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Roflumilast inhibits tumor growth and migration in STK11/LKB1
deficient pancreatic cancer
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Pancreatic cancer is a malignant tumor of the digestive system. It is highly aggressive, easily metastasizes, and extremely difficult to
treat. This study aimed to analyze the genes that might regulate pancreatic cancer migration to provide an essential basis for the
prognostic assessment of pancreatic cancer and individualized treatment. A CRISPR knockout library directed against 915 murine
genes was transfected into TB 32047 cell line to screen which gene loss promoted cell migration. Next-generation sequencing and
PinAPL.py- analysis was performed to identify candidate genes. We then assessed the effect of serine/threonine kinase 11 (STK11)
knockout on pancreatic cancer by wound-healing assay, chick agnosia (CAM) assay, and orthotopic mouse pancreatic cancer model.
We performed RNA sequence and Western blotting for mechanistic studies to identify and verify the pathways. After accelerated
Transwell migration screening, STK11 was identified as one of the top candidate genes. Further experiments showed that targeted
knockout of STK11 promoted the cell migration and increased liver metastasis in mice. Mechanistic analyses revealed that STK11
knockout influences blood vessel morphogenesis and is closely associated with the enhanced expression of phosphodiesterases
(PDEs), especially PDE4D, PDE4B, and PDE10A. PDE4 inhibitor Roflumilast inhibited STK11-KO cell migration and tumor size, further
demonstrating that PDEs are essential for STK11-deficient cell migration. Our findings support the adoption of therapeutic
strategies, including Roflumilast, for patients with STK11-mutated pancreatic cancer in order to improve treatment efficacy and
ultimately prolong survival.
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INTRODUCTION
According to estimates from the Global Cancer Statistics [1],
pancreatic malignancies claimed 466,003 lives in 2020, making it
the sixth most common cause of cancer-related death among
both sexes. The incidence of this disease has increased rapidly
owing to its inconspicuous early symptoms, lack of diagnostic
means, poor specificity of tumor markers, and frequent occurrence
of early lymph node and distant metastases. Pancreatic cancer is
highly metastatic even in the early stages, and local or metastatic
recurrence can eventually lead to death. Indeed, approximately
50% of patients with pancreatic cancer already have distant
metastases at the time of diagnosis, and the subsequent median

survival is less than one year [2]. The most common types of
pancreatic cancer therapy include surgery, chemotherapy, radia-
tion therapy, targeted therapy, and supportive/palliative care.
Surgery is still the only effective way to cure pancreatic cancer;
however, the treatment eligibility rates are low.
Serine/threonine kinase 11 (STK11), also known as liver kinase

B1 (LKB1), is associated with pancreatic cancer. STK11 was first
shown to be mutated in Peutz–Jeghers syndrome and was later
discovered to be an essential tumor suppressor [3]. An increasing
amount of evidence suggests that inactivated STK11 somatic
mutations contribute to the pathogenesis of numerous cancers,
such as gastrointestinal cancer [4], non-small cell lung cancer
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(NSCLC) [5–7], pancreatic cancer [8], cervical cancer [9, 10], and
melanoma [11], which are influenced by inactivated
STK11 somatic mutations. To date, the mechanisms underlying
STK11 loss-dependent migration are limited. However, some
studies have highlighted the possible involvement of the STK11
pathway in metastasis as well as potential drugs and inhibitors.
For example, STK11 increases the interaction of Snail with the E3
ligase FBXL14, thereby increasing ubiquitin-mediated Snail
degradation in response to metformin treatment [8]. However,
investigations of the mechanisms underlying STK11 loss-
dependent migration are limited.
The primary treatment for metastatic pancreatic cancer is a

combination of cytotoxic chemotherapies. The clinical signifi-
cance of most genetic variants remains unclear, which limits the
application of targeted therapy in the clinical diagnosis and
treatment of pancreatic cancer. Targeted drugs commonly used
for the treatment of pancreatic cancer include epidermal growth
factor receptor (EGFR) inhibitors in patients with KRAS WT, poly
(adenosine diphosphate-ribose) polymerase (PARP) inhibitors in
patients with BRCA mutations and neurotrophic tyrosine
receptor kinase (NTRK) inhibitors [12, 13]. The advent of targeted
drugs has provided new treatment options for many patients
with pancreatic cancer, significantly increasing their overall
survival. STK11, a classic tumor suppressor, is mutated in
pancreatic cancer and many other types of cancers. Somatic
STK11 mutations have been observed in approximately 4% of
sporadic PDAC [14–17]. However, there are still no effective
targeted drugs for patients with STK11 mutations. Here, we
identified PDE4, as potential drug targets in STK11-mutated
pancreatic cancer.
PDE4, an enzyme that breaks down cyclic AMP in cells,

influences various cellular processes such as inflammation,
immune response, and cell proliferation [18]. These processes
are critical in the development and progression of cancer,
including pancreatic cancer. Roflumilast, as a PDE4 inhibitor,
primarily known for its role in treating chronic obstructive
pulmonary disease (COPD), could be a valuable therapeutic agent
in cancer treatment, especially in specific types like B-cell
malignancies and lung cancer [19, 20]. In summary, the application
of Roflumilast on STK11-mutant pancreatic cancer cell lines, as
explored in this study, lays a foundational platform for future
clinical research. This could potentially offer substantial benefits to
patients with such specific cancer profiles. The insights gained
from these investigations are crucial for developing novel
therapeutic strategies for treating STK11-mutated pancreatic
cancers, where innovative and effective treatments are urgently
needed.

