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Mitochondria-associated endoplasmic reticulum membrane
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Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart
diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there
is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic
reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these
organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay
between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in
regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other
cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this
study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the
potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical
studies of DCM treatment.
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FACTS

● Dysfunction of organelles such as mitochondria and the ER is
closely related to the occurrence and development of various
heart diseases.

● MAM plays an important role in the pathogenesis of DCM.
● Targeting MAM-related proteins provides a promising

approach for preventing the progression of DCM.
● Future studies on the role of MAM in the process of DCM are

warranted and highly necessary.

OPEN QUESTIONS

● What are the structural and functional characteristics of MAM?
● What is the role of MAM in the progress of DCM?
● How does the key proteins and complex regulatory mechan-

isms affect MAM?
● Whether MAM-targeted drugs can be a way to treat DCM?

INTRODUCTION
Diabetic cardiomyopathy (DCM), a progressive heart disease that
occurs early in patients with diabetes mellitus (DM), is character-
ized by cardiomyopathy without the presence of coronary artery
disease, hypertension, or valvular heart disease in diabetes and
significantly increases the risk of heart failure (HF) [1]. The primary
pathological changes of DCM include cardiomyocyte hypertrophy
and hyperplasia, deposition of extracellular matrix, thickening of
microvascular basement membrane, and interstitial fibrosis [2].
Currently, treatment options for DCM primarily focus on optimiz-
ing blood glucose and blood lipid levels and inhibiting oxidative
stress [3]. Therefore, exploring the pathogenesis of DCM and
identifying effective therapeutic targets are crucial for enhancing
the prevention and treatment of this disease.
Approximately 40% of cardiomyocytes are occupied by

mitochondria, which provide more than 90% of the ATP needed
for normal cardiac function [4]. As a result, the function of the
heart is strongly influenced by the condition of the mitochondria,
which are often damaged in DCM [5]. Additionally, the contraction
and relaxation of heart muscle are regulated by the release of
Ca2+ within cardiomyocytes, and the sarcoplasmic reticulum (SR)
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plays a crucial role in this process [6]. The SR is a smooth
endoplasmic reticulum (ER) found in cardiac and skeletal muscle
fibers [7]. Remarkably, a portion of the Ca2+ released from the SR
is taken up by mitochondria through close contact between the
ER and mitochondria, which stimulates ATP production [8]. The
structural connection between the mitochondria and the ER is
known as the mitochondria-associated ER membrane (MAM) [9].
Disruption of the MAM structure is a significant factor in the
development of HF [10]. Single-cell transcriptional profiling
demonstrates MAM-related proteins preferentially accumulate in
cardiomyocytes during the initial stages of cardiac hypertrophy
but gradually decrease as the disease progresses [11]. In addition
to calcium transport, MAM can influence various aspects of the
pathological processes involved in DCM, including ER stress,
mitochondrial fusion and fission, autophagy, inflammation,
oxidative stress, and apoptosis.
In this review, we present an overview of the structure and key

resident proteins linked to MAM. Additionally, we provide a
summary of the physiological functions of these genes and their
roles in the development of DCM.

OVERVIEW OF MAM
MAM structures refer to physical contacts between the mitochon-
drial outer membrane and the ER membrane that allow direct
communication and exchange of lipids, Ca2+, and other molecules
between the mitochondria and the ER (Fig. 1). Researchers initially
observed a close association between the mitochondria and the
ER and speculated that these two organelles might be inter-
connected. Subsequently, advanced imaging techniques such as
electron microscopy were utilized to track and visualize their

dynamic movements within cells. To understand the functional
significance of the MAM, researchers conducted physiological
experiments by manipulation of specific proteins or genes
involved in the interaction between mitochondria and the ER.
Through these investigations, researchers intensively revealed the
existence of a dynamic and functional connection between the
mitochondria and the ER, with implications for various cellular
processes and the pathogenesis of diseases.
MAMs are dynamic membrane coupling regions that overlap

strongly between the outer mitochondrial membrane (OMM)
and the ER membrane [12], and their different structures reflect
functional diversity [13]. The width of the gap between the ER
and OMM varies from 10 to 100 nm [14], and the distance
between the ER and mitochondria in MAM differs depending on
their functional state. For instance, the MAM involved in Ca2+

exchange has a distance between 10 and 25 nm, which is
suitable for accommodating Ca2+ channels [15]. When ER
tubules function in mitochondrial fission, they wrap around
mitochondria at a distance of approximately 30 nm [16]. It has
been observed that smooth ER membranes can tightly
associate with mitochondria, forming contacts that are less
than 10 nm in width, thereby facilitating lipid exchange [17].
Therefore, the number, length, and width of the contact zone
are important parameters for the involvement of MAM in
cellular processes [18].
The composition of MAM is regulated by proteins with various

cell biological properties and functions. Resident proteins in the
MAM are classified based on their specific functions (Table 1). For
example, Ca2+ transport-related proteins include inositol voltage-
dependent anion channel (VDAC), the molecular chaperone
glucose-regulated protein 75 (GRP75) and inositol 1,4,5-

Fig. 1 The development timeline of key findings about MAM. In 1959, a close connection between mitochondria and the ER was initially
discovered. Ten years later, the continuity between the ER and mitochondria was confirmed through electron microscopy. Moving forward to
1973, the first isolation of an ER–mitochondria contact site was achieved using a crude fraction. In 1990, MAM was officially defined.
Subsequently, in 1998, the connection between bubbles and the ER was observed using electron microscopy. In 1999, the diameter range of
the connection between the ER and mitochondria was determined. Finally, in 2009, the effective methods for MAM extraction were
summarized.
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trisphosphate receptor (IP3R) [19]; lipid synthesis and transfer-
associated proteins, such as protein tyrosine phosphatase inter-
acting protein 51 (PTPIP51) [20]; mitochondrial dynamic regulatory
proteins, including dynamin-related protein 1 (DRP1) [21] and

mitofusin 2 (MFN2) [22]; and proteins related to insulin signaling,
such as GRP75 [23]. The presence of multifunctional proteomes in
MAM signifies their crucial roles in regulating cellular homeostasis
and biological processes.

