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Increased thrombospondin-1 levels contribute to epileptic
susceptibility in neonatal hyperthermia without seizures via
altered synaptogenesis
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Childhood febrile seizures (FS) represent one of the most common types of seizures and may lead to severe neurological damage
and an increased risk of epilepsy. However, most children with fevers do not show clinical manifestations of convulsions, and the
consequences of hyperthermia without seizures remain elusive. This study focused on hyperthermia not reaching the individual’s
seizure threshold (sub-FS stimulus). Changes in thrombospondin-1 (TSP-1) levels, synapses, seizure susceptibility, and seizure
severity in subsequent FS were investigated in rats exposed to sub-FS stimuli. Pharmacological and genetic interventions were used
to explore the role of TSP-1 in sub-FS-induced effects. We found that after sub-FS stimuli, the levels of TSP-1 and synapses,
especially excitatory synapses, were concomitantly increased, with increased epilepsy and FS susceptibility. Moreover, more severe
neuronal damage was found in subsequent FS. These changes were temperature dependent. Reducing TSP-1 levels by genetic
intervention or inhibiting the activation of transforming growth factor-β1 (TGF-β1) by Leu-Ser-Lys-Leu (LSKL) led to lower synapse/
excitatory synapse levels, decreased epileptic susceptibility, and attenuated neuronal injury after FS stimuli. Our study confirmed
that even without seizures, hyperthermia may promote synaptogenesis, increase epileptic and FS susceptibility, and lead to more
severe neuronal damage by subsequent FS. Inhibition of the TSP-1/TGF-β1 pathway may be a new therapeutic target to prevent
detrimental sub-FS sequelae.
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INTRODUCTION
Febrile seizures (FS) mainly occur in children from 6 months to 5
years old [1]; approximately 2–5% of children worldwide experi-
ence FS [2]. A study of childhood FS found that children exhibited
generalized seizures accompanied by fever >38°C (100 °F) without
infection of the central nervous system [3]. Evidence suggests that
FS may induce synaptic remodeling and increase the risk of
neuronal injury-related diseases, such as epilepsy [4]. Children with
a history of FS in infancy may develop temporal lobe epilepsy in
adulthood [5]. Studies confirm that approximately 13% of epilepsy
cases and 37.1% of children with sudden unexplained death are
closely related to pediatric FS [6, 7]. Even after a simple FS lasting
less than 15min with no recurrence within 24 hours [2, 8], synaptic
structures may be rebuilt [4], and the recurrence of FS is up to 50%
in later life [9]. Additionally, epilepsy risk is significantly increased
even in children with a minor FS [10, 11].
Hyperthermia-induced seizures are known to result in synaptic

changes and an increase in the risk of epilepsy [12]. However,
whether hyperthermia without seizures causes changes in
epileptic susceptibility or seizure severity in later life remains
unclear. After all, most children have high fever without clinical
manifestations of convulsions. Therefore, our study aimed to
assess the effects of hyperthermia not reaching the individual’s
seizure threshold (sub-FS stimuli).

In early childhood, children with FS have an approximately five
times higher incidence of subsequent seizures than those without
[3]. Our previous study confirmed increased epileptic susceptibility
due to sub-threshold pilocarpine doses [13]. If sub-FS stimuli
similarly increase epileptic susceptibility, exploring the underlying
mechanisms will be advantageous to prevent epilepsy.
Epilepsy is characterized by hyperexcitability [14], and epileptic

susceptibility is closely related to neuronal excitability [15]. In
these processes, synapses play important roles in the develop-
ment and information transmission of complex neural networks
[16]. Evidence suggests that thrombospondin-1 (TSP-1) plays a
vital role in synaptogenesis [17–19]. TSP-1, an extracellular matrix
molecule that is mainly secreted by activated astrocytes,
contributes to synaptogenesis, axonal sprouting, the formation
of normal synaptic ultrastructures, and even reshapes neural
circuits in various neurological disorders [18, 20–22]. Moreover,
synapses do not proliferate in the absence of TSP-1 [20]. TSP-1
promotes synaptogenesis by activating latent transforming
growth factor-β1 (TGF-β1) in latency-associated peptide (LAP)
[23, 24]. The Leu-Ser-Lys-Leu (LSKL) peptide sequence, located in
the LAP of the TGF-β1–LAP complex, is essential in the activation
of TGF-β1 [23, 25]. Exogenously administered LSKL can, through its
interaction with TSP-1, competitively inhibit TGF-β1–TSP-1 bind-
ing, thereby inhibiting TGF-β1 activation [26, 27].
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This study explored the changes and underlying mechanisms of
epileptic susceptibility after hyperthermia without seizures; rat
pups were treated with sub-FS thermal stimuli of different
intensities to evaluate subsequent synaptic and susceptibility
changes. To examine possible mechanisms of altered suscept-
ibility, pharmacological and genetic interventions were used to
modulate TSP-1.