RESULTS
Functional selection of cell migration regulators in PDAC
To investigate cell migration regulators in PDAC, we prepared
450,000 library cells in serum-free medium, distributed over three
Transwell FluoroBlok inserts. After 6 hours, we isolated a subset
(1% of the total) from the lower compartments, which showed
accelerated migration (Fig. 1a). This method allowed focused
analysis of cells with enhanced migratory behavior in PDAC. In the
supplemental table of full sgRNA screening results and Fig. 1b,
protein kinase cAMP-dependent type I and type II regulatory
subunit alpha (Prkar1a and Prkar2a) and Stk11 were identified as
the top positive genes following Transwell selection (Avg logFC >
1, analyzed using PinAPL-). After screening, only 125 genes had
one or more good sgRNAs (Fig. 1c). Three of the five Stk11-
targeting sgRNAs were found to be highly enriched after
screening (Fig. 1d). The basal expression of STK11 was detected
using western blotting (Fig. 1f). STK11 was almost completely lost
in TKCC-10 and Mayo4636 cell lines, whereas it was highly
expressed in the PANC-1 cells.

STK11 knockout promotes cell migration in vitro
Cellular migration was significantly increased in association with
low STK11 expression in TB 32047 and PANC-1 cells (Supplemen-
tary Fig. 1). To further determine the role of STK11 in PDAC
migration, STK11 knockout (KO) was generated in five PDAC cell
lines (Fig. 2a–d; Supplementary Fig. 5o, p, q). All knockouts were
verified by Sanger sequence to determine the type of mutation
(Supplementary Table 5). IncuCyte® scratch wound assay showed
that STK11KO significantly promoted PDAC cell motility (Fig. 2e, f).
For the TB 32047 cell line, TB KO1.5, and TB KO2.2 healed 73.39%
and 98.84% of the wound, respectively, after 24 h, whereas WT
and NC1.4 cells healed less than 35% of the wound area (Fig. 2g).
In the PANC-1 cell line, PANC KO1.2 and PANC KO4.4 healed
72.81% and 85.76% of the wound, respectively, after 24 h, whereas
control cells healed less than 60% of the wound area (Fig. 2h).

STK11-deleted clones show pronounced tumor aggressiveness
in vivo
A chicken CAM xenograft assay was performed to confirm the
more aggressive and invasive phenotype of TB 32047 cells (Fig. 3).
Representative overview images of the different growth patterns
of tumors are shown in Fig. 3a. Only TB KO1.5, showed a
significantly larger tumor than the control group (Supplementary
Fig. 2). However, tumors formed by TB KO1.5 and TB KO2.2 also
showed aggressive growth, which could be observed by simple
macroscopic and microscopic investigation of CAM microtumors
(Fig. 3b–e). A transparent or intact CAM layer was observed in the
control group when tumor sections stained with H&E and Pan-
cytokeratin were evaluated. Compared to controls, TB KO1.5 and
TB KO2.2 cells significantly damaged the CAM layer, with highly
infiltrative growth at the invasive tumor front and considerable
interaction/mixing with the CAM tissue throughout.

STK11 inhibited PDAC metastasis in vivo
An orthotopic pancreatic cancer model was used to investigate
the effects of STK11 on the formation of pancreatic tumors and
liver metastases in C57/BL6 mice [21]. Loss of STK11 significantly
increased the tumor volume and weight (Fig. 4a–c). Metastases
were macroscopically observed in 1 of 15 mice injected in the
control group (TB 32047 WT and NC1.4) and in 9 of 11 mice
injected with STK11KO cells (TB KO1.5 and TB KO2.2) (Fig. 4d,
p= 0.0007). The presence of metastatic tumors was confirmed by
H&E staining of sectioned liver tissues obtained from the mice
(Fig. 4e).