Table 1. The functional roles of MAM-resident proteins.

Functional types MAM-related proteins Abbreviation Biological functions

Lipid metabolism Fatty acid CoA ligase 4 FACL4 Immobilization of fatty acids on CoA [125]

Acy1-Coenzyme A-cholesterol
acyltransferase

ACAT Synthesis of cholesteryl esters [126]

Phosphatidylserine synthase 1 and 2 PSS1/2 Synthesis of phosphatidyl serine and
phosphatidylcholine [127]

Caveolin-1 CAV1 Regulation of cholesterol efflux [45]

Ca2+ hemostasis Inositol1,4,5-trisphosphate receptor IP3Rs Calcium channels in ER [19]

Voltage-dependent anion channel 1 VDAC1 Calcium uptake channels in mitochondria [19]

Glucose-regulated protein 75 GRP75 Formation of VDAC1/GRP75/IP3R1 channel
complex [19]

Cyclophilin D CYPD Regulates the MAM spatial structure [128]

Protein tyrosine phosphatase interacting
protein 51

PTPIP51 Regulates Ca2+ homeostasis [129]

VAMP Associated Protein B And C VAPB Regulates Ca2+ homeostasis [129]

ER resident protein 44 ERp44 Inhibits IP3R [130]

ER oxireductin1α Ero1α Maintains ER redox homeostasis [130]

Calnexin CNX Regulates Ca2+ transfer in MAM [6]

Sarco/ER Ca2+ ATPase SERCA2b Involves in Ca2+ transport into ER [6]

FUN14 domain-containing protein 1 FUNDC1 Increases mitochondrial Ca2+ content [66]

Glycogen synthase kinase 3β GSK3β Regulates organelle Ca2+ exchange [31]

Mitofusin-2 MFN2 Regulates mitochondrial fusion [131]

Mitochondrial dynamics Dynamin-related protein 1 Drp1 Regulates mitochondrial fission [16]

Mitofusin-2 MFN2 Regulates mitochondrial fusion [132]

Inverted formin-2 INF2 Driving initial mitochondrial constriction [16]

FUN14 domain-containing protein 1 FUNDC1 Regulates mitochondrial fusion and fission [133]

Mitochondrial calcium uniporter MCU MCU knockout decreases mitochondrial division
[134]

Inflammation NOD like receptor (NLR) protein 3 NLRP3 Formation of the NLRP3 inflammasomes and
MAMs [135]

Apoptosis-associated speck-like protein
containing a CARD

ASC Connection of NLRP3 and initiates inflammatory
signals [135]

Autophagy Unc-51-like kinase 1 ULK1 Activation of autophagy downstream pathway
[136]

Beclin 1 BECN1 Enhances the formation of MAMs and
autophagosomes [136]

Autophagy-related 5 ATG5 Autophagosome marker [137]

Autophagy-related 14 ATG14 Preautophagosome marker [137]

PTEN induced putative kinase 1 PINK1 Formation of MAMs and autophagosome [138]

Oxidative stress ER oxireductin1α Ero1-α Increases ROS production [139]

66-kDa isoform of the growth factor adaptor
Shc

P66Shc Induces ROS production [140, 141]

Glucose-regulated protein 75 GRP75 Reduces mitochondrial ROS [60]

Apoptosis Mitofusin-2 MFN2 Inhibits cardiomyocyte apoptosis in DCM [63]

RNA-dependent protein kinase (PKR)-like ER
kinase

PERK Silencing PERK to protect cardiomyocytes [85]

Hypoxia FUN14 domain-containing protein 1 FUNDC1 Hypoxia induces mitochondrial autophagy [142]

Glucose-regulated protein 75 GRP75 Hypoxia induces cardiomyocyte apoptosis [94]

Ferroptosis FUN14 domain-containing protein 2 FUNDC2 FUNDC2 knockout inhibits ferroptosis [114]

Mitofusin-2 MFN2 MFN2 overexpression inhibits ferroptosis [113]

Copper metabolism Mitofusin-2 • MFN2 • MFN2 overexpression ameliorates Cu-induced
MAM dysfunction [143]
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BASIC FUNCTIONS OF MAM
MAM primarily serve as a hub for Ca2+ transport, lipid synthesis
and transport, and mitochondrial dynamics (Fig. 2). These crucial
functions of MAM have significant implications for the treatment
of various diseases.

