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Purine salvage–associated metabolites as biomarkers for early
diagnosis of esophageal squamous cell carcinoma: a diagnostic
model–based study
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Esophageal squamous cell carcinoma (ESCC) remains an important health concern in developing countries. Patients with advanced
ESCC have a poor prognosis and survival rate, and achieving early diagnosis remains a challenge. Metabolic biomarkers are
gradually gaining attention as early diagnostic biomarkers. Hence, this multicenter study comprehensively evaluated metabolism
dysregulation in ESCC through an integrated research strategy to identify key metabolite biomarkers of ESCC. First, the metabolic
profiles were examined in tissue and serum samples from the discovery cohort (n= 162; ESCC patients, n= 81; healthy volunteers,
n= 81), and ESCC tissue-induced metabolite alterations were observed in the serum. Afterward, RNA sequencing of tissue samples
(n= 46) was performed, followed by an integrated analysis of metabolomics and transcriptomics. The potential biomarkers for
ESCC were further identified by censoring gene-metabolite regulatory networks. The diagnostic value of the identified biomarkers
was validated in a validation cohort (n= 220), and the biological function was verified. A total of 457 dysregulated metabolites were
identified in the serum, of which 36 were induced by tumor tissues. The integrated analyses revealed significant alterations in the
purine salvage pathway, wherein the abundance of hypoxanthine/xanthine exhibited a positive correlation with HPRT1 expression
and tumor size. A diagnostic model was developed using two purine salvage–associated metabolites. This model could accurately
discriminate patients with ESCC from normal individuals, with an area under the curve (AUC) (95% confidence interval (CI):
0.680–0.843) of 0.765 in the external cohort. Hypoxanthine and HPRT1 exerted a synergistic effect in terms of promoting ESCC
progression. These findings are anticipated to provide valuable support in developing novel diagnostic approaches for early ESCC
and enhance our comprehension of the metabolic mechanisms underlying this disease.
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INTRODUCTION
Esophageal cancer is a malignant tumor originating from the
esophageal mucosa. More than 480,000 new cases are diagnosed
each year worldwide, half of which occur in China [1]. Its mortality
rate ranks third among all cancers prevalent in China [2].
Additionally, it poses a huge disease and economic burden. In
comparison to Western nations, the Chinese population primarily
suffers from esophageal squamous cell carcinoma (ESCC) as the
dominant pathological subtype, representing over 90% of cases
[2]. Despite recent advancements in the diagnosis and treatment
of esophageal cancer, the prognosis of patients still requires
significant improvement, as evidenced by a relatively low 5-year

survival rate of only 15%–25% [3, 4]. Early diagnosis (TNM: 0-II) is
key to improving overall survival (OS), and the 5-year survival rate
of patients can be improved to 47%–83% [3, 5, 6]. Consequently,
there is a pressing need to develop a diagnostic method that is
sensitive, specific, reliable, and cost-effective, particularly for
population screening, to address the practical requirements of
prevention and treatment of esophageal cancer. Imaging exam-
inations such as barium meal radiography and computed
tomography are highly suitable for the auxiliary diagnosis and
clinical staging of patients with advanced-stage esophageal
cancer [7, 8]. Notably, esophageal endoscopy together with
biopsy remains the gold standard for esophageal cancer
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diagnosis, which has an elevated detection rate in patients with
early-stage esophageal cancer [9–11]. However, this method has
the disadvantages of low subject compliance, technical difficulty,
and high cost; therefore, it is applied only for screening in areas
with a high incidence rate of esophageal cancer (such as in
Feicheng) [12]. Cytokeratin-19-fragment (CYFRA21-1), carcinoem-
bryonic antigen (CEA), and squamous cell cancer (SCC) antigens
are commonly utilized biomarkers for ESCC. However, their
accuracy remains relatively low [13–15]. For population-level
screening, early-stage, noninvasive diagnostic tests will allow
rapid identification of high-risk groups and determine the
requirement for further endoscopy.
Metabolic reprogramming is regarded as an important feature

of tumors [16]. Tumor cells have a tendency to establish a
perpetual pro-anabolic state of metabolism, leading to uncon-
trolled accumulation of transformed cells and tumor growth [17].
High-throughput metabolomics is of particular interest, as it can
reflect disease-associated cellular biochemical activities that are
not detected by other omics technology [18, 19]. Accumulating
evidence suggests that metabolic biomarkers can help detect
ESCC [20, 21]. Zhang et al. performed serum metabolomics studies
using gas chromatography-mass spectrometry and reported that
the combination of 2-ketoisocaproic acid, hypoxanthine,
L-glutamate, and L-aspartate had reasonable performance in
discriminating patients with ESCC from those with esophageal
squamous dysplasia [22]. In our previous study, a serum
metabolomics approach based on liquid chromatography-mass
spectrometry (LC-MS) was utilized, and an increased risk of ESCC
was observed, as evidenced by five metabolites (hypoxanthine,
inosine, carnitine [14:1], glycochenodeoxycholate, and PC [P-18:0/
18:3]) [23]. Despite the surging interest in metabolic biomarkers,
only few studies have verified their availability and utility at the
biological mechanism level, which may at least partially affect the
practical application of biomarkers.
This study comprehensively investigated biomarkers for ESCC.

Metabolic profiling was performed to assess ESCC tumor tissue-
induced metabolite alterations in the serum. Moreover, an
integrated analysis of metabolomics and transcriptomics was
performed to visualize gene-metabolite regulatory networks to
gain novel mechanistic insights into metabolic disorders and
further screen for key metabolic markers of ESCC. The clinical
value of the biomarkers was verified using an independent
validation cohort and biological experiments.

