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The potential role of hydrogen sulfide in cancer cell apoptosis
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For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third
gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of
studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and
development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and
metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this
review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
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FACTS

● To date, H2S has been shown to play an important role in
tumors of various tissue origins.

● H2S promotes cancer progression in most tissues through
multiple mechanisms.

● Overexpression or knockdown of genes encoding
H2S-producing enzymes, inhibitors of the enzymes, and
H2S-releasing reagents have been validated in cancer cells
and animal models of xenograft tumors.

● It has been reported that inhibition of H2S promotes apoptosis
of cancer cells through a number of mechanisms.

OPEN QUESTIONS

● H2S promotes the development of many cancer cells,
including colorectal, ovarian, lung, breast and kidney. While
it has opposite effects on hepatocellular carcinoma and
glioma.

● What are the mechanisms by which different concentrations
of H2S exhibit different physiological and pathological
functions?

● The current detection technology of H2S concentration in
tissues and cells is still immature.

INTRODUCTION
There are currently three well-known gasotransmitters: carbon
monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S).
Endogenous H2S as the third gaseous signaling molecule is
produced through non-enzymatic and enzymatic desulfhydra-
tion. Non-enzymatic process is mainly through the

decomposition of inorganic substances [1]. H2S mainly comes
from different substrates catalyzed by cystathionine β-synthase
(CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate
sulfurtransferase (3-MST) [2]. The main source of H2S is based
on S-adenosine homocysteine as a substrate, catalyzed by two
pyridoxal 5’-phosphate-dependent enzymes, CBS and CSE, which
are localized in the cytoplasm. 3-MST, which is localized in the
cytoplasm and mitochondria, is another enzyme that catalyzes
the production of H2S using mercaptopyruvate as a substrate.
Mercaptopyruvate is produced by cysteine aminotransferase
(CAT) using L-cysteine or D-amino acid oxidase (DAO) using
D-cysteine [3]. In the organism, H2S is either metabolized directly
or stored in the form of bound sulfane sulfur and acid-labile
sulfur to maintain a dynamic equilibrium. Its metabolism is
mainly through a series of metabolic enzymes such as
mitochondrial sulfide:quinone oxidoreductase (SQR) and persul-
fide dioxygenase (ETHE1), which eventually produce sulfates and
are excreted in the urine or through respiration [4] (Fig. 1). The
metabolism of H2S in mammals is also involved in redox
reactions, binding to heme-containing metalloproteins or post-
translational modifications of proteins, and also shows the role
of gasotransmitter [5–8] (Fig. 2).
Three enzymes that produce H2S are reported to be differen-

tially expressed in tumor tissues of different tissue origins [9]
and are involved in regulating tumorigenesis and progression
(Table 1). Studies have shown that its role in tumors generally
exhibits a biphasic bell-shaped effect [10]. Endogenous or low
concentrations of exogenous H2S promote cancer cell develop-
ment by stimulating angiogenesis, increasing mitochondrial
bioenergy, and antioxidant. While the donation of H2S at higher
concentration prevails the suppressive bioenergetic and cytotoxic
effects (Fig. 3). The H2S concentration above a certain threshold
plays an anti-cancer role by inducing apoptosis, DNA damage, and
inhibiting the cell cycle [11–18].
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Apoptosis is a form of programmed cell death that results in the
orderly and efficient removal of damaged cells to ensure a
homeostatic balance between the rate of cell formation and cell
death. However, the disruption of this balancing function can
contribute to an abnormal cell growth/proliferation or autoim-
mune disorders. Apoptosis is considered a vital component of
various processes including normal cell turnover, proper develop-
ment and functioning of the immune system, hormone-dependent
atrophy, embryonic development and chemical-induced cell death.
Deregulation in apoptotic cell death machinery is one of the
hallmarks of cancer [19–21]. The concept of apoptosis is first
introduced as a barrier to cancer by Kerr et al. in 1972 [22]. Tumors
are new organisms formed when the cells of local tissues lose the
normal regulation of growth under the action of various

carcinogenic factors, leading to their clonal abnormal proliferation.
This is due to the accumulation of many genetic and epigenetic
changes within the cell, expressed in the accumulation of
chromosomal or molecular aberrations, which leads to genetic
instability. The simultaneous interaction of environmental factors,
exogenous factors, and individual genetic instability factors can
contribute to tumorigenesis. Among these factors, individual
characteristics play the most significant role. [23, 24]. The human
oncogenic gene p53, for example, encodes the P53 protein as a
transcription factor, which is frequently mutated in human cancers
and is associated with early apoptosis [25].
Escaped apoptosis is widely recognized as a prominent

hallmark of cancer cells [26]. There are multiple ways in which
cancer cells can reduce apoptosis or enhance apoptosis resistance.

Fig. 1 The production and metabolism of H2S. In mammals, H2S is produced endogenously from cysteine, serine, homocysteine and other
substrates primarily through the actions of three major enzymes. Non-enzymatic pathways: gut microbes as well as polysulfide-derived H2S.
Metabolism of H2S: H2S can be oxidized in the mitochondria or metabolized by methylation in the cytoplasm. H2S is first oxidized by SQR in
the mitochondria to form a persulfide. This persulfide is further oxidized by ETHE1 to produce SO3

2−, which is then converted to SO4
2− and

S2O3
2− by sulfite oxidase and rhodan oxidase and excreted in the urine or by respiration. H2S can also be removed by binding to

metalloproteins to form sulfheme. α-KG α-ketoglutaric acid, 3-MST 3-mercaptopyruvate sulfurtransferase, CAT cysteine aminotransferase, CBS
cystathionine beta-synthase, CSE cystathionine gamma-lyase, CysS-SH cysteine persulfide, DAO D-amino acid oxidase, GSH glutathione, SAH
S-adenosylhomocysteine, SAM S-adenosyl methionine, THF tetrahydrofolic acid.
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In general, the mechanisms by which cells evade apoptosis can be
broadly classified as: 1) disrupted balance of pro- and anti-
apoptotic proteins, 2) reduced caspase function, and 3) impaired
the signal transduction of death receptor [27]. Given the
importance of apoptosis in tumorigenesis and progression,
targeting apoptosis-related pathways in cancer cells have
emerged as promising approaches for the treatment of various
tumors [28].
There are three main apoptotic pathways: intrinsic, extrinsic and

endoplasmic reticulum (ER) pathways [29]. The caspase family is
the core member in initiating and executing apoptosis [30]. Those
factors that initiate apoptosis are: caspase 8, caspase 9 and
caspase 10, the members that execute apoptosis are: caspase 3,
caspase 6 and caspase 7. Caspase 8 and caspase 10 are the
promoters of extrinsic apoptosis, and caspase 9 is the promoter of
intrinsic apoptosis. Caspase 3 is the key enzyme of apoptosis, and
its activation indicates the beginning of apoptosis execution.

