGRS sieqgectl R R J * 00 80 ® ® GO o 0o
Liver_bud_hepatié_cell / Hmaicell

Mesenchyma@el, g ©

K Non-Response L Non-Response
wemet| @ @ @ e o0 o0 0 0 eDe

aDC | Progenitor cell L] L ]

® ® e @ o0 0O e o 90000 -0

J @ ® ® 2

aveipe o0 o ® ®

ADC Monocyie

FT—— [

ADC | Phsia et

[ N )
. @
[ ]

e

ADC Liver b bepatic cl

ADC] LGRS semell

apciipe

ymal Cell & pigg
Monoeyte pbc

aDC | Hpaocyte
aDc | Goblt el
e car

it g € O @b

carg.

Gt gl
@ B! ancjenc

Hepatoc -
Do apcicpiTen
inc o

LGRS_sterffjeell aDC [ Beell
Bogenitor el

ADC | Exbansed Tecl

@D4Teell b Epiett el

@pic cplal_pe
ADC Cyttase CDS Tl

Liver_bud_Hepatic_cell

()
Messtyngesl Plasmacytoid_dendritc_cell
Monoie  @f

pDC Plasma_cell

VEGEA | GRINZD
VEGEA|NRPI
VEGEA|NR

Fig.7 scRNA-seq data of the SCP2079 cohort illuminate the role of aDCs in immunotherapy. A-C t-SNE visualization of 88 293 high-quality
cells: clusters, cell types, and response types. D Cell type ratios in various immunotherapy responses. E-G t-SNE of 3 162 high-quality dendritic
cells: clusters, subpopulations, and response types. H Dendritic cell subset proportions in distinct response types. I-K aDC interaction
networks in responders and non-responders. J, L Bubble plots display aDC receptor-ligand pairs with other cells in responders and non-
responders.

SPRINGER NATURE Cell Death Discovery (2024)10:162



MATERIALS AND METHODS

Data collection and processing

We conducted a comprehensive search across public databases (Gene
Expression Omnibus [GEO, https://www.ncbi.nlm.nih.gov/geo/], cBio
Cancer Genomics Portal [cBioportal, https://www.cbioportal.org/], and
The Cancer Genome Atlas [TCGA, https://portal.gdc.cancer.gov/]) to
acquire relevant CRC transcriptomic data. Our inclusion criteria encom-
passed patients that had not received chemotherapy or radiotherapy
prior to surgery, specimens originating from primary CRC, datasets
comprising a minimum of 1000 genes, and in CEL format. This yielded a
total of 27 GEO microarrays (comprising 2619 specimens) as well as the
COADREAD (colon adenocarcinoma and rectal adenocarcinoma),
GSE209746, and cBioportal CRC cohorts. Additionally, pan-cancer data
included GSE2109 (2158 specimens) and TCGA (11 123 specimens)
cohorts. For the ICI studies, we utilized the kidney renal clear cell
carcinoma (KIRC), bladder urothelial carcinoma (BLCA), and skin
cutaneous melanoma (SKCM) datasets, comprising a total of 1030
patients (Tables S1 and S2).

The “affy” R package was employed to normalize CEL files within the
microarrays, thereby converting probes into gene symbols. We converted
ensemble IDs of RNA-seq data to gene symbols in transcripts per million
(TPM) using log2(TPM+1) for normalization. The 27 microarrays con-
stituted the training cohort, with batch effect correction executed via “sva.”
The COADREAD, GSE209746, and cBioportal cohorts functioned as
validation cohorts 1-3. Other datasets were testing cohorts.

Ninety-one TME-related signatures, including 65 from Wolf et al. [34], 25
from Bindea et al. [35], and exhausted T cell markers from Zhao et al. [36],
were compiled by reviewing the literature (Table S3).

Unsupervised clustering

CRC subtypes were distinguished through non-negative matrix factoriza-
tion (NMF) using the “NMF” package [37]. The optimal subtype number (k)
was determined based on the cophenetic correlation and dispersion
coefficients of NMF; k was determined by iterating k values (3-8), applying
NMF (50 iterations) for each value, and subsequently choosing the k that
yielded the highest product of the coefficients. With fixed k, NMF (500
iterations) was used to define the CRC subtypes.

Genomic data for colorectal cancer

Genomic data for CRC included somatic mutation data obtained from
TCGA's “MC3" MAF file (https://gdc.cancer.gov/about-data/publications/
mc3-2017). Tumor mutation burden (TMB), single nucleotide variation
(SNV), loss of heterozygosity (LOH), aneuploidy, and neoantigen load of
TCGA samples were extracted from an earlier study [22]. Copy number
variation (CNV) data were downloaded from the TCGA database, with
amplification and deletion defined using GISTIC 2.0.

Integrating machine learning algorithms to filter signatures
We identified signatures with superior accuracy and stability by combining
support vector machine (SVM-RFE), the least absolute shrinkage and
selection operator (LASSO), and random forest (RF) algorithms. SVM-RFE
iteratively trims signatures with low weights in linear models while
preserving those of significance. LASSO uses ten-fold cross-validation to
select N in LASSO-Cox regression, thereby eliminating low-correlation
signatures. RF can help evaluate signature impact via out-of-bag (OOB)
classification, Gini ranking, and accuracy, with the top-30 signatures
selected based on both criteria.

Analysis of single-cell RNA sequencing (scRNA-seq) data
The scRNA-seq data (Table S1) were processed using the “Seurat” R
package [38]. Quality control involved three steps: retention of genes
expressed in at least five cells, exclusion of cells expressing fewer than 100
genes, and elimination of cells expressing over 5% of mitochondrial genes.
Subsequently, we normalized data using the NormalizeData function, and
the top-2000 highly variable genes were identified using the FindVaria-
bleFeatures function. We used the RunPCA function to perform principal
component analysis, with the top-20 principal components selected for
cell clustering analysis. Differentially expressed genes in each cluster were
identified using the FindAllMarkers function with threshold criteria of
FDR<0.05 and |log2 (fold change)] >0.25. Manual annotation was
performed to designate cell types for each cluster.

CellPhoneDB, a publicly available resource, was employed to detect cell-
to-cell receptor-ligand interactions. Using CellPhoneDB, we evaluated
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interaction networks by analyzing ligands, receptors, and their connec-
tions, determining interaction significance via mean expression analysis
across cells.

Statistical analysis

Statistical analyses were conducted using the R software [39]. The data met
the assumptions of the tests and variation within each group of data were
estimated. The variance between the compared groups is not similar. In all
datasets, missing data were deleted. Two-sided tests were applied, with
P<0.05 being considered statistically significant. Principal component
analysis was performed using the “FactoMineR” package [40], whereas
linear dimensionality reduction was executed through the “Rtsne” package
[41]. Survival analysis was performed using the “survminer” [42] and
“survival” packages, with statistical significance evaluated using log-rank
tests. The univariate Cox proportional hazard model was employed for
determining hazard ratios. Additional tools employed in the analysis are
listed in Table S4.

DATA AVAILABILITY

The primary and processed data used to generate the analyses presented here can
be downloaded by registered users from GEO, cBioportal, TCGA, and supplemental
material. The source data are available from the corresponding author upon
reasonable request.
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