RESULTS
Result 1: Metabolic profiles in the tissue and serum revealed
significantly altered metabolites in ESCC
The metabolic profiling of paired tissue samples (from patients
with ESCC (n= 81), tumor tissues vs normal tissues adjacent to the
tumor (NAT)) and serum samples (from patients with ESCC
(n= 81) and healthy volunteers (n= 81)) were conducted using
LC-MS-based untargeted metabolomics. The purpose of this
investigation was to explore the global metabolic dysregulation
in ESCC, as illustrated in Fig. 1A. Table 1 elaborates on the features
of participants in the discovery cohort. Supplementary Fig. 1
shows typical base peak chromatograms detected in the positive
(ESI+) and negative (ESI−) modes. The relative standard deviation
(RSD) of each ion peak was calculated in the quality control
samples, and peaks with RSD > 30% were eliminated to reduce
data noise. Unsupervised models of principal component analysis
(PCA) depicted differences between tumor tissues and NAT as well
as between serum samples from patients with ESCC and those
from healthy volunteers (Supplementary Fig. 2). Subsequently, the
results of supervised models of partial least squares-discriminant
analysis (PLS-DA) (Fig. 1B) suggest the apparent difference
between tumor tissues and NAT (up) and a significant distinction
between serum samples from patients with ESCC and those from

healthy volunteers (down). The good fitting of the PLS-DA models
was confirmed through permutation tests, as depicted in
Supplementary Fig. 3. Using the Metabolite annotation and
Dysregulated Network Analysis (MetDNA) strategy, a total of
4576 metabolites in tissue samples and 1600 metabolites in serum
samples were successfully annotated. After applying significance
thresholds of false discovery rate (FDR)-adjusted p < 0.05 and a
variable importance in projection (VIP) value greater than 1, a total
of 1692 dysregulated metabolites in tissue samples and 457
dysregulated metabolites in serum samples were identified, as
presented in Fig. 1C.
Further analysis of the metabolic alterations shared in ESCC

tissues and serum was conducted. The metabolites from two data
sets were matched according to polarity, the mass-to-charge ratio
(m/z ± 30 ppm), and retention time (±30 s). The resulting data
indicated 36 shared dysregulated metabolites between the two
sample types (Fig. 1D). Detailed information on these metabolites
is listed in Supplementary Table 1. A heatmap (Fig. 1E) displays the
relative levels of these 36 metabolites in the serum samples of
patients with ESCC and healthy volunteers. Serum metabolites
that were potential candidate biomarkers were identified to
construct a random Forest diagnostic model, with fivefold cross-
validation. Receiver operating characteristic (ROC) curves indi-
cated that the model provided feasibility in effectively differ-
entiating affected individuals from the normal controls (area
under the curve (AUC)= 0.982, 95% confidence interval (CI):
0.957–0.998; Fig. 1F). Importantly, the model had an excellent
diagnostic performance for early-stage (TNM: 0/I/II) ESCC
(AUC= 0.991, 95% CI: 0.977–1.000), with the sensitivity recorded
to be 97.5% and specificity to be 98.9% (Fig. 1F).

Result 2: Pathway analysis by integrating metabolomics and
transcriptomics identified critical gene-metabolite alterations
and ESCC biomarkers
As metabolite changes may not be entirely related to disease
phenotypes, further exploration of the biological background of
metabolites was needed to target more reliable biomarkers. A
comprehensive transcriptome–metabolome analysis was per-
formed on paired tissues from patients with ESCC (Fig. 2A). RNA
sequencing of 46 tissue samples was performed, and the results of
the volcano plot presented significant differences in gene
expression between tumor tissues and NAT (Fig. 2B). In total,
3110 differentially expressed mRNAs were identified as per the
criteria of |log2(foldchange)| > 1 and FDR-adjusted p < 0.05. To
visualize the gene-metabolite network in ESCC, pathway enrich-
ment analysis of differentially expressed genes (DEGs) and
dysregulated metabolites was performed using the hypergeo-
metric distribution test. The data indicated remarkable alterations
in 31 pathways (Fig. 2C and Supplementary Table 2), including the
cAMP signaling pathway, neuroactive ligand–receptor interaction,
protein digestion, absorption, purine metabolism, etc.
In the altered pathways, metabolites and genes were labeled as

upregulated and downregulated according to the fold change to
visualize metabolic reprogramming in patients with ESCC. For the
transcriptome, log2(foldchange) > 1 indicates genes with high
expression, and log2(foldchange) <−1 indicates genes with low
expression. For the metabolome, foldchange > 1.2 indicates
upregulated metabolites, and foldchange < 0.83 indicates down-
regulated metabolites. After review of all 31 pathways, we found
that the changes in the purine metabolism pathway are the most
biologically interpretable, hence being the focus of further
research. A total of 38 metabolites and genes displayed varying
degrees of dysregulation. Notably, a substantial number of genes
and metabolites in the purine salvage pathway exhibited
significant alteration, while few alterations were observed in the
metabolites associated with purine de novo synthesis and purine
catabolism. Particularly, synchronized gene–metabolite alterations
were observed in the purine salvage pathway of patients with
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ESCC (Fig. 2D). When compared to NAT, tumor tissues of ESCC
exhibited significantly abundant expression in the metabolites,
including hypoxanthine, xanthine, adenine, adenosine, etc. Some
genes had significantly upregulated expression, including HPRT1,
IMPDH1, GDA, ADA, etc. The downstream metabolites guanosine
monophosphate and deoxyadenosine monophosphate had sig-
nificantly increased levels. Remarkably, the data confirmed that
hypoxanthine and xanthine are serum metabolites with significant
alterations induced by the ESCC tumor tissue. The homeostasis of
both purine metabolites is mediated by hypoxanthine-guanine
phosphoribosyl transferase (HGPRT), a key metabolic enzyme
encoded by HPRT1 in the purine salvage pathway (Fig. 2D).
Consequently, based on hypoxanthine and xanthine, the