Other major factors involved in apoptosis are: 1. Cytochrome C
(Cyt C), Cyt C binds with Apaf-1 protein in the presence of ATP to
form an apoptotic complex that recruits and activates pro-caspase
9. Cyt C is also engaged in the caspase non-dependent pathway
that promotes chromatin condensation and mediates apoptosis
[31]. 2. Smac/Diablo and HtrA2/Omi inhibit the release of
inhibitory apoptosis protein (IAP) and indirectly facilitates the
release of apoptosis execution protein caspase 3/6/7. 3. Caspase
activation induces the translocation of EndoG in addition to AIF
into the cytosol, which leads to the subsequent characteristic
features of apoptosis, including chromatin condensation and
nuclear fragmentation [32–34].

I. Intrinsic apoptosis of mitochondrial pathway: DNA damage,
growth factor deficiency, ROS and other endogenous stress
cause the Bad/Bak proteins (respectively pro-apoptotic
members of the Bcl-2 family) to form a complex, which is

Fig. 2 The mechanisms of H2S function in the organism. Promotion or inhibition of signaling pathways, post-translational modification of
proteins, activation or shutdown of ion channels, and participation in mitochondrial metabolism. Akt protein kinase B, ERK extracellular signal-
regulated kinase, JNK C-Jun N-terminal kinase, MAPK mitogen-activated protein kinase, NF-κB nuclear factor-kappa B, Nrf2 nuclear factor
erythroid-2 related factor 2, PI3K phosphoinositide 3-kinase, STAT3 signal transducer and activator of transcription 3, TRPV1 transient receptor
potential vanilloid 1.
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inserted into the mitochondrial outer membrane, changes
the permeability of the mitochondrial membrane, and leads
to the change of membrane potential. In addition, the Bax/
Bak-mediated mitochondrial outer-membrane permeabiliza-
tion is sufficient to induce the release of Cyt C, Smac/Diablo
and HtrA2/Omi. While downstream caspase activation is
required for the release of EndoG and AIF. Once released,
Cyt C, interaction with the apoptosis protease-activating
factor 1 (Apaf-1), triggers the initiator caspase 9 activation,
which leads to the subsequent characteristic features of
apoptosis, including chromatin condensation and nuclear
fragmentation.

II. Extrinsic apoptosis by the cell surface death receptor (e.g.
FasL, TARIL) pathway. After the ligand binds to the
corresponding cell surface death receptor, it recruits intracel-
lular apoptosis-associated proteins to form the death-
inducing signaling complex (DISC), which contains a junction
molecule and pro-caspase 8, then activates caspase 8, causing
the onset of the downstream apoptotic cascade [35, 36].

III. Apoptosis of the ER pathway: The ER is the dominant site of

protein synthesis and also engaged in the regulation of
intracellular calcium homeostasis. When the protein is
misfolded or unfolded in the cell, prolonged unfolded protein
response (UPR) occurs, the transmembrane proteins PERK,
IRE1 and ATF6 on the ER are responsible for protein repair.
Apoptosis is triggered when the ER pressure induced by the
UPR is too high [37]. ER stress activates inositol 1,4,5-
trisphosphate receptor (IP3R) and/or ryanodine receptor
(RyR), inducing Ca2+ release from ER, causing an imbalance
in intracellular Ca2+ homeostasis, which directly induces the
production of pro-apoptotic proteins of the Bcl-2 family and
activates calpain, then activates csapase 9 through the
activation of capase 12 [38]. In organisms, Ca2+ acts as a
second messenger, responsible for intracellular signaling to
trigger physiological changes such as apoptosis. It has also
been reported that in the early stages of apoptosis, the
released Cyt C binds to IP3R, causing Ca2+ release and
inducing the calcium-dependent apoptosis [39].

There have been a number of reports on the involvement of
H2S in the regulation of physiological apoptosis in the organism.
H2S affects the mitochondrial pathway of apoptosis, and at non-

toxic concentrations, H2S accumulation in mitochondria induces
mitochondria-dependent apoptosis by inducing Bax translocation,
mPTP formation, and release of Cyt C [40]. H2S induces apoptosis
through oxidative stress-triggered mitochondrial pathway in
zebrafish at embryonic and larval stages [41]. Invasive bacteria
in the oral cavity cause apoptosis of human pulp stem cells
(HPSCs) by producing large amounts of H2S and activating the
mitochondrial pathway [42]. However, under certain conditions,
H2S also exhibits an inhibitory effect on apoptosis, it has been
reported that H2S inhibits the mitochondrial K+ATP/MAPK-mediated
pro-apoptotic pathway [43]. In chondrocytes, NaHS-derived H2S
may antagonize IL-3β-induced inflammation and apoptosis
associated with mitochondrial dysfunction by inhibiting the
PI3K/Akt/NF-κB and MAPK signaling pathways, respectively [44].
H2S affects TNF receptor family-mediated exogenous apoptosis:

CSE-catalyzed production of endogenous H2S induces sulfuryla-
tion of Cys38 of the NF-κB subunit p65, which inhibits TNF-α-
induced apoptosis [45].

Table 1. The changes in H2S-producing enzymes in different types of cancer.