CA2+ TRANSPORT
Excitation-contraction coupling in cardiomyocytes is a complex
process that involves changes in the cytoplasmic Ca2+ concentra-
tion [24]. When the myocardium is excited, extracellular Ca2+

enters the cytoplasm through L-type calcium channels on the
sarcolemma and transverse tubule [25]. This influx of Ca2+ triggers
the release of a large amount of stored Ca2+ from the SR terminal
pool, resulting in a significant increase in the intracytoplasmic
Ca2+ concentration and ultimately causing contraction of
cardiomyocytes. There are two types of calcium-releasing
channels, ryanodine receptors (RyRs) and IP3Rs, present in the
SR and MAM [26]. These channels, primarily located in the SR, form
a tetrameric channel that controls the release of Ca2+ from the SR.
When activated by Ca2+, RyRs allow the influx of extracellular Ca2+

to open the channel, leading to the release of a large amount of
Ca2+ from the SR into the cytoplasm, resulting in myocardial
contraction. Notably, contractile activity in cardiomyocytes, which
is mediated by Ca2+, critically relies on a constant energy supply
and sufficient Ca2+ buffering, both of which are provided by
mitochondria [27]. During the process of contraction, there is a
significant increase in mitochondrial Ca2+ levels in cardiomyo-
cytes. In this process, IP3R3 interacts with VDAC1, which is located
in the OMM, and this interaction is facilitated by the molecular
chaperone GRP75. This interaction promotes the uptake of Ca2+

by the OMM [28]. In contrast to the high permeability of the OMM,

the inner mitochondrial membrane (IMM) primarily transports
Ca2+ to the mitochondrial matrix through the mitochondrial
calcium uniporter (MCU) [29]. MICU1 is considered the most
representative Ca2+ uptake regulatory protein, and its function is
closely related to muscle fiber contraction [30]. Furthermore,
several protein chaperones play a role in coordinating calcium
transport. For example, glycogen synthase kinase 3β (GSK3β)
interacts with IP3Rs to regulate mitochondrial calcium home-
ostasis in cardiomyocytes [31], and cyclophilin D (CypD) interacts
with calcium dynamics in cardiomyocytes and is essential for
maintaining proper cardiac function [32].

LIPID SYNTHESIS AND TRANSPORT
The MAM is crucial for various lipid metabolic pathways and is
necessary for communication between the ER and mitochondria.
Lipids, especially phospholipids (PLs), have important mitochon-
drial functions. While their synthesis primarily occurs in the ER,
mitochondria can synthesize phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), and cardiolipin (CL) [33]. Moreover,
mitochondria acquire other phospholipids, such as phosphatidyl-
serine (PS), from the ER through MAM, which are key precursors
for the synthesis of PE [34]. PS is synthesized by phosphatidylser-
ine synthase (PSS) in the ER and is transported to the cell
membrane and mitochondria through lipid transfer proteins at
different membrane contact sites [35]. PS decarboxylase (PSD) in
the IMM converts PS to PE [36]. In fact, the transfer of PS to
mitochondria is a rate-limiting step in PE synthesis. Research has
identified proteins, including oxysterol-binding protein-related
proteins 5 and 8 (ORP5/8), MFN2, and CDP-diacylglycerol
synthase-2 (CDS2), located in MAM that mediate the nonvesicular
transport of PS from the ER to mitochondria [37–39]. Knocking out

Fig. 2 Basic functions of MAM. MAM has been found to be involved in various vital functions, such as Ca2+ transport, lipid synthesis and
transport, and mitochondrial dynamics. The IP3R-GRP75-VDAC1-MCU axis is a significant channel for calcium transport from the ER to
mitochondria. Several proteins, such as PSS1/2, MFN2, ORP2/8, Cds2, GRAMD1C, CAV1, PTPIP51 and lipocalin 2, play critical roles in regulating
lipid metabolism. Additionally, proteins such as MFN1/2, OPA1, INF2, DRP1, Mff, and Mid49/51 are essential for regulating mitochondrial fission
and fusion.
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these proteins may lead to excessive cellular lipid accumulation.
Furthermore, as a precursor for the synthesis of PG and CL,
phosphatidic acid (PA) is synthesized in the ER and transported to
mitochondria by MAM. PTPIP51 and lipocalin 2, which are located
in MAM, play key roles in regulating the transport of PAs, thereby
impacting the synthesis of CLs [20, 40]. Notably, CLs are
phospholipids that are specific to mitochondria and crucial for
maintaining normal respiratory function. CL deficiency leads to
increased vulnerability to lipotoxic hypertrophic cardiomyopathy
[41]. Moreover, cholesterol metabolism in the IMM plays an
important physiological role, although the cholesterol content in
mitochondria is limited. Excessive cholesterol accumulation in
mitochondria disrupts mitochondrial activity and impairs the
balance of redox reactions within the organelle [42]. This is
exemplified by the phenomenon of cholesterol overload leading
to the accumulation of oxidized cholesterol molecules known as
oxysterols during the early reperfusion phase of myocardial injury
[43]. Recent studies have shown that GRAM domain containing 1C
(GRAMD1C) may regulate cholesterol transport between the cell
membrane and the ER as well as between the ER and
mitochondria, inhibit autophagosome synthesis, and downregu-
late mitochondrial bioenergetics [44]. Knocking out GRAMD1C
increases mitochondrial cholesterol content and aerobic respira-
tion [44]. Additionally, caveolin-1 (CAV1), located in the MAM, is a
key regulator of cholesterol transport and membrane organization
[45]. CAV1 deficiency leads to cholesterol-dependent mitochon-
drial dysfunction and susceptibility to apoptosis [46]. Long-term
consumption of a high-fat and high-sucrose diet (HFHSD) can
enhance the affinity between CAV-1 and lipid droplets, promote
myocardial lipid accumulation and lipotoxicity, disrupt MAM and
mitochondrial morphology, and ultimately result in myocardial cell
apoptosis and HF [45].