Random Forest model was re-established for ESCC diagnosis, with
a fivefold cross-validation. In the discovery cohort, ROC curves
exhibited strong diagnostic performance for the metabolite
biomarkers in the serum dataset, with an AUC value of 0.825
(95% CI: 0.758–0.889), as illustrated in Fig. 2E. To further verify their
diagnostic potential, the efficacy of the model was evaluated in an

external validation cohort, with the details enlisted (n= 220) in
Supplementary Table 3. The results from ROC curves showed that
the model performed well in distinguishing patients with ESCC
from normal individuals, with an AUC value of 0.765 (95% CI:
0.680–0.843; Fig. 2F). However, this model could barely distinguish
normal individuals from patients with lung or colorectal cancer,
with AUC values of 0.537 (95% CI: 0.423–0.659) and 0.533 (95% CI:
0.419–0.641), respectively (Fig. 2F). These results suggest that
hypoxanthine and xanthine have great potential as biomarkers for
ESCC detection. These outcomes reveal that upregulated expres-
sion of the hypoxanthine/xanthine-HPRT1 network may closely
indicate ESCC development. Elucidating the biological role of this
network in ESCC may be helpful in clarifying the diagnostic value
of the biomarkers, which is the premise and the basis for their
clinical application.

Result 3: The network of hypoxanthine/xanthine-HPRT1 was
upregulated in ESCC and linked to malignant characteristics
Upregulation of the hypoxanthine and xanthine abundance in
tissue samples (Fig. 3A) was consistent with that in the serum
samples (Fig. 3B). In addition, tissue sequencing data suggested
that HPRT1 mRNA expression was significantly enhanced in tumor
tissues in comparison to that in NAT (p < 0.001; Fig. 3C).
Immunohistochemical (IHC) staining of 64 paired tissue specimens
from patients with ESCC (Supplementary Fig. 4A, B) suggested that
the HPRT1 protein level was significantly elevated in tumor tissues
compared with those in NAT (p < 0.001; Fig. 3D). Pearson
correlation analysis revealed that the abundance of hypoxanthine
and xanthine in tumor tissues was positively correlated with
HPRT1 expression at both mRNA and protein levels (p < 0.05; Fig.
3E, F). Logistic regression analysis highlighted that upregulated
expression of HPRT1 was significantly linked to a more advanced
TNM stage, a higher degree of infiltration, the presence of regional
lymph node metastasis, and increased tumor size (for patients
with ESCC, the longest diameter of the tumor was considered the
tumor size measurement; Supplementary Table 4). HPRT1 expres-
sion at both mRNA (p < 0.001) and protein (p= 0.039) levels were
significantly upregulated in tumors of size ≥5 cm than in those of
size <5 cm (Fig. 3G). The abundance of hypoxanthine (p= 0.017)
and xanthine (p= 0.041) was significantly increased in tumors of
size ≥5 cm than in those of size <5 cm (Fig. 3H). These results
suggested that upregulated expression of the hypoxanthine/
xanthine-HPRT1 network was associated with malignant patholo-
gical characteristics of ESCC.
To ascertain the level of hypoxanthine and xanthine catabolism

in patients with ESCC, uric acid levels were analyzed through
biochemical examination of blood samples of patients with ESCC.
The process involved purine ring degradation with uric acid as the
final product. The results indicate that the upregulation of purine
salvage in ESCC did not significantly alter the abundance of uric
acid, as illustrated in Supplementary Fig. 5.

Result 4: Synergistic effect between hypoxanthine and HPRT1
contributes to the activation of the purine salvage pathway
and promotion of ESCC development
The role of hypoxanthine was assessed to further explore purine
metabolism dysregulation in ESCC progression. Hypoxanthine
supplementation (1 ng/μL) significantly stimulated the prolifera-
tion of KYSE-30 or KYSE-450 cells (p < 0.001; Fig. 4A). Supporting
this result, hypoxanthine supplementation (1 ng/μL) significantly
enhanced the clonogenicity of ESCC cells (p < 0.05; Fig. 4B and
Supplementary Fig. 6A). Thus, these results suggest that
hypoxanthine supplementation strikingly promoted the viability
of ESCC cells.
To elucidate the involvement of hypoxanthine-HPRT1 synchro-

nization changes in ESCC, multiple ESCC cell lines were generated
by lentiviral transduction to either stably overexpress or silence
HPRT1. After selection by puromycin, HPRT1 expression

Table 1. Demographic and clinical characteristics of ESCC patients
and healthy volunteers in discovery cohort.

Characteristics ESCCa

patients
Healthy
volunteers

p value

Total Number 81 81

Gender (male/
female)

60/21 63/18 0.713

Age (mean ± SDb,
year)

62.49 ± 8.1 59.25 ± 7.8 0.010

BMIc (mean ± SDb) 23.45 ± 3.2 24.61 ± 3.0 0.018

Smoker, n (%) 37 (45.7) 35 (43.2) 0.874

Drinker, n (%) 35 (43.2) 32 (39.5) 0.750

TNMd, n (%)

0/I 5 (6.2) —

II 38 (46.9) —

III 32 (39.5) —

IV 6 (7.4) —

Clinical T stage, n (%) —

T0–T2 18 (22.2) —

T3–T4 63 (77.8) —

Clinical N stage, n (%) —

N0 43 (53.1) —

N1–N3 38 (46.9) —

Tumor size, n (%) —

<5 cm 35 (43.2) —

≥5 cm 46 (56.8) —

Tumor location, n (%) —

Upper thoracic 3 (3.7) —

Middle thoracic 59 (72.8) —

Lower thoracic 19 (23.5) —

Differentiation grade,
n (%)