Cancer types Cell lines H2S producing enzymes

CSE CBS 3-MST

Melanoma A375, WM35, SK-Mel-5, Sk-Mel-28, PES43 ↑ NT ↑

Colon cancer HCT116, HT29 ↑ ↑ ↑

Prostate cancer LNCaP, PC3 ↑ ↑ NT

Gastric cancer SGC-7901 ↑ ↑ NT

Ovarian cancer OV202, SKOV3, A2780, OVCAR3, OVCAR4, OVCAR5 NC ↑ NT

Breast cancer Hs578T, MCF7 ↑ ↑ NT

Renal cancer RCC4 ↑ ↑ ↑

Thyroid cancer TPC1, TT, ARO ↑ ↑ NC

Gliomas C6, U87MG NT NT ↑

Hepatocellular carcinoma HepG2, PLC/PRF/5 ↑ ↑ NT

Urothelial carcinoma 5637, EJ, UM-UC-3 ↑ ↑ ↑

Astrocytoma U373 NT NT ↑

Neuroblastoma SH-SY5Y NT NT ↑

Leukaemia HL-60, MV4-11 NT ↑ NT

Biliary tract carcinoma TFK-1, HUCCT-1, SNU308 NT ↑ NT

NT not tested, ↑ upregulation, NC no change, CBS cystathionine beta-synthase, CSE cystathionine gamma-lyase, 3-MST 3-mercaptopyruvate sulfurtransferase.

Fig. 3 Several common H2S donors. DATS diallyl trisulfide, DADS
diallyl disulfide, GYY4137 morpholin-4-ium 4-methoxyphenyl(mor-
pholino) phosphinodithioate), SPRC S-propargyl-cysteine.
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Role of H2S in the apoptotic pathway of ER stress: In cervical
cancer cell line Hela, morpholin-4-ium 4-methoxyphenyl(morpho-
lino) phosphinodithioate (GYY4137), a slow-releasing H2S donor
induces apoptosis by stimulating ER stress, causing up-regulation
of IP3R1 and IP3R2 expression on the ER, leading to intracellular
Ca2+ overload [46]. It has also been reported that H2S exerts a
protective effect by inducing ER stress in alveolar epithelial cells in
the early stages of acute lung injury in rats [47], the exact
mechanism of which is unclear.
H2S and its producing enzymes are involved in three apoptotic

pathways and play an important role in tumorigenesis and
development, this could be dependent on the dose of this
gaseous mediator and possibly on the differences in sensitivity of
various cancer cell types to the impact of this molecule. The main
objective of this review is to explore the role of H2S and its
producing enzymes in tumorigenesis and development by
mediating apoptosis.

THE ROLES OF H2S IN APOPTOSIS IN DIFFERENT TUMORS
GYY4137 and sodium hydrosulfide (NaHS) act as H2S donors and
are able to release H2S when water-soluble. Li et al. [48] screen
seven different human cancer cell lines (HeLa, HCT-116, Hep G2,
HL-60, MCF-7, MV4-11 and U2OS) and normal human lung
fibroblasts (IMR90, WI-38) and apply GYY4137 and NaHS,
respectively, find that H2S donors specifically cause partial
G2/M arrest and promote apoptosis. Another H2S donor sodium
sulfide (Na2S) has also been used to selectively upregulate ROS
levels in glioblastoma (GBM) cell lines (T98G and U87) to promote
apoptosis and enhance their sensitivity to radiotherapy. But the
effects were not observed in normal human brain microvascular
endothelial cells (hCMEC/D3) [49]. NaHS induces apoptosis in C6
glioma cells by activating p38/MAPK and p53 signaling pathways
in an endogenous manner [50]. In addition, the roles of H2S in
tumor cells of different tissue origins are highlighted below.

Lung cancer
Non-small cell lung cancer (NSCLC) A549 and 95D highly express
CBS, CSE, and 3-MST compared to normal lung epithelial cell lines,
induce high intracellular concentrations of H2S, and promote
angiogenesis and epithelial-mesenchymal transition [51], which is
mainly associated with the regulation of hypoxia-inducible factor-
1α (HIF-1α) stimulation of vascular endothelial growth factor
expression by intracellular highly concentration of H2S. Silencing
of H2S-generating enzymes using siRNAs promote apoptosis, and
related inhibitors of the enzymes also inhibit the growth of
transplanted tumors in nude mice. CBS expression is down-
regulated in A549/DDP cisplatin-resistant lung cancer cell line.
After exogenous supplementation with H2S using NaHS (800 μM),
the expression of p53 and p21, as well as apoptosis-associated
proteins caspase 3 and Bax are upregulated in drug-resistant cells,
which promotes apoptosis and enhances the sensitivity to
cisplatin [52].

Esophageal carcinoma
Esophageal cancer is one of the most aggressive cancers among
all gastrointestinal malignancies [53]. The current main treatment
for esophageal cancer is still surgical resection, but it is highly
invasive and has high postoperative complications and mortality.
Lei et al. demonstrate that exogenous high concentration of H2S
(400 μM NaHS) induces cancer cell proliferation, anti-apoptosis,
angiogenesis and cell migration in EC109 esophageal cells by
activating the HSP90 pathway[54]. The heat shock protein HSP90
acts as a molecular chaperone that promotes the folding of ab
initio synthesized or misfolded proteins, relieves the stress of UPRs
in the ER, and promotes cell survival [55]. Lei et al. also find that
exogenous high concentration of H2S (500 μM NaHS) may
significantly reduces cell apoptosis by activating the JAK2/

STAT3 signaling pathway, upregulating Bcl-2 and downregulating
caspase 3, caspase 9, caspase 12, and Bax [56]. Current studies on
the specific mechanism of action of H2S in esophageal cancer are
scarce.