RESULTS
Sub-FS stimuli may increase FS and epileptic susceptibility
and promote neuronal injury
The body temperatures before and after modeling were
measured. Significant increased body temperatures were found
in sub-FS groups (Supplementary Fig. 1). FS and epileptic
susceptibility were detected after 1 day (P9) and 6 days (P14) of
sub-FS stimuli (Fig. 1A). After sub-FS stimuli, epileptic susceptibility
was detected by injecting pentylenetetrazole (PTZ) via tail veins
until seizures reached stage 4 or 5 by Racine’s criteria [28, 29].
Compared with that in the controls (sham treatment without sub-
FS stimuli), the PTZ threshold doses were lower in the sub-FS
groups (41 °C, p < 0.001; 40 °C, p= 0.002; Fig. 1B). Moreover, to
detect FS susceptibility, P8 rats were administered sub-FS stimuli,
then exposed to 44.0 ± 0.5 °C temperatures until seizures occurred
on P9. The body temperature at which FS occurred was recorded.
The threshold temperatures to induce FS in the 41 °C and 40 °C-
exposed pups were lower than those in the control group (41 °C,
p < 0.001; 40 °C, p= 0.004; Fig. 1C). The 39 °C treatment led to no
significantly changes (Fig. 1B, C). Moreover, after 6 weeks of sub-FS
stimuli, no significant differences between the 41 °C and control
groups were found (Supplementary Fig. 2). The results suggest
that increased epileptic susceptibility induced by neonatal sub-FS
stimuli may be an early manifestation, and the impact of sub-FS
stimuli may not persist into adulthood.
Neuronal damage was detected using fluoro-jade B (FJB)

staining at 3 days. Sub-FS rat brains had increased numbers of
FJB-positive signals (Fig. 1D, E). Additionally, we found elevated
levels of cleaved caspase-3 (cortex: 41 °C, p= 0.038; 40 °C,
p= 0.042; hippocampus: 41 °C, p= 0.012; 40 °C, p= 0.044; Fig.
1F, G), whereas those of caspase-3 were decreased (Fig. 1F, H) at
3 days after sub-FS stimulus. No significant changes were found in
the 39°C group (Fig. 1F–H).
We also evaluated apoptosis at 2 months in the 41 °C sub-FS

group. Compared to those in the prolonged febrile seizure (PFS)
group, cleaved caspase-3 levels were dramatically lower with
opposing changes in caspase-3 levels in the 41 °C group (Fig.
1I–K). No significant differences were found between the 41 °C
and control groups (Fig. 1I–K). These results suggest that in the
early stage, sub-FS may promote apoptosis, but these effects do
not persist into adulthood.

Sub-FS stimuli may aggravate neuronal damage and
apoptosis induced by subsequent FS stimuli
In those rat pups administered sub-FS treatment (41 °C and 40 °C)
that subsequently experienced FS, neuronal injury was aggravated
(3 days, 41 °C, p= 0.002; 40 °C, p= 0.031; Fig. 2A, B) detected by
FJB staining. Synchronously, the cleaved caspase-3 levels were
increased, whereas the caspase-3 levels were decreased (Fig.
2C–E), compared to those in the control group. These results
indicate that sub-FS stimuli may increase neuronal injury and
apoptosis in animals exposed to FS stimuli afterward.

Sub-FS may increase TSP-1/TGF-β1, excitatory synapse, and
glutamate levels
TSP-1 and TGF-β1 promote synaptogenesis in the brain [17]. The
TSP-1 levels increased after sub-FS treatment (3 days, Fig. 3A, B;
14 days, Supplementary Fig. 3A, B). Likewise, the TGF-β1 levels
were increased (Fig. 3A, C; Supplementary Fig. 3A, C).

We also detected the following multiple excitatory synaptic
markers: postsynaptic density protein 95 (PSD-95), type I vesicular
glutamate transporter (VGLUT1), calcium-calmodulin-dependent
protein kinase II (CaMKII) [30–32], and synapsin I, a synaptic
marker [33]. Western blotting results revealed increased levels of
PSD-95 in the 41 °C and 40 C groups (e.g. 3 days: cortex: 41 °C,
p= 0.04; 40°C, p= 0.043; hippocampus: 41 °C, p= 0.023; 40°C,
p= 0.027; Fig. 3D, E; Supplementary Fig. 4A, B). Increases in
VGLUT1, CaMKII, and synapsin I were similar to those in PSD-95
(Fig. 3D, F–H, K–N; Supplementary Fig. 4A, C-E). The increased PSD-
95 levels were also confirmed by immunohistochemistry (Fig. 3I, J;
Supplementary Fig. 4F, G). However, the levels of vesicular GABA
transporter (vGAT), a marker of inhibitory synapses [34], were
slightly decreased according to immunohistochemistry results
(CA3: 41 °C, p= 0.028; 40°C, p= 0.047; Supplementary Fig. 5).
To evaluate the changes of excitement in the brains, we