—

G1 20 (25.0) —

G2 35 (43.8) —

G3 25 (31.2) —

aESCC esophageal squamous cell carcinoma.
bSD standard deviation.
cBMI body mass index.
dTNM tumor-node-metastasis classification system (8th edition, 2017).
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D Dysregulated purine salvage pathway in patients with ESCC. Synchronous upregulated expression of the gene (HPRT1) and its metabolic
substrates (hypoxanthine and xanthine) in patients with ESCC, leading to enhanced synthesis of guanosine monophosphate. E ROC curves
showing the diagnostic performance of the combination of two potential biomarkers (hypoxanthine and xanthine) in the discovery cohort.
Red: tumor tissues vs NAT; blue: serum of healthy subjects vs serum of patients with ESCC. F ROC curves showing the diagnostic performances
of the combination of two potential biomarkers (hypoxanthine and xanthine) in the external validation cohort. Red: serum of healthy subjects
vs serum of patients with ESCC; yellow: serum of healthy subjects vs patients with colorectal cancer; green: serum of healthy subjects vs
patients with lung cancer. DEGs differentially expressed genes, ESCC esophageal squamous cell carcinoma, KEGG Kyoto Encyclopedia of
Genes and Genomes, ROC receiver operating characteristic, NAT normal tissues adjacent to the tumor.
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significantly downregulated in KYSE-30 and KYSE-450 cells
transduced by shRNAs (sh3, sh5 vs. shNC; p < 0.01; Fig. 4C).
Notably, KYSE-30 and KYSE-450 cells transduced by full-length
cDNA had significantly overexpressed HPRT1 (HPRT1 vs NC;
p < 0.001; Fig. 4D). Cells with HPRT1 overexpression showed
increased proliferation of KYSE-30 or KYSE-450 cells under
hypoxanthine supplementation when compared with cells that
were only under hypoxanthine supplementation (p < 0.001; Fig. 4E

and Supplementary Fig. 6B, C). In line with this, HPRT1 over-
expression significantly enhanced the colony-forming ability of
ESCC cells that were under hypoxanthine supplementation
(p < 0.05; Fig. 4F and Supplementary Fig. 6D). Notably, HPRT1
silencing–induced proliferation inhibition could not be rescued by
hypoxanthine supplementation (Fig. 4G).
To gain more insight into the interaction between HPRT1 and

hypoxanthine, hypoxanthine concentration in ESCC cells was

Fig. 3 Network showing hypoxanthine/xanthine-HPRT1 is significantly upregulated and associated with malignant pathological
characteristics in ESCC. A Boxplot showing significant differences in the levels of hypoxanthine/xanthine between ESCC tissues (n= 81) and
NAT) (n= 81). Wilcoxon rank-sum test, p < 0.001. B Boxplot showing the significant difference in the levels of hypoxanthine/xanthine between
the serum of patients with ESCC (n= 81) and serum of healthy subjects (n= 81).Wilcoxon rank-sum test, p < 0.001. C Boxplot showing the
significant difference in HPRT1 mRNA levels between ESCC tissues (n= 23) and NAT (n= 23). Wilcoxon rank-sum test, p < 0.001. D Bar chart
showing the IHC score of HPRT1 staining in ESCC tissues (n= 64) and NAT (n n= 64). Wilcoxon rank-sum test, p < 0.001. E, F Pearson correlation
analysis of hypoxanthine/xanthine abundance and HPRT1 expression level in patients with ESCC. Correlation between HPRT1 mRNA
expression level and hypoxanthine/xanthine abundance in 23 paired tissues (n= 46) of ESCC (E). Correlation between the immunoreactivity
score of HPRT1 expression and hypoxanthine/xanthine abundance in 27 paired tissues (n= 54) of ESCC (F). G Fisher’s exact test showing the
correlation between HPRT1 mRNA expression levels and ESCC tumor size (n= 23). According to the median expression level of HPRT1 mRNA
in patients with ESCC, tumor tissues were grouped into high- and low-expression groups (left). Fisher’s exact test showing the correlation
between HPRT1 protein levels and tumor size in patients with ESCC (n= 64). Tumor tissues were divided into high- and low-expression groups
according to the median HPRT1 IHC score in patients with ESCC (right). H Wilcoxon rank-sum test showing the correlation between
hypoxanthine/xanthine abundance and tumor size in patients with ESCC (n= 81). ESCC esophageal squamous cell carcinoma, NAT normal
tissues adjacent to the tumor, IHC score immunohistochemical score.
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Fig. 4 Synergistic action of hypoxanthine and HPRT1 in promoting ESCC development. A Hypoxanthine promoted the proliferation of
KYSE-30 and KYSE-450 cells. Two-way ANOVA test, **p < 0.01, ***p < 0.001. B Hypoxanthine stimulated the colony formation of KYSE-30 and
KYSE-450 cells. C, D Establishment of HPRT1 stably silenced and overexpressed cell lines verified at the mRNA and protein expression level in
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examined using the ELISA kit. In comparison to control cells, a mild
and insignificant reduction was observed in hypoxanthine
concentrations in HPRT1-silenced cells (p > 0.05; Fig. 4H left). The
data indicated significantly lower hypoxanthine levels in cells with
HPRT1 overexpression (p < 0.01; Fig. 4H right). Furthermore, no
significant difference was observed in HPRT1 mRNA expression in
cells with silenced or overexpressed HPRT1 or in control cells after
hypoxanthine treatment (p > 0.05; Fig. 4I and Supplementary Fig.
7). Collectively, these outcomes highlighted that higher HPRT1
expression levels in ESCC cells led to increased hypoxanthine
utilization by the cells. Hypoxanthine-HPRT1 activity was simulta-
neously upregulated, thus possibly playing a synergistic role in
promoting cell proliferation in ESCC.