Gastric cancer
Zhang et al. prove that [57] the expression levels of CSE and CBS
proteins are significantly up-regulated in gastric cancer compared
to neighboring non-cancerous tissues. Later, the same group
reports exogenous administration of NaHS in human gastric
cancer cell line SGC-7901 can promote Bax expression and induce
apoptosis via mitochondrial pathway. In gastric cancer SGC-7901
cells, SPRC enhances the expression and enzymatic activity of CSE,
which in turn acts as a substrate for CSE to cleave and produce
H2S, and promotes apoptosis by activating the MAPK pathway to
upregulate the expression of p53 and Bax [58]. Two specific
inhibitors of CBS and CSE, aminooxyacetic acid (AOAA) and DL-
propargylglycine (PAG), enhance the stronger anticancer effect of
3,3'-Diindolylmethane (DIM) in gastric cancer BGC-823 and SGC-
7901 cells [59]. Zhu et al. use cBioPortal to analyze TCGA gastric
cancer patients and find a significant association between CBS
mutations and PI3K/AKT/mTOR pathway activation [60]. Further
validation in gastric cancer cell lines reveals that knockdown of
CBS results in excessive activation of PI3K/Akt signaling pathway
and promotes oncogenic transformation.

Hepatocellular carcinoma
Compared to normal hepatocyte line L02, human hepatocellular
carcinoma cell line (e.g. PLC/PRF/5) shows significantly higher H2S
and increased overexpression levels of CSE and CBS [61, 62], at low
concentrations, 25-100 μM NaHS promotes the proliferation of
hepatocellular carcinoma (HCC) cell lines, while at high concen-
trations, 800–1000 μM NaHS induces HCC apoptosis. High
concentrations of NaHS promote the expression of PTEN, a tumor
suppressor protein that inhibits PI3K/Akt signaling [63]. The
overexpression of PTEN may lead to the inactivation of Akt/ERK
pathway and promote apoptosis. Administration of 500 μM NaHS
to PLC/PRF/5 hepatoma cells for 24 h significantly increases the
expression of CSE, CBS and induces NF-κB activation, which in turn
causes an increase in the expression of downstream pro-
proliferative signaling molecules COX-2 and MMP-2 [62]. CSE is
over-expressed in hepatoma HepG2 and PLC/PRF/5 cells, inhibi-
tion of the CSE/H2S axis causes elevated intracellular ROS,
upregulated p53/p21 expression, and decreased Bcl-2/Bax ratio,
as well as activates JNK/MAPK, which together promote the
mitochondrial apoptotic pathway in HCC cells [64]. Jia et al. [65]
find that knockdown of CBS in HCC cells causes an increase in
intracellular ROS and induces apoptosis of cancer cells in a
mitochondria-dependent manner. Zhou et al. [66] reveal that
reduced CBS expression in HCC is associated with poor prognosis
in HCC, and downregulation of CBS activates the IL-6/
STAT3 signaling pathway, which directly inhibits apoptosis and
induces infiltration of Treg cells in the tumor microenvironment. In
addition, miR-24-3p is shown to be an upstream suppressor of CBS
in HCC. Another endogenous H2S-producing enzyme, 3-MST, is
down-regulated in the expression level. Overexpression of 3-MST
inhibits proliferation and induces apoptosis, and 3-MST over-
expression is also shown to significantly inhibit tumor growth in a
nude mouse tumor allograft model, 3-MST silencing using siRNA
then significantly promotes tumor growth. In addition, HCC
models are more readily induced in 3-MST knockout mice,
upregulation of 3-MST expression mainly causes dysregulation
of intracellular ROS homeostasis and inhibits the proliferation-
related AKT/FOXO3a/Rb signaling pathway [67].

Pancreatic carcinoma
In pancreatic cancer Capan-2 cells, diallyl trisulfide (DATS), an
active component of garlic that can release H2S, induces
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apoptosis by down-regulating Bcl-2, Akt and cyclin D1 protein
levels, and up-regulating Bax, Fas, p53 and cyclin B protein levels
[68].

Colorectal cancer
Colorectal cancer (CRC) is the third most prevalent tumor and the
second leading cause of cancer death worldwide [69]. In human
intestinal lumen, there are many microorganisms involved in H2S
production and metabolism, and H2S produced via microbial
metabolic reactions can easily penetrate into the biofilm covering
the colonic cells and epithelial cell membranes [70]. The
production and metabolism of H2S in intestinal lumen act on
CRC progression [71, 72]. It has been demonstrated that NO, CO
and H2S, which are endogenously produced in colon cancer cells
as gaseous signaling transmitters in the organism, can inhibit the
proliferation of cancer cells at higher or lower concentrations, and
it has been further verified that these gas signaling molecules
promote apoptosis in colon cancer cells mainly by inhibiting the
cGMP/VASP pathway, the Akt and ERK1/2/MAPK signaling path-
ways [73]. In human metastatic CRC (mCRC) cells, activation of the
permeable channel transient receptor potential vanilloid 1 (TRPV1)
by NaSH induces extracellular Ca2+ inward flow and subsequent
activates the reverse mode Na+/Ca2+ (NCX) exchanger, resulting
in sustained intracellular Ca2+ overload, which in turn induces
apoptosis [74]. The expression level of cysteine-rich matricellular
protein 61 (Cyr61) is higher in CRC tissues and cell lines than in
normal colonic mucosa, and Cyr61 is known as an angiogenic
inducer that promotes tumor growth and angiogenesis [75]. Cyr61
promotes cell migration, invasion and metastasis in CRC, and high
expression of Cyr61 is associated with poor prognosis [76, 77].
Polysulfide and 3-MST-derived H2S promote CRC development
and progression via persulfidation of Recombinant Specificity
Protein 1 (Sp1) and activation of p38/MAPK to induce high
expression of Cyr61, while apoptosis of cancer cells increases after
application of HMPSNE to inhibit 3-MST enzyme [78]. It is known
that the CBS promoter contains an Sp1 binding site, and Sp1 is
essential in the control of CBS transcription [79], In colon cancer
cells which devoid of p53, the chemotherapeutic drug 5-FU can
induce ribosomal protein L3 (rpL3) as proapoptotic factor. RpL3
can inhibit CBS via binding with Sp1 and/or acting on post-
translational. Ultimately leading to reduces H2S synthesis and
induces Cyt C release, resulting in apoptosis of CRC cells by the
mitochondrial pathway [80]. P53 is known as a tumor suppressor
protein and causes tumorigenesis when it is mutated [81, 82]. P53
has a central role in the response to cellular stress, blocking the
cell cycle by inducing p21 expression when cell growth is
uncontrolled [83]. When damage cannot be repaired, p53 induces
high expression of apoptotic proteins (e.g. BAX) to promote
apoptosis [84, 85]. Caco-2 is one of the cancer cell lines that
lacking p53 protein expression, and the apoptosis activation
mechanism is significantly different from other CRC cell lines such
as HT-29 [86, 87], apoptosis is promoted mainly by activating the
extrinsic apoptotic pathway. GYY4137 induces apoptosis by
blocking the cell cycle in human CRC Caco-2 cell line [88]. In
other CRC cell lines (e.g. HCT116, SW620, DLD1), GYY4137 also
increases the sensitivity of CRC cells to paclitaxel to promote
apoptosis [89]. S-adenosyl-L-methionine (SAM), a metabolic
activator at low to moderate levels of CBS, produces H2S as an
endogenous pro-growth and bioenergetic factor in early stages of
colon carcinogenesis, but high doses of SAM downregulate CBS
expression and inhibit cancer cell bioenergetics and proliferation
[90]. Yue et al. [91] also find that application of AOAA in colon
cancer cells can inhibit endogenous H2S levels, disrupt cellular
antioxidant capacity, increase intracellular ROS levels, upregulate
p53 expression, induce apoptosis in a mitochondria-dependent
manner, and enhance the sensitivity of colon cancer cells to
oxaliplatin.