Loss of STK11 preferentially targets blood vessel
morphogenesis, while also altering the expression of PDEs in
TB 32407 and PANC-1 cells
RNA sequencing was utilized to compare the STK11KO group,
encompassing three distinct knockout variants, with the control
group that comprises the wild type and two different negative
control cells. Principal component analysis (PCA) based on the
expression of the differentially expressed genes (DEGs) confirmed
that most of the variance in the data of TB 32047 cells (37%, PC1)
and PANC-1 cells (43%, PC1) was associated with changes in
expression between STK11KO and control (WT and NC) samples
(Supplementary Fig. 3a, b). All differentially expressed genes (adj
p < 0.05) were visualized to assess sample consistency (Supple-
mentary Fig. 3c–h). GO analysis revealed a significant enrichment
of genes involved in blood vessel morphogenesis, angiogenesis,
and inflammatory response in STK11KO TB 32047 cells (Fig. 5a),
blood vessel morphogenesis, response to wounding, and blood
vessel development in STK11KO PANC-1 cells (Fig. 5b).
The most upregulated genes in murine STK11KO cells were SRY

box transcription factor 17 (Sox17), interleukin 33 (Il33), and decay-
accelerating factor (Cd55) (Fig. 5c, f and Supplementary Fig. 4a–d).
Eph receptor B3 (Ephb3), cellular communication network factor 2
(Ccn2), integrin alpha 7 (Itga7), and integrin subunit beta 3 (Itgb3)
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are also essential genes involved in blood vessel morphogenesis
and angiogenesis signaling and play a critical role in the
metastasis of PDAC. Ephb3, Itga7, and Itgb3 mRNA levels
increased significantly in STK11KO TB 32047 cells (Supplementary
Fig. 4e, f, h). STK11 expression was positively correlated with Ccn2
(Supplementary Fig. 4g). The most upregulated genes in human
STK11KO cells were interleukin 11 (IL11), microtubule-associated
protein 7 (MAP7), and CD55 (Fig. 5d and Supplementary Fig. 4k–n).
Murine and human STK11KO cells shared a significant proportion
of 220 transcripts, including 42 upregulated and 78 down-
regulated transcripts including CD55, PDE4D, and PDE10A
(Fig. 5e). Gene ontology enrichment score analysis showed that
the loss of STK11 promoted PDAC migration and metastasis
through blood vessel morphogenesis and angiogenesis pathways.
Integrated analysis of the transcriptomes of TB 32047 and

PANC-1 cell lines revealed STK11-driven regulation of PDEs. STK11

knockout was selectively effective in increasing the expression of
PDE4D (Fig. 5f and Supplementary Fig. 4i, o). In STK11 knockout
cells, the mRNA level of PDE4D changed more than four times, but
the mRNA level of PDE10A changed more than a thousand times
(Supplementary Fig. 4i, j). The basal expression of PDE10A in TB
32047 cells was below the detection limit and STK11 deletion may
activate PDE10A transcription via an unknown mechanism.
However, PDE4B expression was not detected in WT or STK11KO

TB 32047 cells. In PANC-1 cells, the expression of PDE4B in
STK11KO cells at the mRNA and protein levels increased
significantly, whereas PDE10A expression did not change sig-
nificantly (Supplementary Fig. 4p, q).
Next, the above-mentioned targets were validated in additional

PDAC cell lines (Supplementary Fig. 5). The expression levels of
Sox17, IL33, CD55, and PDE4D were also significantly elevated after
STK11 knockout in KPC 792 cell line (Supplementary Fig. 5a–e, o).
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PDE4B, but not MAP7 or CD55, was highly expressed in STK11-
deleted SUIT2 cells (Supplementary Fig. 5f–i, p). PDE4D, PDE4B,
PDE10A, and CD55 were highly expressed in STK11-deleted
SU86.86 cells (Supplementary Fig. 5j–n, q). These results indicate
that PDEs are the most promising targets among several STK11
mutant PDAC cell lines.

STK11KO cell migration regulation by PDE inhibitors in PDAC
The viability of WT and STK11KO cells was not affected by the PDE4
inhibitors (Fig. 6a, c and Supplementary Fig. 6c). However, cell
migration decreased significantly in STK11KO cells but not in WT
TB 32047 cells after treatment with Roflumilast (50 μM) (Fig. 6b, e).

In PANC-1 cells, after treatment with Rolipram and Roflumilast, cell
migration was significantly decreased in STK11KO cell lines,
whereas not in PANC-1 WT cells (Fig. 6d, f and Supplementary
Fig. 6d). Because of the high expression of PDE10A in STK11KO TB
32047 and SU86.86 cell lines, Mardepodect (a PDE10A inhibitor)
was used (Supplementary Fig. 6a, b, i, j). In the TB 32047 and
SU86.86 cell lines, Mardepodect not only reduced the migratory
ability of STK11KO cells, and showed more toxic to STK11KO cells
than WT and NC. The PDE4 inhibitor also exerted an inhibitory
effect on the migration of STK11KO SUIT2 and SU86.86 cells
(Supplementary Fig. 6e–h, j–l). This suggested that PDEs play an
essential role in the migration of STK11KO PDAC cells.
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Based on these observations, we examined the effects of
Roflumilast in C57BL/6 mice. Relative pancreatic weight and
representative images of H&E staining of pancreatic tissues
showed that Roflumilast hampered PDAC progression in the
STK11KO group (Fig. 6g, h and Supplementary Fig. 7a, c), although
liver metastasis was not significantly reduced (Fig. 6i and
Supplementary Fig. 7b).