MITOCHONDRIAL DYNAMICS
The highly dynamic structure of mitochondria allows them to
change shape, form, and quantity through fission and fusion,
which is crucial for maintaining the normal physiological functions
of mitochondria and cells. There is extensive contact between the
ER and mitochondria, especially the ER, which induces mitochon-
drial fission by enveloping a part of the mitochondria. Research by
Lewis et al. revealed that spatially stable mtDNA synthesis in the
mitochondrial nucleoid of mammalian cells is associated with a
small subset of ER-mitochondria contact sites, which coordinate
the permission and division of mtDNA replication, distributing
newly replicated nucleoids to daughter mitochondria [47]. The
main factors mediating fission are Drp1, mitochondrial fission
protein 1 (Fis1), and mitochondrial fission factor (Mff) [48]. Drp1 is
mainly located in the cytoplasm and is specifically recruited to
sites where the ER contacts mitochondria through its receptor Mff,
Fis1, and mitochondrial dynamics proteins 49 and 51 (mid49/51),
where it forms a helical oligomer that induces membrane
constriction and scission [49, 50]. Previously, inverted formin 2
(INF2), located in the ER, was shown to induce actin polymeriza-
tion and promote the recruitment of DRP1 to mitochondria at ER-
mitochondria contact sites [21]. Notably, although Drp1 deficiency
prevents mitochondrial fission, the ER-mitochondria contact sites
are not disrupted, indicating that Drp1 may not directly tether
these two organelles. Mitochondrial fusion is also indispensable in
cardiac muscle cells, and this process requires the coordination of
outer membrane fusion and inner membrane fusion, with MFN1/2
and optic atrophy 1 protein (OPA1) being relevant molecules
located in the OMM and IMM, respectively [51]. MFF1 has higher
GTPase activity than MFN2 [52] and can interact with OPA1 [53],
while MFN2 is sometimes located on the ER/SR and participates in
the connection between the ER/SR and mitochondria through its
physical interaction with MFN1 or MFN2 on the outer mitochon-
drial membrane [22]. Moreover, mitochondrial fusion is regulated

by endoplasmic reticulum-associated degradation (ERAD), a
protein quality control mechanism that targets proteins in the
ER for degradation. Previous studies have demonstrated that loss
of ERAD leads to a shorter distance between mitochondria and the
ER, increased expression of Sigma1R in MAMs, and enhanced
interaction between MFN2 and other MAM proteins. This
interaction promotes MFN2 oligomerization, leading to excessive
mitochondrial fusion through an unknown mechanism [9].

THE ROLE OF MAM IN DCM
Given the significant influence of MAM on various cellular
processes, it is crucial to consider their contribution to the
development of DCM. In this review, we aim to provide an
overview of the pivotal roles of MAM in regulating Ca2+ overload,
mitochondrial homeostasis, inflammation, ER stress, hypoxia,
apoptosis, and ferroptosis in the context of DCM (Fig. 3).
Furthermore, we identified the specific MAM-related proteins
involved in these processes (Table 2).

CA2+ OVERLOAD
The impairment of cardiac function in DCM patients is closely
linked to abnormalities in the regulation of Ca2+ levels [54]. One
interesting observation is the rapid release of Ca2+ from the SR
following RyR2 activation, which is accompanied by a faster
accumulation of Ca2+ in the mitochondria [55]. This process may
involve certain proteins associated with MAM. Chloride intracel-
lular channel protein 4 (CLIC4), a chloride channel present in the
MAM of cardiomyocytes, may increase the rate of Ca2+ influx into
the mitochondrial domain of the ER under normal physiological
conditions [55]. Another enzyme widely expressed in myocardial
tissues, matrix metalloproteinase-2 (MMP-2), is predominantly
localized to the MAM in cardiomyocytes, where it may modulate
Ca2+ homeostasis through the control of calreticulin levels [56].
Intriguingly, the activity of MMP-2 decreases significantly in DCM,
leading to structural damage and impaired function of the