Breast cancer
Inhibition of three enzymes that produce H2S in breast cancer (BC)
cells significantly promotes apoptosis in the mitochondrial path-
way [15], the mechanism is that lower intracellular levels of H2S
inhibit phosphorylation of the PI3K/Akt/mTOR signaling pathway.
The same team find that in nasopharyngeal carcinoma cells,
inhibition of endogenous H2S induces the increase of intracellular
ROS, activation of p38/MAPK and JNK/MAPK signaling pathways
that contribute to apoptosis, and inhibit cell proliferation via
blocking ERK1/2 MAPK [92].

Urogenital cancer
Renal cell carcinoma (RCC) are the most common solid lesions in
the kidney, accounting for approximately 90% of all renal
malignancies [93]. There are three main subtypes of RCC: clear-
cell RCC (ccRCC 70–80%), papillary RCC (pRCC types I and II,
10–15%) and chromophobe RCC (4–5%). Breza. Jr et al. [94] find
that the expression of H2S-producing enzymes are downregulated
in tumor tissues compared with non-tumor tissues, the levels of
CBS and CSE are lower with the higher grade of ccRCC, blocking
with AOAA and PAG reveals prevention of apoptosis induction.

Female reproductive system cancer
Sanjib Bhattacharyya et al. [95] find that CBS is overexpressed in
primary epithelial ovarian cancer and ovarian cancer cell lines,
while knockdown of CBS disruptes intracellular energy metabo-
lism, induces elevated ROS, promotes apoptosis and increases
numbers of cancer cells killed by cisplatin via reduce NF-κB
activity. Meanwhile, knockdown of CBS also significantly inhibites
the growth of nude mouse tumor xenografts and enhances the
inhibition of cisplatin. A team find that in ovarian cancer cell line
A2780 cells, GYY4137 induces ER stress under hypoxic conditions,
leading to apoptosis in a Ca2+-dependent manner [96]. Moreover,
in ovarian cancer cell line A2780, GYY4137 induces intracellular
acidification by uncoupling the highly expressed sodium-
hydrogen exchanger 1 (NHE1) from sodium-calcium exchanger 1
(NCX1) [97]. It has been reported that GYY4137 upregulates NCX1
and β1, β3 adrenergic receptors in the cervical cancer cell line
HeLa cells, NCX1 and β1, β3 adrenergic receptors can form a
complex to enhance signaling in response to apoptosis [98].

Hematologic neoplasms
Chronic myeloid leukemia (CML) is a malignant cancer that
originates from hematopoietic stem cells [99], the critical causative
event in CML is the formation of the Philadelphia chromosome, a
product of a chromosomal translocation that brings together the
ABL gene on chromosome 9 and the BCR gene on chromosome
22. ABL is a proto-oncogene, and after binding to the BCR gene,
the downstream pathway is continuously activated, resulting in
secondary abnormal leukocyte proliferation [100]. BCR-ABL
induces intracellular ROS accumulation, enhances PI3K signaling,
activates the transcription factor NF-κB and mediates cell
transformation [101]. In CML K562 cells, CBS expression is
upregulated and inhibition of CBS by shRNA or AOAA induced
apoptosis in the mitochondrial pathway. In K562 cells inhibiting
CBS, NF-κB activity is significantly downregulated and NF-κB failed
to induce the expression of downstream target genes, causing the
accumulation of ROS in cells leading to the activation of JNK and
apoptosis [102].

Melanoma
Two of the most frequently deregulated pathways in melanoma
are MAPK/ERK and PI3K/Akt [103]. These two pathways play
important roles in melanoma development and progression and
are involved in the mechanism of resistance to the targeted
therapy [104]. In A375 melanoma cells, either CSE overexpression
or exogenous H2S donors (e.g. DATS, GYY4137) promotes
apoptosis in the mitochondrial pathway, and the pro-apoptotic
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effect is associated with the inhibition of NF-κB downstream-
related pro-survival pathways, such as reduction of the expression
of c-FLIP, XIAP and Bcl-2, and inhibition of AKT and ERK1/
2 signaling pathways [105]. In addition, in melanoma cells A375
and SK-MEL-28, Xiao et al. [106] find that NaHS also induces
apoptosis and autophagy by inhibiting the PI3K/Akt/mTOR
signaling pathway. The pleckstrin homology like domain family
A member 1 (PHLDA1) is a member of three PHLDA genes.
PHLDA1 can inhibit tumor development by suppressing the Akt
signaling pathway [107]. H2S produced by bacteria in the oral
cavity promotes apoptosis of cancer cells by inhibiting the
expression of PHLDA1 in the tongue cancer cell line SCC-1 cells
[108].