DISCUSSION
Large-scale CRISPR/Cas9 screening efforts to inhibit gene expres-
sion have revolutionized genetic screening, enabling previously
impossible discoveries [22]. Herein, we present a protein-kinase-
wide screening method that reveals known and novel mechan-
isms of metastasis in PDAC. A lentivirus-based sgRNA library
targeting mouse protein kinase was used to analyze protein-

Fig. 3 Growth and aggressiveness of STK11KO cells in the CAM xenograft assay. a Ex ovo images of microtumors harvested 5 days post
engraftment on CAM of fertilized chicken eggs. b Overview of H&E-stained microtumor sections. Scale: 200 μm. c Overview of Pan-cytokeratin
immunostaining microtumor sections. Scale: 200 μm. d Exemplary images of H&E staining in microtumors of TB 32047 cells. Scale: 50 μm.
e Exemplary images of Pan-cytokeratin immunostaining in microtumors of TB 32047 cells. Scale: 50 μm.
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kinase-wide loss-of-function by stable gene knockout. Although
screening for cell migration regulators by Transwell compartments
has previously been reported [23], in this study, we used CRISPR/
Cas9 technology instead of RNAi-based functional selection.
Several cell migration-regulating genes were identified in the
present study have been reported previously, thus validating the
selection approach. For example, Prkar1a knockout in the
pancreas leads to neuroendocrine tumorigenesis. Δ-Prkar1a mice
showed local invasion, neoplastic emboli in the lymphatic vessels,
and occasional metastases to the locoregional lymph nodes in
histological analyses [24]. Several studies have highlighted a
possible involvement of the STK11 pathway in metastasis. In lung
cancer, STK11 knockdown has been reported to increase cell
motility and invasiveness and influence many
epithelial–mesenchymal transition (EMT) pathway marker pro-
teins, such as ZEB1 and E-cadherin [25]. Vimentin, a marker of the
EMT pathway, was analyzed in STK11KO cells (Supplementary Fig.
8) and its expression was found to be significantly higher in
STK11-deficient PANC-1 and SUIT2 cells than in the WT and NC
groups. Moreover, STK11 deficient cells have been reported to
exhibit impaired DNA damage [26]. Consistent with this informa-
tion, the absence of STK11 enhanced cell sensitivity to IR and
decreased colony formation and cell survival compared with wild-
type STK11 cells (Supplementary Fig. 9). Therefore, STK11
mutation might be a potential biomarker for the selection of
patients for radiation therapy.
In lung cancer, STK11 loss causes a metastasis-like subpopula-

tion of cancer cells in primary tumors and metastases to activate
the early endodermal transcription factor, Sox17. In STK11-

deficient cells, Sox17 expression is essential and sufficient to
trigger a second wave of epigenetic alterations that improve
metastatic potential [27], which is consistent with the elevation of
Sox17 expression in STK11KO PDAC mouse cell lines (Supplemen-
tary Figs. 4b and 5b, o). However, this correlation has only been
observed in mouse PDAC cell lines, with inconsistent results in
human PDAC cell lines. The same applies to the effect of STK11
deletion on IL33 (Supplementary Figs. 4c and 5c, o). The deletion
of STK11 significantly increased IL33 mRNA and protein levels in
mouse PDAC cell lines. However, in the PANC-1 cell line, the mRNA
level of IL11 not IL33 increased in STK11KO (Supplementary Fig.
4n). The difficulty in targeted STK11 therapy is well illustrated by
the specificity of the downstream targets of STK11 in different cell
lines. The different genetic backgrounds, gene expression profiles,
and mutational profiles of different cell lines add to the
complexity of this study.
PDE4D, PDE4B, and PDE10A are the PDEs. PDE enzymes with 11

isoforms catalyze the hydrolysis of cyclic nucleotides cyclic
adenosine monophosphate (cAMP) and cyclic guanosine mono-
phosphate (cGMP). PDE4 was the largest and one of the first
discovered PDE families. It contains four genes (PDE4A, PDE4B,
PDE4C, and PDE4D) and is a cAMP-specific phosphodiesterase
[28]. Among several STK11-specific signatures, PDE4B, PDE4D, and
PDE10A were upregulated, depending on whether the STK11 gene
was a mutant. A significant increase in PDE10A caused by STK11
knockout was observed in TB 32047 and SU86.86 cell lines, a
significant increase in PDE4B caused by STK11 knockout was
observed in three human PDAC cell lines, and a significant
increase in PDE4D caused by STK11 knockout was observed in two
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mouse and two human PDAC cell lines. Owing to the variability in
different cell lines, STK11 knockout regulates different PDE
isoforms in different PDAC cell lines, which may be related to
the basal expression of PDEs in different cell lines.