Result 5: HPRT1 promoted malignant proliferation of ESCC
through phosphorylation of the YAP protein
HPRT1 has been shown to be involved in the pathogenesis of
various human cancers, but its mechanism of action has not been
reported in ESCC [24, 25]. Through the regulation of the purine
salvage pathway, HPRT1 primarily participates in nucleotide
synthesis [26]. Using data from the The Cancer Genome Atlas
(TCGA) database, the HPRT1 expression profile and its potential for
predicting prognosis was assessed in different cancer types.
Significantly elevated HPRT1 expression levels were observed in
12 types of malignant tissues in comparison to the corresponding
normal tissues (p < 0.05; Supplementary Fig. 8A and Supplemen-
tary Table 5). Next, Cox proportional risk model analysis was
performed by acquiring survival data. The results suggested that,
in 17 cancer types, the mortality risks were significantly elevated in
the individuals in the group with high HPRT1 expression in
comparison to those with low HPRT1 expression (Supplementary
Fig. 8B and Supplementary Table 6). Remarkably, in esophageal
cancer, the risk of mortality was significantly elevated in the group
with high HPRT1 expression compared to the group with low
expression (HRs= 2.215, 95% CI: 1.143–4.293, p= 0.018). The
Kaplan-Meier survival curves highlighted that the OS of the HPRT1
high-expression group in esophageal cancer was shorter than that
of the HPRT1 low-expression group (log-rank test, p= 0.016).
Notably, the high HPRT1 expression group had a significantly
shorter median OS of 18.2 months, compared to the low HPRT1
expression group with a median OS of 31.6 months (p= 0.018).
The 3-year survival rates were 5% and 10.6%, respectively
(Supplementary Fig. 8C). These data imply that HPRT1 may act
as a novel oncogene in ESCC progression.
The biological function of HPRT1 in ESCC was further explored

both in vitro and in vivo. The silencing of HPRT1 resulted in
significant inhibition of the proliferation of KYSE-30 and KYSE-450
cells (p < 0.01; Fig. 5A), whereas its overexpression significantly
increased the proliferation of ESCC cells (p < 0.01; Supplementary
Fig. 9A). Consistent with these results, silencing of HPRT1 inhibited
clone formation in KYSE-30 and KYSE-450 cells (p < 0.05, Fig. 5B),
and its overexpression enhanced the clonogenicity of cells
(p < 0.05, Supplementary Fig. 9B). These findings suggest that
HPRT1 is a novel oncogene in ESCC pathogenesis. Furthermore,
HPRT1 exhibited a significant promotion of migration in ESCC cells
(Supplementary Fig. 9C–E). The in vivo effects of HPRT1 were
assessed by xenografting ESCC in nude mice. The data acquired
indicated that these xenografts with stably silenced
HPRT1 showed delayed growth and had significantly reduced
tumor volume and mass in comparison to the control mice
(p < 0.05; Fig. 5C, D). These outcomes indicated that
HPRT1 silencing can inhibit the in vivo proliferation of malignant
ESCC cells.
To elucidate the involvement of HPRT1 in regulating crucial

tumorigenic genes and downstream pathways, RNA-seq analysis
was conducted on KYSE-30 and KYSE-450 cells with stable
silencing of HPRT1, followed by comparing them with control
counterparts. Differential gene expression analysis was conducted

on the RNA sequencing data, revealing that these cell lines
depicted concurrent alterations in the expression of 53 genes.
Among these genes, 30 exhibited downregulated expression,
while 23 exhibited upregulated expression, as depicted in Fig. 5E.
Next, pathway enrichment analysis was conducted on the co-
altered differential genes (Fig. 5F). The results indicated that the
Hippo signaling pathway was highly affected in both ESCC cell
lines owing to HPRT1 silencing (Fig. 5F). Furthermore, this
HPRT1 silencing significantly promoted the phosphorylation of
the YAP protein at Ser127 compared with that in control cells
(p < 0.01), with no significant difference observed in the protein
expression (p > 0.05, Fig. 5G and Original western blots). Similarly,
HPRT1 overexpression downregulated YAP phosphorylation levels
in ESCC cells (p < 0.01), with no significant difference in YAP
protein expression observed (p > 0.05, Fig. 5H and Original
western blots). Collectively, these data imply that HPRT1 may
promote cancer progression by inhibiting YAP protein phosphor-
ylation in the downstream Hippo signaling pathway.

DISCUSSION
This study comprehensively evaluated the metabolic dysregulation
of ESCC through an integrated strategy of metabolomics and
transcriptomics. A group of purine salvage–associated metabolites
were identified, and the expression of these metabolites was
dysregulated in the blood in a tissue-specific manner. Furthermore,
a diagnostic model was developed using two purine
salvage–associated metabolites. This model could accurately
discriminate patients with ESCC from normal individuals. The
diagnostic sensitivity of this model was found to be better than
that of CEA, CYFRA21-1, and SCC [15, 27–30], which are the
biomarkers currently used in clinical practice. This report presented
two noteworthy findings. The first one is the identification of
hypoxanthine/xanthine as a promising candidate biomarker for
ESCC diagnosis. The second is the synergistic effect between
hypoxanthine and HPRT1 in terms of promoting ESCC progression.
Collectively, these outcomes not only identified key metabolites
associated with ESCC but also enhanced our comprehension of the
underlying mechanisms of ESCC metabolism.
In our previous study, 653 serum samples were collected,