NOVEL SYNTHETIC H2S RELEASING DRUG
In addition, for the sake of improving the pharmacological/
therapeutical profiles of the clinical drugs, H2S-releasing moieties
are introduced to the parent drugs.

H2S-releasing NSAIDs
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of
medications used to treat pain, fever, and other inflammatory
processes [109]. Aspirin [110] is the most commonly used NSAIDs
that can inhibit cyclooxygenase (COX) activity. Cyclooxygenase-2
(COX-2) is frequently expressed in various tumors and plays a role
not only in promoting tumor development but also elevating the
resistance to chemotherapy and radiotherapy [111]. Aspirin exerts
its anticancer effects via inhibition of COX, interference with
proliferative pathways, cancer-related inflammation, and
antiplatelet-driven pro-carcinogenic activity [112]. However, there
is a risk of gastrointestinal and intracranial hemorrhage and other
adverse effects associated with the long-term application of large
amounts of aspirin. H2S-releasing nonsteroidal anti-inflammatory
drugs (HS-NSAIDs) are an emerging class of compounds with
significant anti-inflammatory properties [113]. It generally consists
of a covalent linkage between traditional NSAIDs and
H2S-releasing fractions. The HS-NSAIDs has a stronger apoptosis-
inducing effect compared to traditional NSAIDs in human colon,
breast, pancreatic, prostate, lung, and leukemia cancer cell lines
[114]. Growing evidence indicates that HS-NSAIDs are more
effective in suppressing tumors of multiple tissue types origin
with less toxic side effects [115–118]. For example, the mechanism
of action of NOSH-aspirin in inhibiting pancreatic cancer cells:
FoxM1 promotes a transcription factor that can regulate a network
of genes associated with mitosis, NOSH-aspirin inhibits FoxM1
expression via upregulation of ROS levels and p53 expression, and
induction of cell cycle arrest and apoptosis [119]. HA-ADT can
inhibit the proliferation, migration and invasion of human
esophageal cancer cells more effectively than NaHS or GYY4137,
mainly by inhibiting the PKB/Akt/mTOR pathway [120]. The
thioredoxin reduction system, consisting of thioredoxin (Trx),
thioredoxin reductase (TrxR), thioredoxin peroxidase (TPx),
involves in cell proliferation, redox state and apoptosis, and
frequently upregulate in malignancies, and can regulate the
expression of transcription factor NF-κB or apoptosis signal-
regulating kinase 1 (ASK-1) [121–123]. The nuclear factor NF-κB
family of eukaryotic transcription factors plays an important role in
regulation of immune responses, embryonic and cellular lineage
development, apoptosis, cell cycle progression, inflammation and
tumorigenesis [124–126]. HS-ASA induces apoptosis by inhibiting
NF-κB and TrxR activity in MDA-MB-231 cells, the model of triple-
negative breast cancer cells [127]. Aberrant activation of NF-κB is
also present in CRC, and H2S-releasing naproxen induces HT-29
apoptosis by inhibiting the activation of NF-κB and TrxR [128].
ATB-346 is a novel H2S-NSAID that promotes apoptosis in human
melanoma cells by inhibiting the activation of NF-κB and Akt [129].
ADT-OH inhibits the activation of NF-κB in B16F10 melanoma cells,

reduces the expression of downstream target genes of NF-κB
pathway (e.g. XIAP, Bcl-2), and induces cell apoptosis via
mitochondrial pathway. In addition, ADT-OH can also elevate
intracellular FADD levels and induce apoptosis in the exogenous
pathway by downregulating the expression of Makorin ring finger
protein 1 (MKRN1), the E3 ubiquitin ligase of FADD [130]. Valproic
acid (VPA), a short-branched fatty acid, has been shown to inhibit
chromatin remodeling class I histone deacetylase (HDAC I) which
is involved in tumor development. A novel drug, ACS2, coupled by
H2S releasing fraction and VPA, induces apoptosis by mitochon-
drial pathway in NSCLC as well as inhibits cancer cell invasion and
metastasis by down-regulating matrix metalloproteinase-1 expres-
sion and enhances the sensitivity of lung cancer cells to cisplatin
[131].

Nanoemulsions for H2S release and probes for H2S sensing
BAD-NE, synthesized from BSA/α-linolenic acid (ALA)/diallyl
disulfide (DADS), is a nanoemulsion capable of releasing H2S,
which has been shown to induce cell cycle arrest by promoting
p21 expression and apoptosis by activating the ERK1/2 signaling
pathway in both MCF-7 breast cancer and HuT 78 T-cell
lymphoma cells [132]. A novel H2S-sensing bifunctional fluor-
escent probe for H2S-sensing based on naphthalimide peptide
coupling, can be activated by endogenous H2S in cancer cells and
could serve as a diagnostic molecule for high H2S-expressing
cancer cells and induce apoptosis at the same time [133]. CPC is
also a novel H2S probe that reacts with endogenous H2S to reduce
H2S concentration, decrease the glutathionylation of Keap1 at
Cys434, and increase the interaction between Keap1 and Nrf2,
thereby inhibiting nuclear translocation of Nrf2, suppressing
autophagy and promoting apoptosis [134].