Understanding the complicated mechanisms that drive the
spread of cancer will provide crucial information for therapeutic
interventions. Recently, an association between PDE4 inhibitors
and cancer therapy was reported. PDE4 inhibitors can overcome
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tumor resistance and decrease human glioblastoma cell survival
[29] and lung cancer. PDE4-specific inhibitors inhibit proliferation
and growth of STK11-mutated cells [30]. Roflumilast was the first
PDE4 inhibitor approved by the FDA for the prevention of chronic
obstructive pulmonary disease (COPD) exacerbations [31] and
effectively inhibits tumor proliferation and growth in ovarian
cancer [32]. Roflumilast may be related to the prevention of
enhanced cAMP-mediated inflammatory processes and angiogen-
esis indicators in tumor tissues [19]. In this study, because of the
high expression of PDE4B and PDE4D in STK11-mutated PDAC
cells, two different PDE4 inhibitors, Rolipram and Roflumilast, were
used to treat the cells. After treatment, cell migration decreased
significantly in the three STK11mutant human PDAC cell lines, and
no significant decrease in cell migration was observed compared
with most vehicle controls. Mardepodect, a specific PDE10A
inhibitor, significantly decreased cell migration in STK11mutant TB
32047 and SU86.86 cell lines. In mice with STK11 mutant tumors,
Roflumilast treatment reduced the number of liver metastases;
however, a significant reduction was not achieved compared to
that in the non-treated group. However, there was a significant
reduction in the tumor weight in the Roflumilast-treated group
(Fig. 6g, h). Considering the better metastasis suppression effect of
Roflumilast on STK11-mutated human-derived PDAC cell lines
than on mouse-derived PDAC cell lines in vitro (Fig. 6b, d and
Supplementary Fig. 6g, j), maybe better results can obtain in NSG
mice (NOD scid gamma mouse). Recent research has discovered
that targeting PDE4D can inhibit the development of pancreatic
cancer tumors in NOD mouse models, further confirming our
hypothesis [33].
Although more mechanistic studies are required to understand

the relationship between STK11 and PDEs in the progression of
PDAC, the results reported herein also indicate a potential path for
therapeutic intervention with Roflumilast for STK11 mutant
pancreatic cancer patients. The pharmacological profile of
Roflumilast makes it a potential targeted drug with promising
clinical applications.

MATERIALS AND METHODS
Cell culture
PANC-1 (CRL-1469TM, RRID: CVCL_0480) cell line was purchased from
ATCC® (American Type Culture Collection) and grown in Roswell Park
Memorial Institute Medium 1640 supplemented with 10% (v/v) fetal
bovine serum (FBS). SUIT2 cell line was purchased from the Japanese
Collection of Research Bioresource Cell Bank (JCRB1094, RRID: CVCL_3172)
and grown in a minimum essential medium supplemented with 10% (v/v)
FBS. SU86.86 (CRL-1837TM, RRID: CVCL_3881), Miapaca2 (RM-CRL-1420TM,
RRID: CVCL_0428), Aspc1 (CRL-1682TM, RRID: CVCL_0152), and Panc 05.04
(CRL-2557TM, RRID: CVCL_1637) cell lines were obtained from ATCC®. The
TKCC-10 [34] and Mayo4636 [35] cell lines were gifts from David Chang
and Debabrata Mukhopadhyay, respectively. TB 32047 [36], obtained
courtesy of Prof. David Tuveson, Cold Spring Harbor Laboratory, was grown
in Dulbecco’s modified Eagle’s medium with 10% (v/v) FBS. KPC 792 [37],
was obtained from Marc P. Stemmler. HEK293TN cells (CRL-3216TM, RRID:
CVCL_UL49), also obtained from ATCC®, were grown in DMEM supple-
mented with 10% of inactivated FBS. Cells were maintained at 37 °C in a

5% CO2. Additional information regarding the cell culture media is
provided in Supplementary Table 1. All the media were free of penicillin/
streptomycin. DNA fingerprinting using highly polymorphic short tandem
repeat (STR) analysis was used to authenticate the cells, and mycoplasma
testing was performed regularly to ensure that the cells were free of
mycoplasma contamination.

Generation of the CRISPR/Cas9 lentiviral library and screening
The mouse ACF CRISPR knockout library included a pooled mouse Brie
kinome library, which was a gift from John Doench and David Root
(Addgene plasmid #75316), and additional sgRNAs designed for genes
involved in pancreatic ductal adenocarcinoma (PDAC). The library contains
3466 unique sgRNAs targeting 915 genes. ACF CRISPR knockout library
virus particles were generated in T75 flasks. HEK293TN cells were co-
transfected with the 4.3 µg sgRNA library plasmid, 2.8 µg pMDLg/pRRE
(Addgene plasmid #12251), 1.4 µg pRSV-REV (Addgene plasmid #12253),
and 1.4 µg pMD2.G (Addgene plasmid #12259) using Lipofectamine 3000
transfection reagent, and viral supernatants were collected after 24 h. TB
32047 Cas9 cells were transduced with the virus at an MOI of 0.3. After a
few days of steady growth, 450,000 library cells resuspended in serum-free
medium were divided and placed on three Transwell FluoroBlok culture
inserts (Corning, #351152, 8.0 μm), and the lower Transwell chambers were
filled with medium containing 10% FBS. After 6 h of incubation, cells that
migrated to the lower faces of the inserts were collected by trypsinization.
To identify integrated sgRNAs in the migrated cells, 10 million cells were
collected for genomic DNA isolation.