Fig. 3 The pivotal roles of MAM in mediating multiple cellular
processes in DCM. The MAM is a special membrane contact site
between the ER and mitochondria, and MAM-resident proteins play
key roles in regulating various cellular processes associated with the
development of DCM, including Ca2+ overload, mitochondrial
homeostasis, inflammation, ER stress, hypoxia, apoptosis, and
ferroptosis.
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myocardial tissue [57]. Unfortunately, there is currently no direct
study on how MMP-2 affects the course of DCM through MAM.
Disruption of Ca2+ homeostasis in the mitochondria results in
Ca2+ overload, which impairs mitochondrial function. For exam-
ple, the upregulation of myocardial adenosine monophosphate
deaminase (AMPD) promotes MAM formation, triggering mito-
chondrial Ca2+ overload and cardiac dysfunction in type 2
diabetes [58]. However, this study revealed only a linear relation-
ship between AMPD expression and mitochondrial Ca2+ overload
in MAM, without providing insight into the specific mechanism by
which AMPD regulates Ca2+ overload. Several recent studies have
focused on targeting Ca2+ channels in MAM as a potential
approach to prevent Ca2+ overload. For example, Wu et al.
reported that an inadequate level of Parkin exacerbates high-fat
diet (HFD)-induced cardiac remodeling and systolic dysfunction
through VDAC1-mediated mitochondrial Ca2+ overload [59]. Yuan
et al. reported that silencing or knocking out the key gene GRP75
prevented Ca2+ overload, alleviated mitochondrial oxidative
stress, and protected against atrial remodeling in DCM [60].
Reduced Sigma-1 receptor (Sig-1R) levels in cardiac cells promote
mitochondrial fission, decrease mitochondrial Ca2+ influx and ER-
mitochondrial proximity, and exacerbate cardiomyocyte injury
induced by ET-1 [61]. GSK3β is a novel Ca2+ regulator located in
the SR/ER that interacts with the IP3R Ca2+ channel complex.
Inhibition of GSK3β reduces Ca2+ overload and attenuates
myocardial apoptosis induced by ischemia/reperfusion [31].
Moreover, syntaxin 17 (STX17), a scaffolding protein localized on
MAM, can facilitate MAM formation by interacting with MCUb,
subsequently leading to mitochondrial Ca2+ overload, mitochon-
drial O2- accumulation, and lipid peroxidation. These studies
collectively highlight the significance of MAM dysfunction in Ca2+

overload. Therefore, targeting the MAM to modulate the transfer
of Ca2+ between the ER and mitochondria represents a promising
approach for mitigating mitochondrial Ca2+ overload and
attenuating the progression of DCM. However, it remains unclear
whether the modulation of cellular Ca2+ homeostasis by MAM
influences myocardial systolic and diastolic functions in indivi-
duals with DCM, and further investigation is needed.

MITOCHONDRIAL DESTABILIZATION
Mitochondria constantly adjust their shape through fusion and
fission in response to changes in energy demand and supply.
Studies have shown that, compared to those in control
cardiomyocytes, diabetic cardiomyocytes have a decreased
mitochondrial size and increased spatial density, which enhances
the energy supply of mitochondrial oxidative phosphorylation
[62]. However, excessive mitochondrial fission is harmful. Hu et al.
reported excessive mitochondrial fission and significantly
decreased expression of MFN2 in the hearts of diabetic mice.
Reconstruction of MFN2 effectively alleviated DCM by promoting
mitochondrial fusion and improving mitochondrial function [63].

In another study, high glucose concentrations decreased the
expression of OPA1 and increased its glycosylation. Signal
transducer and activator of transcription 3 (STAT3) promotes
OPA1 transcription by binding to its promoter region, promoting
mitochondrial fusion and preventing DCM [64]. Notably, STAT3
was found to be located in MAM rather than in mitochondria [65].
Furthermore, the cardiac-specific loss of Fundc1, a protein
involved in MAM formation, eliminated diabetes-induced MAM
formation, preventing mitochondrial calcium overload, mitochon-
drial fragmentation, and cell apoptosis while improving mitochon-
drial functional capacity and cardiac function [66]. Transient
receptor potential vanilloid 1 (TRPV1), a nonselective cation
channel activated selectively by capsaicin (CAP), alleviates
endothelial dysfunction and DCM in diabetic rats [67]. TRPV1
can promote MAM formation and attenuate myocardial hyper-
trophy injury by influencing the adenosine monophosphate-
activated protein kinase (AMPK)-MFN2 pathway, which exerts
beneficial effects on mitochondrial homeostasis [68]. Lon protease
1 (LonP1), a highly conserved mitochondrial matrix protease,
significantly reduces MAM formation when it is ablated, leading to
mitochondrial fragmentation and dilated cardiomyopathy-related
heart failure. This may be because LonP1 ablation in cardiomyo-
cytes promotes OPA1 processing and Drp1 expression and
reduces MFN1 expression to enhance mitochondrial fission [69].
In addition, MAM affects mitochondrial homeostasis through Ca2+

transmission. Wu et al. conducted a study revealing that FUNDC1
plays a crucial role in the formation of MAM in the heart through
IP3Rs. Disruption of the interaction between FUNDC1 and IP3R
leads to suppressed Fis1 expression and mitochondrial fission by
reducing the binding of the cAMP response element-binding
protein to the Fis1 promoter [28]. Subsequent studies also
revealed that the excessive mitochondrial fission caused by the
increased expression of FUDC1 in diabetic hearts can be
suppressed by activating AMPK [66]. The above studies highlight
the critical role of MAM in mitochondrial homeostasis.