representing different stages ranging from normal to ESCC
progression. These samples consisted of 305 normal cases, 77
cases of esophagitis, 228 cases of low-grade dysplasia, and 43
cases of high-grade dysplasia/ESCC. The ordinal information of
these four groups was imported into a statistical analysis to
investigate serum metabolites associated with the progression of
ESCC. The metabolites hypoxanthine, inosine, carnitine (14:1),
glycochenodeoxycholate, and PC (P-18:0/18:3) are potential
biomarkers for risk prediction and early diagnosis of ESCC [23].
However, the biological information provided by metabolomics
remains limited as it unravels only a one-dimensional perspective
to understand metabolic dysregulation in tumors [31, 32], which
may result in false-positive biomarkers. The development of
effective diagnostic approaches requires a system-level compre-
hensive analysis of the molecules altered in a specific disease
[33, 34]. Therefore, the integrative analysis of metabolomics with
other omics data is a crucial step in identifying biomarkers and the
disease etiology [35, 36]. Genes and their corresponding proteins
play important roles in the production and regulation of
metabolites [37]. Transcriptomics can help examine all RNAs
expressed by genes at a specific time point, in a certain
environment and is an essential means to reveal the mechanism
of a particular disease [38, 39]. In this research, metabolomics and
transcriptomics were integrated to analyze metabolic alterations
in ESCC [40], further verifying from two dimensions that
hypoxanthine and xanthine are crucial biomarkers of ESCC.
Although emerging evidence suggests the potential of meta-

bolic biomarkers in tumor diagnosis [41, 42], how the relevant
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Fig. 5 HPRT1 promoted the malignant proliferation of ESCC cells in vitro and in vivo. A HPRT1 silencing with shRNAs inhibited the
proliferation of KYSE-30 and KYSE-450 cells. Two-way ANOVA test, **p < 0.01, ***p < 0.001. B Silencing of HPRT1 with shRNAs inhibited the
clonogenicity of KYSE-30 and KYSE-450 cells. Two-tailed unpaired t test, *p < 0.05, **p < 0.01. C, D In vivo growth of ESCC xenografts was
inhibited by HPRT1 silenced sh3 (KYSE-30) and sh5 (KYSE-450) vs corresponding shNC. E Venn diagram showing HPRT1 silencing affects gene
expression in KYSE-30 and KYSE-450 cells. F KEGG enrichment pathways of the DEGs in both HPRT1-silenced KYSE-30 and KYSE-450 cells.
G, H HPRT1 suppressed the phosphorylation of the YAP protein in KYSE-30 and KYSE-450 cells. Two-tailed unpaired t test, ns, not significant,
*p < 0.05, **p < 0.01. ESCC esophageal squamous cell carcinoma, shRNA short hairpin RNA, DEGs differentially expressed genes, KEGG Kyoto
Encyclopedia of Genes and Genomes.

Y. Sun et al.

9

Cell Death Discovery          (2024) 10:139 



metabolites are involved in ESCC development requires a
systematic investigation. In this study, it was shown that
hypoxanthine/xanthine-HPRT1 is one of the most significantly
upregulated gene-metabolite networks in ESCC. Its high expres-
sion levels were correlated with the pathological characteristics of
patients with ESCC. Rapidly proliferating tumor cells have a high
demand for nucleotides due to the need for ample templates to
replicate the DNA genome during cell division and for the
synthesis of rRNA and mRNA for protein production [43]. In most
cells, purine nucleotides can be synthesized through two path-
ways: the salvage pathway and the de novo pathway. These
pathways sequentially construct purine nucleotides starting from
phosphoribosyl pyrophosphate (PRPP) [44, 45]. The HPRT1 gene,
located on the X chromosome, encodes the HGPRT enzyme, which
contributes to recycling nucleotides for use in DNA and RNA
synthesis in actively dividing cells The purine salvage pathway
begins with the PRPP-dependent ribosylation of hypoxanthine by
HGPRT, resulting in the formation of inosine monophosphate
(IMP). IMP can be further utilized in the guanylate metabolite
pathway for guanosine triphosphate (GTP) biosynthesis or
undergo amination to eventually form adenosine triphosphate
(ATP) [46]. Similarly, xanthine can be salvaged for GTP production
or utilized for ATP production. The results suggest that purine
salvage synthesis, not de novo synthesis, may serve as the
fundamental mechanism to replenish purine pools in ESCC [47].
Hypoxanthine aids in maintaining a balance between the
adenylate and guanylate pools within the cell [48]. Hypox-
anthine/xanthine is taken up and released by equilibrative
nucleoside transporter 2 [49, 50], which allows them to be
detected in the blood.
Furthermore, it was demonstrated that hypoxanthine syner-

gizes with oncogene HPRT1, contributing to promoting ESCC
development. Moreover, upregulated HPRT1 expression was
detected in tumor specimens and was associated with evidently
shortened survival time in patients with ESCC. Consistently, HPRT1
exhibited strong oncogenic potential both ex vivo and in vivo.
Specifically, in ESCC, HPRT1 has the potential to inhibit the
phosphorylation of the YAP protein at Ser127. This inhibition leads
to an increased formation of nonphosphorylated YAP, which can
then translocate into the nucleus and facilitate transcriptional
activity. Consequently, this mechanism promotes cell proliferation
[51]. According to the present literature, this is the first study to
report a network demonstrating the dysregulation of gene-
metabolite in ESCC, wherein the upregulated network of
hypoxanthine/xanthine-HPRT1 is likely to play a crucial role in
the progression of ESCC.
However, there are certain limitations to this research that need

to be acknowledged. Firstly, it is crucial to collect a larger number
of samples, particularly blood samples from patients with early-
stage ESCC, to validate the potential significance of purine
salvage-related metabolites (hypoxanthine/xanthine) in the detec-
tion and screening of early-stage ESCC. Additionally, even though
the discovery cohort included a significant proportion (53.09%) of
patients with early-stage ESCC based on pathological diagnosis,
further studies with a larger and more diverse cohort are needed
to enhance the external validity and generalizability of the
identified biomarkers. However, the findings of this report do
not establish a causal correlation, despite its emphasis on
biologically plausible mechanisms. To enhance the robustness
and reliability of the results, metabolomics and transcriptomics
data were integrated to reveal dysregulated gene-metabolite
networks in ESCC. Furthermore, preliminary biological experi-
ments were conducted to elucidate the mechanism underlying
the synergistic promotion of ESCC progression by hypoxanthine-
HPRT1. In the future, a deeper understanding of the metabolic
adaptation mechanisms, particularly in relation to the rewriting
principles of the purine salvage pathway, may ultimately

contribute to improved strategies for preventing the onset and
progression of ESCC.