RNA sequencing and Gene Ontology enrichment analysis
Total RNA was extracted from the TB 32047 and PANC-1 cells. RNA quality
check and then libraries were pooled and sequenced on an Illumina Hiseq
2500 platform. The reads were aligned to the GRCm38.6 mouse reference
genome or the GRCh38.6 human reference genome using STAR aligner
(RRID: SCR_004463, version 2.7.8. a). Unique mappings were counted using
featureCounts (version 2.0.1) when overlapping exons were from the
Ensembl gene model (Mus musculus, version 102). Counting of reads per
gene also uses strand information about the library molecule alignments
to separately count overlapping genes with different strands. Normalized
read counts were used for downstream analysis. Statistical analysis to
identify differentially expressed genes between the compared groups was
performed using the DESeq2 package (RRID: SCR_000154, version 1.30) in
the R statistical environment (version 4.0.3) using default parameters. Heat
maps were used to visualize the results. Gene ontology (GO) describes
gene products with three independent categories: biological processes,
cellular components, and molecular functions. GO was determined using R
package clusterProfiler (RRID: SCR_016884, version 3.16.1). Differentially
expressed protein-coding genes (|log2(Fold Change)| >1) were included,
and p < 0.05 was considered significant for the enrichment of biological
processes.

CAM assay
Fertilized and pathogen-free eggs (VALO BioMedia) were used in the
CAM assay. The eggs were opened on the flattened pole on day 8 of
embryonic development and the eggshell membrane was removed. On
day 9, the TB 32047 cells were resuspended in a Matrigel–medium (1:1)
mixture. Pipetted drops of the Matrigel/cell solution were placed in
sterile culture dishes. One Matrigel/cell pellet was carefully placed in
the CAM of each egg. The eggs were then incubated for another five
days. The samples were further incubated at RT in 4% formalin
solution more than 24 h and processed to create formalin-fixed,

Fig. 5 The RNA sequencing and analysis of the GO pathway revealed that the significant gene expression change was induced by loss of
STK11 in the TB 32047 and PANC-1 samples. a, b GO functional classification of the DEGs in TB 32047 and PANC-1 cells (STK11KO vs. Control).
The distributions are summarized in three main categories: BP, MF, and CC. The x axis indicates the number of genes in each category, and the
y axis indicates different GO terms. c, d Volcano plot representation of the RNA-seq results showing the number of genes with significantly
altered expression after STK11 knockout in TB 32047 and PANC-1 cells. In the volcano graph, non-significant genes are shown in gray,
significant genes (|log2FC|>1) are highlighted in green, p < 0.05 genes are highlighted in blue, and genes with significant p-values and log2FC
values are highlighted in red. a–d were plotted by https://www.bioinformatics.com.cn (last accessed on 31 Oct 202), an online platform for
data analysis and visualization. e Venn diagram showing the overlap between sets of differentially expressed transcripts (|log2FC|>1, p < 0.05)
in TB 32047 and PANC-1 samples. f Western blot analysis of Sox17, IL33, PDE4D, and PDE10A in STK11KO TB 32047 and PANC-1 samples.
GAPDH was used as the loading control. The observation of multiple bands in this analysis is due to the existence of various isoforms for the
enzymes PDE4B, PDE4D, and PDE10A.
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paraffin-embedded (FFPE) blocks. FFPE sections were stained with
hematoxylin and eosin (H&E) and pan-cytokeratin. Five randomly
selected high-power fields of each sample were used to analyze the
characteristics of the morphological cells. The sample volume was
calculated using the following equation: Volume = length×width×-
height×0.52 [38].

Genomic DNA isolation and PCR amplification
Genomic DNA was extracted using NucleoSpin® Blood XL (Machery Nagel,
#740950.50), according to the manufacturer’s protocol. Next, 10 μg of
genomic DNA isolated from the migrated and control cells (mouse ACF
CRISPR knockout library cells) was subjected to PCR. sgRNA segments were
amplified as described previously [39]. The PCR reactions (100 μL) included
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10 μg of DNA, 50 μL of Q5® Hot Start High-Fidelity 2X Master Mix (NEB,
#M0494L), 3 μL of a 10 μM solution of P5 (forward primer: ACACTCTTTCCC-
TACACGACGCTCTTCCGATCTNNNNNTCTTGTGGAAAGGACGAAACACCG),
and 3 μL of a 10 μM solution of P7 (reverse primer: GTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCTTCTACTATTCTTTCCCCTGCACTGT). The diluted
PCR product was prepared on an Illumina Hiseq 2500 platform at the
Technische Universität Dresden (TU Dresden) deep sequencing facility.
Raw FASTQ files were analyzed using PinAPL-Py software [40].