APOPTOSIS INDUCED BY NATURAL ORGANIC H2S DONORS IN
CANCER CELLS
There are many natural organic H2S donors in natural world, such
as the rocket or broccoli plant family [135]. Natural sulfides are
mainly derived from garlic, diallyl sulfide (DAS), DADS, and DATS. It
has been reported that garlic-derived organic polysulfides induce
H2S production in a thiol-dependent manner in erythrocytes [136].
DATS reacts rapidly with GSH and releases H2S via thiol-disulfide
exchange. DADS releases trace amounts of H2S via a slow reaction
with GSH via the α-carbon nucleophilic substitution pathway
[137–141] (Fig. 4). Garlic derivatives such as DATS and DADS are
not only H2S donors, but also form a positive feedback loop for
H2S production by acting with the H2S/CBS or H2S/CSE axis
[142–144]. There are many studies related to the promotion of
cancer cells by natural sources of H2S. They are summarized in the
following Table 2.
Acetyl deacylasadisulfide (ADA) is also a naturally occurring H2S

donor. ADA inhibits the PI3K/Akt pathway and its downstream
target NF-κB in melanoma cells, reduces the expression of the
anti-apoptotic proteins c-FLIP, XIAP and Bcl-2, and promotes the
activation of caspase-3 and PARP to induce apoptosis [145]. 12b is
a novel synthetic H2S donor derived from natural ent-kaurane
diterpenoid oridonin derivatives that can induce apoptosis in a
variety of cancer cells (e.g. HepG2, HCT-116 and K562 cells) via
extrinsic and intrinsic apoptotic pathways [146]. Another experi-
ment demonstrates that in a variety of human cancer cell lines
12b inhibits the cell cycle and induces the mitochondrial
apoptotic pathway via the release of H2S [147]. Erucin, a diet-
derived H2S donor, can inhibit the proliferation and metastasis by
suppressing calmodulin and the transcription factor expression
during epithelial-to-mesenchymal transition (EMT) of melanoma
cells [148]. Activating mutation of KRAS in pancreatic cancer cells
AsPC-1 leads to hyperphosphorylation of ERK1/2 kinase, causing
proliferation and growth of pancreatic cancer cells [149]. Erucic
acid can directly induce apoptosis by releasing H2S and inhibit cell
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proliferation by inhibiting the phosphorylation of ERK1/2 in AsPC-
1 cells.

H2S AS A SHIELD
It has been shown that CSE promotes intra-mitochondrial H2S
production through translocation to mitochondria that can
maintain mitochondrial production of ATP under hypoxic condi-
tion [150]. Suitable concentrations of H2S in the mammalian colon

can serve as a substrate for the mitochondrial oxidative respiratory
chain [151]. In particular, 3-MST modulates H2S production in
mitochondria and is involved in complementing and balancing
the bioenergetic role of Krebs cycle-derived electron donors [152].
Some teams have demonstrated that the CSE/H2S axis promotes
mitochondrial biogenesis in hepatocytes by enhancing the
expression and activity of PGC-1α [153]. CBS expression is
upregulated in colon cancer cells. CBS produces H2S at low to
moderate levels in the early stage of cancer development, which
acts as a bioenergetic factor for cancer cell growth and promotes
vasorelaxation generation, supporting tumor growth and prolif-
eration [12, 90]. There is a positive feedback loop between H2S
and nicotinamide phosphoribosyl transferase (Nampt) that
regulates the dedifferentiation of cancer cells and helps them
recover from potentially lethal damage [154]. Bhattacharyya S
et al. find that CBS co-localizes with mitochondrial markers in
ovarian cancer, and silencing CBS inhibits mitochondrial respira-
tion and ATP synthesis, while increases ROS production. Mechan-
istically, silencing CBS reduces H2S production, severely decreases
cellular GSH levels, activates tumor suppressor p53 and inhibits
NF-κB [95]. H2S ameliorates hypoxia and oxidative stress-induced
injury because of its ability to scavenge intracellular ROS and
increase GSH level [155–157]. Exogenous application of 100 μM
NaHS to pancreatic β cells inhibits cytokine-induced ROS
production [158]. H2S is a vital endothelium-derived hyperpolariz-
ing factor (EDHF) which activates ATP-sensitive, medium and small
conductance potassium channels through cysteine S-sulfhydra-
tion, leading to hyperpolarization and vasorelaxation of vascular
endothelial and smooth muscle cells [159]. CBS silencing inhibits
tumor growth and neointimal density in rat models of colon and

Fig. 4 The ways of DATS and DADS in the generation of H2S. DATS
and DADS are two main active ingredients in garlic. DATS reacts
rapidly with GSH to release H2S via thiol−disulfide exchange
followed by allyl perthiol reduction by GSH. DADS only releases a
minute amount of H2S via a sluggish reaction with GSH through an
α-carbon nucleophilic substitution pathway. DATS diallyl trisulfide,
DADS diallyl disulfide, GSH glutathione.

Table 2. Organic H2S donors induce apoptosis in cancer cells through multiple mechanisms.

Cancer types Mechanisms References

Pancreatic cancer DATS: Blocks cell cycle and induces apoptosis [68]

Esophageal cancer DADS: Promotes p53 expression and inhibits MEK/ERK pathway via endogenous apoptosis pathway [179, 180]

Lung cancer DADS/DATS: Endogenous apoptosis pathway [181–183]

Breast cancer DADS: Activation of MAPK/JNK and p38, inhibition of β-catenin
DATS: Activation of JNK, AP-1, ASK1-MEK-JNK-Bim via ROS

[184–189]

Leukemia DADS: Activation of p38/MAPK and inhibition of ERK1/2 via ROS [190, 191]

Osteosarcoma DATS: Inhibition of PI3K/Akt pathway via ROS [192]

Colorectal cancer DADS: Via mitochondrial and death receptor apoptosis pathways, Cyt C-mediated mitochondrial
non-dependent apoptotic pathway
DATS: Via mitochondrial apoptosis pathway

[193–197]

Melanoma DATS: Induces DNA damage, intracellular Ca2+, and mitochondrial damage via the ROS-activated p53
pathway

[198–200]

Bladder cancer DATS: Inhibition of PI3K/Akt pathway and activation of P38/JNK-MAPK pathway [201–203]

Hepatocellular carcinoma DADS: Activation of p38/MAPK-mediated intrinsic apoptotic pathway [204, 205]