INFLAMMATION
Chronic myocardial inflammation is one of the main manifesta-
tions of DCM [70]. Nucleotide-binding oligomerization domain-like
receptor family pyrin domain-containing 3 (NLRP3) senses signals
of microbial infection and cellular damage and further forms
multiprotein complexes called “inflammasomes” to induce inflam-
matory responses [71]. Numerous studies have demonstrated the
involvement of NLRP3 inflammasome activation in the pathogen-
esis of DCM. Importantly, targeting NLRP3 inflammasome activa-
tion has promising potential for delaying the progression of DCM
[72]. Initially, NLRP3 is localized in the ER membrane and
cytoplasm of macrophages. Once activated, it translocates to
MAM, where it interacts with its adapter apoptosis-associated
speck-like protein containing a caspase recruitment domain (ASC),
further facilitating its activation by MAM-derived effectors [73].
Interestingly, inhibition of stimulator of interferon genes (STING)
has been found to reduce NLRP3 inflammasome activation [74].
STING, an adapter protein involved in innate immunity, primarily
resides in the ER and MAM [75]. Ma et al. reported that high fat
intake in diabetes leads to an increase in mitochondrial ROS
production, mitochondrial damage, and mtDNA leakage in
cardiomyocytes. Additionally, it also activated the cytoplasmic
DNA sensor cyclic GMP–AMP synthase (cGAS), which promoted
the translocation of STING to the Golgi apparatus. As a result, IRF3
and NF-κB were activated, leading to inflammation and apoptosis
and ultimately resulted in DCM [76]. Activation of the cGAS-STING
axis is influenced by intracellular Ca2+ levels [77]. Abnormal
mitochondrial dynamic is believed to cause increased Ca2+

exchange between the ER and mitochondria, leading to the
retention of STING in the microdomain of the MAM. This retention
limits the translocation of STING to the Golgi apparatus and

Table 2. MAM-related proteins involved in DCM.

Functions in DCM MAM-related proteins

Ca2+ overload CLIC4 [55], MMP-2 [56], AMPD [58],
Parkin [59], GRP75 [60], Sig-1R [61],
STX17 [144],

Mitochondrial
homeostasis

MFN2 [63], Stat3 [64], Drp1, MFN1 [69]

Inflammation NLRP3 [72], STING [76], CAV1 [80]

ER stress PERK [85], MFN2 [86]

Hypoxia PACS2 [96], CaR [95], HIF-1α [94]

Apoptosis Bcl2 [99], AKAP1 [101], PERK, MFN2 [86]

Ferroptosis FUNDC1 [115]
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subsequently affects its ability to mediate interferon signal
transduction [78]. Furthermore, lipid metabolism disorders are
also important contributors to inflammation [79]. CAV1, a crucial
regulator of lipid metabolism that is highly concentrated in the
MAM of cardiomyocytes, possesses anti-inflammatory properties
in DCM [80]. Regrettably, this study failed to deeply investigate the
mechanisms of CAV1 and MAM in DCM. In summary, MAM relies
on key molecules such as STING and NLPR3 to mediate the
inflammatory response in DCM. The regulation of Ca2+ and lipid
homeostasis between the ER and mitochondria, facilitated by
MAM, plays a crucial role in triggering inflammatory responses.

ER STRESS
ER stress is an early event in DCM and can be triggered by various
conditions such as hyperglycemia, insulin resistance, inflamma-
tion, accumulation of free fatty acids, and increased ROS
production [81]. Initially, ER stress compensates for the impaired
ER function through the unfolded protein response, which is
primarily regulated by three ER stress sensor proteins: glucose-
regulated protein 78 (GRP78), RNA-dependent protein kinase-like
ER kinase (PERK), activated transcription factor 6 (ATF6), and
inositol-requiring enzyme 1 alpha (IRE1α) [82]. However, pro-
longed or excessive ER stress leads to metabolic dysfunction and
apoptosis. Studies have shown that downregulation of ATF6 and
PERK levels can inhibit ER stress-induced cardiomyocyte apoptosis
in DCM [83]. During ER stress, IRE1 interacts with Sig-1R to
promote dimerization. As a calcium receptor, when ER calcium is
depleted, Sig-1R dissociates from GRP78, thereby promoting the
transfer of calcium to mitochondria through IP3R [84]. Previous
studies have demonstrated that PERK is abundantly present in the
ER and MAM in high glucose-cultured cardiomyocytes. The PERK-
mediated signaling pathway plays a significant role in the
apoptosis induced by ROS-mediated ER stress in DCM [85]. In
addition, activation of the PERK pathway under high glucose
conditions often leads to the downregulation of MFN2 level and a
weakened interaction with MFN2 [12]. Yuan et al. discovered that
decreasing MFN2 expression alleviated ER stress in atrial myocytes
induced by high glucose, which is primarily due to an increased
distance between the ER and mitochondria in MFN2 knockdown
atrial myocytes, resulting in a decrease in the transfer of Ca2+ from
the ER to the mitochondria [86]. According to a recent study, it has
been found that an excessive amount of ER stress can result in
abnormal transfer of calcium in the mitochondria, which in turn
leads to mitochondrial damage. This damage causes an increase in
the production of mitochondrial reactive oxygen species, which
activates the NLRP3 inflammasome and NLRP3 inflammasome in
cardiomyocytes, ultimately resulting in scorched death [87]. These
findings highlight the interconnectedness of ER stress, Ca2+

transport, and inflammation through MAM crosstalk in DCM.