CONCLUSIONS
In this study, a comprehensive strategy was utilized to identify a
dysregulated metabolic network associated with ESCC progres-
sion, involving the metabolite biomarkers hypoxanthine and
xanthine, the HPRT1 gene, and the purine salvage pathway. The
findings of this research provide valuable support for the
establishment of novel diagnostic strategies for early ESCC and
partly enhance our understanding of the molecular mechanisms
involved in ESCC progression.

MATERIALS AND METHODS
Study cohorts and sample collection
Prior to conducting the study, approval was obtained from the Ethical
Committee of Shandong Cancer Hospital and Institute. Written informed
consent was obtained from all participants involved in the study. The
staging of all cases followed the guidelines provided by the American
Joint Committee on Cancer/Union for International Cancer Control for
cancer staging (8th edition, 2017). For the discovery cohort, 81 patients
with ESCC and 81 healthy volunteers were recruited from Shandong
Cancer Hospital and Institute (Shandong, China) and the three Upper
Gastrointestinal Cancer Screening Bases of Shandong Province (Fei-
cheng, Dongping, and Ningyang, Shandong, China) between October
2018 and March 2020. Paired tissue samples and serum samples were
collected from patients with ESCC, and serum samples were collected
from healthy volunteers. Furthermore, the population in the external
validation cohort was enrolled from Shandong Cancer Hospital and
Institute and two Upper Gastrointestinal Cancer Screening Bases (Wuwei,
Gansu, China; Feicheng, Shandong, China) between August 2019 and
October 2020. The validation cohort comprised 220 participants
classified into four populations: healthy volunteers (n= 58), patients
with ESCC (n= 81), lung cancer (n= 41), and colorectal cancer (n= 40).
Serum samples were collected from all participants. Further details about
participant eligibility criteria and sample collection are provided in the
Supplementary methods.

Metabolic profiling of ESCC
For metabolite profiling, an ultra-high-performance liquid chromatography
(UHPLC) system (1290 series, Agilent Technologies, USA) was utilized in
conjunction with a quadruple time-of-flight mass spectrometer (TripleTOF
6600; AB SCIEX, USA). Metabolomics analysis of samples was performed as
previously described with slight modification [52]. Further details are
provided in the Supplementary Methods.

RNA sequencing of tissue samples
RNA sequencing and differential gene analysis of ESCC tissues were
conducted at Berry Oncology Corporation (Beijing, China). A total of 3110
mRNAs were identified in the ESCC tissues. Further details are provided in
the Supplementary Methods.

Immunohistochemistry assay
Two microarrays of human ESCC tissues were used for this assay. One
microarray included tumor tissue specimens (n= 35) and NAT specimens
(n= 35), collected by our research group, designed and produced by
Shanghai Outdo Biotech Co.LTD. Another microarray included 29 pairs of
ESCC tissues purchased from the same company, with detailed patholo-
gical data. HPRT1 (ab109021; Abcam) antibody was used at a 1:4000
dilution. Further details are provided in the Supplementary Methods.

Quantification of hypoxanthine/xanthine detection by ELISA
Hypoxanthine/xanthine can be oxidized by a xanthine enzyme mixture to
form a specific intermediate, which then reacts with the chromogen and
probe to form the final product, detected by the colorimetric method
(λ= 570 nm). Hypoxanthine/xanthine levels in the serum and cell lines of
the validation cohort were quantified using the Hypoxanthine/Xanthine
Assay Kit (ab155900; Abcam).
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Pan-cancer analysis based on the TCGA database
RNA expression data were acquired from TCGA database (https://
xenabrowser.net/datapages/), including information on all cancer types,
with the data of both cancer and corresponding normal tissues extracted
to compare differences in HPRT1 expression (Supplementary Table 5).
Survival data were retrieved in all cancer types to compare the prognostic
differences among patients with different HPRT1 expression levels
(Supplementary Table 6).

Cell culture
The human ESCC cell line KYSE-450 was obtained from the China Center
for Type Culture Collection. The human ESCC cell line KYSE-30 was
obtained from the Key Laboratory of Shandong Cancer Hospital and
Institute. Further details are provided in the Supplementary Methods.

Lentiviral transduction
The lentiviral GV112-hU6-MCS-CMV-Puro-sh3/sh4/sh5 and control (shNC)
vectors were provided by the Shanghai GeneChem Corporation (China).
The lentiviral LV18-CMV-Puro-HPRT1 and control (NC) vectors were
purchased from Shanghai GenePharma Corporation (China). Further details
are provided in the Supplementary Methods.

Quantitative reverse transcription–polymerase chain reaction
Total RNA was extracted from the cultured cells using the RNAsimple Total
RNA Kit (TIANGEN, Beijing, China). For complementary DNA (cDNA)
synthesis, each RNA sample was reverse transcribed using PrimeScript™
RT Master Mix (RR036A; TaKaRa). Relative mRNA levels were quantified
according to the 2−ΔΔCt method. The primers used for this assay are listed
in Supplementary Table 7.

Western blot assay
Western blot assay was conducted following the standard protocol.
Antibodies against the YAP protein (Phospho-YAP/TAZ Antibody Sampler
Kit, 52420, Cell Signaling Technology), Phospho-YAP (Phospho-YAP/TAZ
Antibody Sampler Kit, 52420, Cell Signaling Technology), HPRT1
(ab109021; Abcam), and GAPDH (ab8245; Abcam) were utilized. Protein
visualization was performed using the Electrochemiluminescence Western
Blotting Substrate (WBKLS0100; Millipore).