Prostate cancer DATS: Activation of JNK/MAPK pathway induces intrinsic apoptosis pathway, inhibition of Akt
activation by the mitochondrial pathway
DADS: Ca2+-dependent apoptosis, pro-apoptosis via activation of JNK and inhibition of PI3K/AKT
signaling

[206–212]

Gastric cancer DATS: Activation of JNK/p38 MAPK pathway,
inhibition of PI3K/Akt-Nrf2 pathway, induction of ROS-mediated AMPK phosphorylation

[213, 214]

Glioblastoma/
neuroblastoma

DAS,DADS,DATS: ROS can activate p38/JNK signaling pathway and induce endoplasmic reticulum
stress
DAS,DADS: Activation of Ca2+/calpain/caspase-3
DATS: High expression of ROS and p53 enhance TRAIL-mediated extrinsic apoptotic pathway

[215–219]

Thyroid cancer Induction of mitochondrial apoptosis pathway by activation of MAPK pathway [220–222]

Cervical cancer Induction of mitochondrial apoptotic pathway and cell cycle arrest via p53 pathway [223]

ADA acetyl deacylasadisulfide, COX-2 cyclooxygenase-2, Cyt C cytochrome C, DAO d-amino acid oxidase, DADS diallyl disulfide, DAS diallyl sulfide, DATS diallyl
trisulfide, ERK extracellular signal-regulated kinase, ERs endoplasmic reticulum stress, JNK C-Jun N-terminal kinase, KEAP1 Kelch Like ECH Associated Protein 1,
MAPK mitogen activated protein kinase, ROS reactive oxygen species, PI3K phosphoinositide 3-kinase, STAT signal transducer and activator of transcription 3,
TNF tumor necrosis factor.
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ovarian cancer, and low concentrations or endogenous H2S can
promote tumor growth by promoting angiogenesis [12, 95]. An
exogenous slow-releasing H2S donor, GYY4137 inhibits TNF-α-
mediated endothelial cell death by S-sulfhydration of pro-caspase
3 leading to down-regulation of its activity [160]. Oral squamous
cell carcinoma (SCC) is applied with low concentrations of NaHS,
p-Akt and p-ERK1/2 expression is up-regulated in the NaHS-
treated group compared with untreated controls, and induces
more SCC cells to enter the S phase to promote cell proliferation
[161]. 50–200 μM NaHS also induces proliferation of human colon
cancer cells by inducing Akt and ERK phosphorylation, inhibiting
p21 expression and NO production [162].
Some studies have investigated the protective mechanisms of

H2S in different cancer cells. Jingfu Chen [163] demonstrates that
the p38 MAPK/ERK1/2-COX-2 pathway is involved in NaHS-
induced proliferation and anti-apoptosis in C6 glioma cells. H2S
not only inhibits bronchial epithelial cell apoptosis through
modulation of ER stress, but also inhibits NOD-like receptor pyrin
domain containing protein 2 inflammatory vesicle formation via
the Nrf2-dependent pathway [164, 165]. In the HCC cell line PLC/
PRF/5, exogenous application of 500 μM NaHS inhibits caspase-3
production and activates the NF-κB pathway to promote cell
proliferation [62]. It also inhibits apoptosis by activating STAT3/
COX-2 signaling pathway [166]. In esophageal cancer EC109 cells,
application of 400 μM NaHS significantly inhibits apoptosis by
activating NF-κB and p38 MAPK/ERK1/2-COX-2 signaling pathways
[54]. Similarly, 500 μM NaHS acts on multiple myeloma cells for
24 h can promote cell proliferation and migration by upregulating
p-Akt expression [167].

DISCUSSION
In summary, we know that H2S is a substance with small molecular
mass that can freely penetrate lipid membranes and has the redox
property, it exerts an anti-apoptotic effect in cancer cells via a
variety of mechanisms (Fig. 5). Firstly, H2S, at low concentrations,
scavenges ROS via its inherent reducing property and by elevating
intracellular levels of GSH through the activation of cysteine/
cystine transporter protein. Furthermore, H2S can directly activate
K+ATP channel, induce vascular smooth muscle relaxation and
promote local blood supply to tumors. Mustafa et al. report that

H2S activates glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) via S-sulfhydration under hypoxic conditions, which is
involved in glucose metabolism, and increases the enzymatic
activity of GAPDH to promote anaerobic metabolism [168]. Lower
concentrations of H2S also stimulate oxidative phosphorylation
and increase ATP production by donating electrons to the
mitochondrial electron transport chain. In addition to acting as a
signaling molecule, H2S regulates apoptosis in cancer cells via
S-sulfhydration of amino acid residues of certain protein
molecules in signaling pathways. For example, ERK, JNK, and
p38 [169–172], which control numerous pathophysiological
processes, ERK regulates cell growth and differentiation, as well
as JNK and p38 play important roles in inflammation and
apoptosis. The PI3K/Akt pathway is another important intracellular
signaling pathway that is significantly associated with tumorigen-
esis, cancer progression and drug resistance [173, 174]. It also
responds to intra- and extra-cellular signals to promote metabo-
lism, proliferation, cell survival, growth, and angiogenesis [175].
Mutations in the PI3K/Akt pathway are common phenomena in
human cancers, and the two most frequently mutated genes are
phosphatase and tensin homolog and PI3K-alpha. This pathway is
able to inactivate the pro-apoptotic factors Bad and pro-caspase 9
and inhibit the expression of the death ligand FasL [176]. H2S
directly sulfurizes the upstream and downstream of the
p53 signaling pathway, NF-κB, and Keap1 to inhibit cell
proliferation and induce apoptosis. H2S not only directly regulates
various intracellular signaling pathways but also participates in the
regulation of tumor microenvironment [177, 178]. Therefore, there
is an urgent need for more effective methods to detect the
concentration of H2S in cancer cells. The H2S level is then used as a
guide for the development of novel H2S-releasing drugs, as well as
the inhibitors/activators of H2S-producing enzymes. In conclusion,
H2S can be applied in cancer treatment by identifing the
mechanism of H2S in the apoptotic process of cancer cells.
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