HYPOXIA
The heart has a high energy demand due to its contractile
function and relies primarily on mitochondrial fatty acid oxidation
for energy production [88]. Notably, free fatty acids (FFAs), as a
source of energy for heart muscle, are less effective because they
require approximately 10% more oxygen than glucose to produce
an equivalent amount of adenosine triphosphate [89]. However,
under hyperglycemic conditions, fatty acid β-oxidation in the
heart increases, while glucose oxidation decreases, further
exacerbating myocardial hypoxia [90]. In addition, insufficient
blood supply is also an important factor leading to cardiac
hypoxia. Although DCM itself does not directly cause cardiac
ischemia‒reperfusion, the decreased tolerance of diabetic hearts
due to abnormal myocardial function may worsen myocardial
injury and increase the scope and severity of myocardial infarction
when cardiac ischemia‒reperfusion occurs [91]. Hypoxia-inducible

factor 1 (HIF-1) is a key regulator of the cellular response to
hypoxia [92]. Under conditions of high glucose and hypoxia, HIF-
1α and FOXO3a synergistically induce cardiomyocyte death [93].
Moulin et al. found that chronic intermittent hypoxia-activated
HIF-1α, disrupted the MAM structure, impaired Ca2+ transfer
between the ER and mitochondria, and ultimately induced
cardiomyocyte apoptosis [94]. Moreover, SR-mitochondrial Ca2+

signaling is subject to regulation by the calcium-sensing receptor
(CaR) under hypoxic conditions. CaR activation during cardiac cell
hypoxia-reoxygenation induces SR Ca2+ release and increases
Ca2+ uptake into the mitochondria through MAM [95]. In addition,
hypobaric hypoxia was found to downregulate phosphofurin
acidic cluster sorting protein 2 (PACS2), which in turn disrupted
the formation of MAM and hindered the transfer of Ca2+ between
the ER and mitochondria, ultimately resulting in cardiomyocyte
injury and heart dysfunction [96]. The above studies confirmed
MAM played an important role in the cellular response to hypoxia.
However, further study is needed to reveal the specific mechanism
of MAM in DCM-related cardiac hypoxia.

APOPTOSIS
Myocardial apoptosis contributes to the occurrence and progres-
sion of DCM. Tissue biopsy studies have revealed that apoptosis in
the hearts of diabetes is 85 times higher than that of nondiabetic
hearts, suggesting an increased sensitivity of myocardial cells to
cell death in diabetes [97]. Mitochondria and ER are important
organelles involved in mediating cell apoptosis, and MAM typically
regulates cell apoptosis by modulating intracellular Ca2+ concen-
tration, mitochondrial function, ER stress, and inflammation [98]. In
diabetic mice, there is a decrease in the expression of brain and
muscle arnt-like protein 1 (Bmal1) in the heart, leading to an
increased formation of MAM [99]. The reduced expression of
Bmal1 inhibits the transcription level of Bcl2 and weakens the
interaction between Bcl2 and IP3R, thereby promoting the release
of Ca2+ from the ER to mitochondria via IP3R. Ultimately, this
activates mitochondrial-mediated cell apoptosis and promotes the
development of DCM. However, this condition can be alleviated
by overexpression of Bmal1 [99]. Notably, Bcl2 is primarily located
in the ER and translocates to MAM and mitochondria during cell
apoptosis induction [100]. Furthermore, in cardiomyocytes under
high-glucose conditions, PERK accumulates in both the ER and
MAM, receiving stimulation from ROS released into these
structures, thereby inducing ER stress and apoptosis in myocardial
cells [71]. As an upstream regulator of PERK, the silencing of MFN2
can prevent mitochondrial Ca2+ overload-mediated mitochondrial
dysfunction, thereby reducing ER stress-mediated myocardial
apoptosis [86].In addition, the lack of A-kinase anchoring protein
1 (AKAP1) in DCM impairs mitochondrial respiratory function and
enhances the production of ROS, leading to increased apoptosis of
myocardial cells [101]. Interestingly, AKAP1 has also been found to
localize to MAM [102]. Moreover, it has been reported that high
glucose conditions cause MAM aberrations and mitochondrial
dysfunction by upregulating PACS2, IP3R2, FUNDC1, and VDAC1,
thereby leading to cardiomyocyte apoptosis [103]. These studies
indicate that MAM is involved in the apoptotic process of DCM.

AUTOPHAGY
In the myocardium, maintaining appropriate levels of autophagy is
crucial. Excessive autophagy is harmful and will lead to diabetic
cardiomyocyte damage and death [104]. Both inhibition and
overactivation of autophagy cause structural and functional
dysfunction in the diabetic heart [105]. It reported that the
destruction of the MAM structure was a significant contributor to
abnormal autophagy in hearts [106]. MAM served as a platform for
autophagy-related proteins to carry out their biological functions.
For example, saturated fatty acids block autophagy by
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accumulating saturated lysophosphatidic acids in MAM, which
aggravates vascular calcification [107]. In addition to lipid
metabolism, maintaining myocardial autophagy levels also
depends on Ca2+ homeostasis [106]. Wei et al. discovered that
TRPV1 activated Ca2+ influx, phosphorylated AMPK, and promoted
cardiomyocyte autophagy [108]. Moreover, MAM is involved in
autophagy regulation by maintaining mitochondrial homeostasis.
Studies have demonstrated that Drp1 disruption leads to
mitochondrial elongation, mitophagy inhibition, and mitochon-
drial dysfunction, ultimately contributing to cardiac dysfunction
[109]. However, STX17 recruits the kinase CDK1 through its SNARE
domain to phosphorylate DRP616 at the Ser1 site in MAM,
subsequently promoting mitophagy in cardiomyocytes [1]. In
summary, MAM plays a role in regulating autophagy through
various pathways such as lipid metabolism, Ca2+ homeostasis,
mitochondrial fission, and fusion. Considering the distinct effects
of autophagy in different stages of DCM, it is important to target
MAM at the appropriate intervention time.