Construction of stable knockout cell lines by CRISPR/Cas9
STK11 knockout cell lines were generated using the SpCas9 (BB)-2A-Puro
vector (Addgene plasmid #48139), which includes the Cas9 protein. First,
two good sgRNAs targeting STK11 were selected from screening data for
synthetic oligos. sgRNA oligos in SpCas9 (BB)-2A-Puro were used to
generate the pSpCas9(BB)-2A-Puro-STK11. pSpCas9 (BB)-2A-Puro-STK11-
specific plasmids were transfected into TB 32047, KPC 792, PANC-1, SUIT2,
or SU86.86 cells using Lipofectamine 3,000 reagent according to the
manufacturer’s protocol. After 24 h of transfection, cells were selected
using 10 µg/ml puromycin for 3 days. Oligonucleotides targeting STK11 are
listed in Supplementary Table 2. The number of transfected cells was
counted and 80 cells were diluted in 12ml of medium in each 96-well
plate. The correct single-clone cells were selected under a microscope after
5–10 day. The selected clones were verified using RT-qPCR, western
blotting, and Sanger sequencing.

Wound-healing assay
An appropriate volume of working cell solution was prepared at a density
of 3–5 × 105 cells/ml and seeded at a volume of 100 μl/well in 96-well
plates, 500 μl/well in 24-well plates, and 1ml/well in 12-well plates. When
the cells reached 98% confluence, the medium was exchanged with free
serum medium (TB 32047 or SU86.86 cell line), 1–2% serum medium
(PANC-1, KPC 792, or SUIT2 cell line), or PDE inhibitors for 6–36 h for
starvation or inhibition, as described previously [41]. A wound was then
created using a vacuum pump, wound-maker, or pipette tip. Any
remaining medium was removed from the edges of the wells and the
cells were washed with PBS. PBS was then replaced with free FBS medium
(TB 32047 or SU86.86 cell line), 1–2% serum medium (PANC-1, KPC 792, or
SUIT2 cell line), or medium with inhibitor for 24—36 h. Using EVOS
microscopy, images of each complete wound were captured centered in
the field of view.

RNA extraction and RT-qPCR analysis
Total RNA was extracted from the cell lines using the NucleoSpin® RNA
Plus kit (MACHEREY-NAGEL, #740984.250). cDNA was synthesized using a
high-capacity cDNA reverse transcription kit (Applied BiosystemsTM,
#4368814). GAPDH or β-actin was used as an internal control to quantify
the mRNA levels of other genes. The sequences of gene-specific primers
are listed in Supplementary Table 3. Relative mRNA levels were determined
by RT-qPCR on a Light Cycler 480 II using the SYBR Green method (Applied
BiosystemsTM, #4367659). Three biological replicates were used for each
experiment. The relative mRNA expression levels were calculated using the
2− ΔΔCt method.

Establishment of the PDAC 3D organoid model
A total of 5000 cells were resuspended in 50 μl Matrigel, seeded in 6-well
plates as a dome, and solidified at 37 °C for 30min. A maximum of six
domes was plated in each well. A feeding medium was added, and the
cells were incubated at 37 °C for 7–10 days. After sphere formation, the
supernatant was discarded. The domes were collected using a cell recovery

medium (Corning, # 342053) and placed on ice for 30min. Enzyme
digestion was then performed with a mixture of organoid digestion
medium (Supplementary Table 1; 1 ml per six domes). The domes were
then incubated for 5 min at 37 °C and centrifuged at 250 ×g at 4 °C. Next,
2 ml of washing medium was rinsed over the cell pellets to digest as many
spheroids as possible. The cells were counted using an automated cell
counter and centrifuged at 250 ×g for 5 min at 4 °C. The supernatant was
removed and 40,000 cells were resuspended in 20 μl phenol-red-free
Matrigel (Corning, #356231).

Sanger sequencing
Sanger sequencing can be used to detect the targeted genomic
modifications. Genomic DNA was extracted using NucleoSpin® tissue
(Machery Nagel, #740952.50) according to the manufacturer’s protocol for
cultured cells. Two oligos were designed to target the modified regions
using Primer Premier 5. The primers designed for the knockout check are
listed in Supplementary Table 4. Amplicons were subcloned into a plasmid
using the NEB® PCR Cloning Kit (NEB, #E1203S) for transformation and
several individual colonies were selected and sequenced to determine the
clonal genotype (Supplementary Table 5).

X-irradiation
cells were divided into 100, 200, 300, 800, 1500, 2500, and 5000 per well.
After 24 h, cells were separately exposed to 0, 1, 2, 4, 6, 8, or 10 Gy X-rays
using a Siemens Primus Accelerator machine (6 Mv; Siemens AG, Munich,
Germany) and cultured for 7–12 days. The colonies were fixed with
methanol and stained with 0.5% crystal violet. More than 50 cells were
counted as a colony. The efficiency of clone formation was calculated and
a survival curve was generated by comparison with the untreated group.