Cell proliferation assays and hypoxanthine effect analyses
To perform cell proliferation assays, stably transfected KYSE-30 (4 × 104

cells per well) or KYSE-450 (8 × 104 cells per well) cells were seeded in 12-
well plates. For the colony formation assays involving hypoxanthine effect
analysis, 4 × 104 stably transfected KYSE-30 and KYSE-450 cells were
seeded per well in 12-well plates. Hypoxanthine, diluted in phosphate-
buffered saline (PBS), was added to each well to achieve the desired final
concentrations (0, 0.5, 1, and 5 ng/μL). The ESCC cells were harvested and
counted at 24, 48, 72, 96, and 120 h after seeding.

Colony formation assays and hypoxanthine effect analyses
Stably transfected KYSE-30 cells (800 cells per well) were seeded in a 6-well
cell culture plate. After 10 days, when colonies became visible, the cells
were washed twice with cold PBS and fixed with methanol. Following
fixation, the cells were stained with 1% crystal violet, and the number of
ESCC colonies formed in each well was counted. Similarly, stably
transfected KYSE-450 cells (1000 cells per well) were seeded in a 6-well
cell culture plate, and the number of KYSE-450 cell colonies was counted
after 14 days. For colony formation assays investigating the effect of
hypoxanthine, stably transfected KYSE-30 and KYSE-450 cells (800 cells per
well) were seeded in a 6-well cell culture plate. Hypoxanthine concentra-
tions were used as described above.

Transwell assays
Transwell chambers were prepared by coating them with 60 μL of Matrigel
(diluted 1:20; pore 8 μm, Corning) and incubating them for 4 h in a 5% CO2

incubator. In the upper chamber of the Transwell setup, KYSE-30 cells or
KYSE-450 cells were added, along with a culture medium supplemented
with 1% FBS. The lower chamber of the Transwell setup was added with
650 μL of medium supplemented with 10% FBS. After 48 h, the cells that
had migrated to the lower chamber through the pores were stained with a
0.1% crystal violet solution and then counted.

Wound healing assays
KYSE-30 and KYSE-450 cells were cultured until they reached approxi-
mately 90% confluence. A wound was created by scratching the cell layer
using a 200-μL pipette tip. The ESCC cells were then incubated at 37 °C
with 5% CO2. The extent of wound closure was measured and quantified
by assessing the average closure of the wound area.

Mouse xenograft tumor models
To evaluate the in vivo role of HPRT1, female nude BALB/c mice (4–6 weeks
old; obtained from Beijing Vital River Laboratory Animal Technology Co.
Ltd., Beijing, China) were subcutaneously inoculated with HPRT1-silenced
or control (shNC) KYSE-30 (5 × 106 cells) or KYSE-450 (8 × 106 cells) cells
into the fossa axillaries (n= 5 per group). Mice were randomized to each
experimental group. Tumor growth was monitored every 2 days after the
tumor volume reached 100 mm3. All animal studies were conducted
following the guidelines and regulations approved by the Animal Care and
Use Committee of Shandong Cancer Hospital and Institute.

Statistical analysis
R (version 3.5.0) was used for the analysis of omics data. An unsupervised
PCA was conducted to visualize the global metabolic profiles among
groups, utilizing the R function “prcomp”. Subsequently, a supervised
model of PLS-DA was employed to assess the global metabolic difference
between groups. To assess the validity of the discriminant models and
prevent overfitting, a permutation test was performed 200 times.
Additionally, the VIP value was calculated for each variable in the PLS-
DA model. Differential analysis between sample groups was performed
using the Wilcoxon rank-sum test and Benjamin-Hochberg FDR adjust-
ment. Dysregulated metabolites meeting the criteria of FDR-adjusted
p < 0.05 and VIP > 1 were selected. For analysis, the R package function
“randomForest” implemented a random forest regression model. ROC
curves were constructed using the R package function “pROC” to evaluate
the diagnostic performance of the metabolite biomarkers. The AUC and a
95% CI were calculated to assess predictive accuracy.
The R package function “edgeR” was utilized to analyze the differential

expression of genes between groups, obtaining the adjusted p value (padj)
based on FDR. DEGs were identified based on the criteria of padj < 0.05 and
|log2(FoldChange)| > 1. Pathway enrichment analysis involved tests for
hypergeometric distribution, and the Kyoto Encyclopedia of Genes and
Genomes database (KEGG, http://www.genome.jp/kegg/) was used for
mapping the differential metabolites and DEGs. The Wilcoxon rank-sum
test was conducted to compare differences in HPRT1 expression between
groups. Fisher’s exact test was used to compare HPRT1 expression with
pathological characteristics of patients with ESCC, whereas their correlation
was assessed through logistic regression analysis. Pearson correlation
analysis was conducted to examine the correlation between metabolite
levels and HPRT1 expression. Concerning the TCGA data, the Wilcoxon
rank-sum test was performed to compare HPRT1 expression across
different cancer types, and survival analysis was performed to evaluate
the prognosis of patients with different types of cancer. The R package
“surminer” was utilized to determine the optimal threshold of HPRT1
expression, and Kaplan-Meier survival curves were constructed using the R
package “survival” to assess survival differences among patients with
different HPRT1 expression levels. Transcriptome sequencing of ESCC cells
following HPRT1 silencing was performed, and DEGs were subjected to
functional enrichment analysis using the R package function
“clusterProfiler.”
The data of the biological experiments were statistically analyzed using

GraphPad Prism 9. For statistical comparisons between two groups, we
used the two-tailed unpaired t test. For comparisons between more than
two groups or conditions, we applied the two-way ANOVA test. All
experiments were repeated at least three times. The tests utilized are two-
tailed, and adjustments are made for multiple comparisons. The data are
presented as the mean ± standard deviation. A p value of less than 0.05
was considered to indicate statistical significance.
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