FERROPTOSIS
Ferroptosis, an iron-dependent form of cell death caused by lipid
peroxidation, is involved in regulated cell death and controlled by
integrated oxidation and antioxidant systems [109]. In the context
of DCM, the development of oxidative stress and impairment of
antioxidant systems are fundamental mechanisms [110]. There-
fore, targeting oxidative stress sources or endogenous antioxidant
defense systems, as well as removing ROS, may be effective
approaches for treating DCM. Recent studies have found that the
expressions of SLC7A11 and glutathione (GSH) are significantly
downregulated in the hearts of DCM mice [111]. This down-
regulation can disrupt normal cell function, enhance lipid
peroxidation, and contribute to iron-dependent cell death, which
is an important factor in DCM development [111]. It is suggested
that MAM may play a role in the mechanisms underlying
ferroptosis. For instance, dysfunction of MAM may lead to an
imbalance in Ca2+ transport between the ER and mitochondria,
thereby driving ferroptosis [112]. It has been found that acute
exposure to arsenic impairs MAM function, possibly by weakening
the interaction between MFN2 and PERK in lung epithelial cells,
thereby inducing ferroptosis [113]. In doxorubicin-induced cardi-
omyopathy, a recent study has discovered that the OMM protein
FUNDC2 promotes ferroptosis by regulating the stability of
SLC25A11 and mitochondrial GSH levels [114]. Moreover, another
OMM protein FUNDC1 demonstrated its role in regulating cell
ferroptosis in DCM. A study revealed that a deficiency of FUNDC1
increased sensitivity to heart remodeling and functional impair-
ment caused by short-term HFD exposure. This may be attributed
to the regulation of ACSL4-mediated cell ferroptosis [115].
Therefore, these studies indicate that MAMs are instrumental in
the occurrence of ferroptosis in DCM and further research is
needed to clarify the mechanisms by which MAMs contribute to
this process.

OUTLOOK
DCM is a significant contributor to disability and mortality among
diabetic patients [1]. The interaction between organelles is
involved in the occurrence and development of various heart
diseases. As important subcellular structures, MAM is closely
related to the functional status of myocardial cells. The density,
length, and thickness of MAM is influenced by cell metabolic
status and stress levels [116]. Therefore, MAM may strengthen the
connection between the ER and mitochondria and affect the fate
of cardiomyocytes by changing the structure and composition of
MAM-resident proteins under different pathophysiological condi-
tions. Recent studies have shown that MAM is involved in Ca2+

overload, mitochondrial homeostasis, autophagy, inflammation,

ER stress, apoptosis, ferroptosis, and other cellular processes in
DCM. Therefore, targeting MAM has become a potential method
for DCM treatment. For example, ferulic acid protected the
integrity of MAM, inhibited apoptosis, and improved cardiomyo-
pathy in diabetic rats [103]. Paeonol promoted Opa1-mediated
mitochondrial fusion by activating Stat3, which might be a
promising strategy for DCM treatment [117]. Similarly, cordycepin
was demonstrated to protect diabetic hearts by upregulating
MFN2 expression and promoting mitochondrial fusion, thus
safeguarding against myocardial ischemia/reperfusion injury [118].
With a deeper understanding of the role of MAMs, certain

previous perceptions are now being controversial. A ketogenic
diet (KD) is widely used by diabetic patients; however, Tao et al.
found that while a KD improved the metabolic indices of db/db
mice, it inhibited the proliferation of T-regulatory cells (Tregs),
impaired diastolic function and exacerbated ventricular fibrosis
[119]. This effect might be mediated primarily by inhibiting MAM
and blocking fatty acid metabolism through the inhibition of IL-
33/ST2L signaling [119]. Previously, the inhibition of excessive
mitochondrial division was considered an effective means for
alleviating DCM [63]. Recent studies have revealed that there are
two types of mitochondrial divisions: intermediate and peripheral
divisions. Intermediate divisions predominantly occur during the
active phase of cell growth and division and are closely linked to
the ER; peripheral divisions take place in unfavorable cellular
environments and are mainly associated with lysosomes [120].
Therefore, the types of mitochondrial division involved in the
pathological state of DCM need to be further investigated to
determine whether targeting MAM is effective in inhibiting
excessive mitochondrial fission in disease states. However, the
specificity of targeting MAM also deserves attention. For example,
metformin is commonly used as a first-line treatment for diabetes
[121]. In addition to its hypoglycemic effect, it can exert
cardioprotective effects by activating the AMPK pathway and
improving mitochondrial function [122]. Interestingly, AMPK plays
a key role in MAM [123]. Therefore, metformin might be a
promising drug for the treatment of DCM via MAM. Maya et al.
showed that metformin improved blood glucose levels and insulin
sensitivity in HFHSD mice; however, it could not prevent the
alteration of MAM Ca2+ coupling in cardiomyocytes and
ameliorate the progression of DCM [124]. These findings further
underscore the critical role of MAM Ca2+ coupling as a potential
therapeutic target for DCM and highlight the essential drug
specificity of targeting MAM.
In conclusion, this review systematically summarizes the

structure and function of MAM, examines the various cellular
processes influenced by MAM, and assesses the potential of MAM
as a key therapeutic target for DCM. However, it should be noted
that most of the studies on MAM and DCM involve animal models
and preclinical experiments. Therefore, further investigations of
MAM-related proteins and their potential mechanisms in cardiac
diseases are needed to provide new perspectives for the clinical
treatment of DCM.
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