Immunofluorescence imaging
Cells were grown in 4-well chamber slides, fixed with 4% paraformalde-
hyde, and incubated overnight with primary antibodies or Isotype Normal
Rabbit IgG (R&D System, AB-105-C). Proteins were visualized by incubation
with Alexa FlourTM 488 goat anti-rabbit IgG (Invitrogen, #A11034;
Invitrogen). Nuclei were visualized by incubation with DAPI (1:5000). The
coverslips or slides were covered with a mounting medium (Dako,
#S302380). Fluorescence was monitored with a Leica TCS SP8 confocal
laser microscope (Manheim, Germany) and processed using Leica
Application Suite X v2.0.1.14392. The antibodies used are listed in
Supplementary Table 6.

Western blot
Cells were lysed using radioimmunoprecipitation assay buffer (RIPA) and
phosphatase inhibitor cocktail (1:100). Protein concentration was
determined photometrically using a Pierce® BCA Protein Assay Kit
(Thermo Fisher, #23225). Gel electrophoresis was performed using BoltTM

4–12% Bis-Tris Plus gels (Thermo Fisher, #NW04122BOX), and the
proteins were transferred to a nitrocellulose membrane. The membrane
was incubated in a blocking solution for 1 h at room temperature. The
primary antibody was diluted with 5% milk or bovine serum albumin
(BSA), and the membrane was incubated in the primary antibody
solution overnight at 4 °C with gentle rocking. The membrane was
further incubated with 5% milk-diluted secondary antibodies for 1 h at
room temperature, with gentle rocking (Supplementary Table 6). Signals
were detected using an AmershamTM Imager 600 with Signal FireTM

(Elite) ECL reagent (Cell Signaling Technology, #6883 or #12757). All
western blotting assays were performed at least thrice to validate the
reliability of the results.

Fig. 6 Roflumilast attenuated STK11-mutated migration in vitro and tumor progression in vivo. a, c TB 32047 and PANC-1 cells were
exposed to increasing doses of Roflumilast. The percentage of cell viability relative to that of cells is shown. Data represent the mean ± SD of
three replicates. b Quantitative analysis of TB 32047 cells that migrated with or without Roflumilast after 24 h. Data are presented as means of
three independent experiments. **p < 0.01; ***p < 0.001 by one-way ANOVA. Images taken at 0 h and 24 h are shown in e. d Quantitative
analysis of PANC-1 cells that migrated with or without Roflumilast after 36 h. Data are presented as means of three independent experiments.
***p < 0.001; ****p < 0.0001 by one-way ANOVA. Images taken at 0 h and 36 h are shown in f. g Representative images of pancreatic tumors
from the indicated group. h The resulting tumors were collected on day 23 (day 8–23 with Roflumilast), weighed, and compared to the vehicle
group. Data are presented as the mean ± SD of at least four mice per group. ns, p= 0.1767; *p < 0.05, by unpaired t-test. i Fisher’s exact t-test
shows the difference in the formation of metastases with Roflumilast treatment mice. ns, p= 1 (NC1.4 Vehicle vs. NC1.4 Roflumilast); ns, p= 1
(STK11KO Vehicle vs. STK11KO Roflumilast).
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Establishment of an orthotopic murine pancreatic cancer
model and Roflumilast treatment
All animal studies met the relevant ethical considerations and were
monitored according to the German legislation on animal protection and
the Guide for the Care and Use of Laboratory Animals [42]. C57BL/6JRj
(Black 6) mice, without gender selection and aged 7 weeks, were
acclimated to the animal facility for one week. Animals were randomly
divided into groups (n= 5 per group). The pancreas was extracted and
held in the tail to extend it, and then 4×104 spheres resuspended in 20 μl
Matrigel were injected directly into the body of the pancreas [43], superior
to the visible large blood vessels. After three weeks, the pancreas and livers
were excised for further pathological examination.
In all, 4 × 104 spheres mixed with 20 μl Matrigel were injected directly

into the body of the pancreas for treatment with Roflumilast (Hycultec,
#HY-15455). After one week, mice were treated intraperitoneally with
Roflumilast (5 mg/kg/day) or vehicle as indicated. After 16 days of
treatment, the mice were killed and the pancreas and livers were collected
for further evaluation. Tumor volume was measured with calipers and
calculated using the following formula: volume= length × width ×
height × 0.52 [38].

Statistical analysis
Statistical tests were performed using GraphPad software
(RRID:SCR_002798, v.7) to compare groups under different conditions
with replicates. In all tests, statistical significance was established as
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. T-test and one-way
and two-way ANOVAs were used for cell culture experiments. Fisher’s exact
test was used for mouse experiments.

DATA AVAILABILITY
Raw sequencing files were deposited at the SRA under accession number
PRJNA960707. All other data are available in the article and Supplementary
Information. Source data were provided in this study.
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