detected the concentration of glutamate, which mediates excita-
tion transmission and hyperexcitation in the nervous system, by
high-performance liquid chromatography (HPLC) at 3 days after
sub-FS stimuli. Compared with those in the controls, the
concentrations of glutamate in 41°C and 40°C sub-FS groups
were increased in EC and CA3 (e.g., EC: 41°C, p= 0.017; 40°C,
p= 0.019; Fig. 3O), in which excitatory synapse levels were
significantly increased. Representative HPLC results of glutamate
are presented in Supplementary Fig. 6.
Moreover, we recorded and analyzed electroencephalograms

(EEGs) to evaluate electrophysiological activity in the brain at 3 days
after sub-FS stimuli. When neuronal activity increases or is in an
excitatory state, the beta power in the brain is increased [35]. Hence,
we calculated the power spectral density (PSD) value in beta
frequency bands. Results showed that compared with the control
group, the power of beta waves was stronger in the sub-FS groups
(41°C, p= 0.009; 40°C, p= 0.032; Fig. 3P). Representative EEG and
PSD images are presented in Supplementary Fig. 7. The results
suggest that when undergoing the sub-FS stimuli, the neuronal
activity and excitability of the brain may be increased, accompanied
with increased levels of excitatory synapse and glutamate.

Reduced TSP-1 expression decreases susceptibility and
neuronal injury induced by sub-FS stimuli
FS and epileptic susceptibility were also assessed after small
interfering RNA (siRNA) treatment (Fig. 4A). After the siRNA-
induced reduction in TSP-1 expression, decreased epileptic
susceptibility (p < 0.001; Fig. 4B) and increased threshold body
temperatures of FS (p= 0.002; Fig. 4C) were detected.
The number of FJB-positive signals was markedly decreased in

the siRNA-TSP-1 group compared to that in the siRNA-NC group
(e.g., EC, p= 0.028; dentate gyrus [DG], p= 0.044; Fig. 4D, E).
Moreover, in the siRNA-TSP-1 group, cleaved caspase-3 levels were
decreased, whereas caspase-3 levels were increased (Fig. 4F–H).

Reduced TSP-1 expression alleviates neuronal damage and
apoptosis induced by subsequent FS stimuli
Neuronal damage was detected via FJB staining at 3 days after FS
stimuli. The aggravation of FS-induced neuronal injury due to
previous sub-FS stimuli was partly alleviated by siRNA transfection
targeting TSP-1 (e.g., EC, p= 0.001; DG, p= 0.045; Fig. 4I, J).
Furthermore, cleaved caspase-3 levels were decreased and
caspase-3 levels were increased (Fig. 4K–M) in the siRNA-TSP-
1+ FS group.

Reduced TSP-1 expression decreases excitatory synapse and
glutamate levels
TSP-1 and TGF-β1 levels were determined after siRNA-TSP-1
transfection. As expected, TSP-1 levels were lower in the siRNA-
TSP-1 group than those in the siRNA-NC group (24 hours: cortex,
p= 0.018; hippocampus, p= 0.02; 3 days: cortex, p= 0.004;
hippocampus, p= 0.002, respectively; Fig. 5A, B), whereas TGF-
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β1 levels were increased (Fig. 5A, C). Accompanying reduced TSP-
1 expression, PSD-95 (e.g. 24 hours: cortex, p= 0.022; hippocam-
pus, p= 0.024; Fig. 5D, F), synapsin I (Fig. 5E, F), and VGLUT1 (Fig.
5G, H) levels were also synchronously decreased in the siRNA-TSP-
1 group. The immunohistochemistry findings regarding PSD-95
were consistent with Western blotting results (Fig. 5I, J;
Supplementary Fig. 8A, B). Furthermore, the levels of VGLUT1
and CaMKII were decreased in immunohistochemistry (Fig. 5K–N).
Moreover, at 3 days after 41°C stimuli, the concentration of
glutamate was decreased with weaker PSD value in the beta
frequency bands in the siRNA-TSP-1 group (Fig. 5O, P).

LSKL treatment attenuates epileptic and FS susceptibility and
prevents neuronal injury
LSKL has been demonstrated as essential in the activation of
TGF-β1 [25], and exogenously administered LSKL can competi-
tively inhibit TGF-β1–TSP-1 binding, thereby inhibiting TGF-β1

activity [26]. Epileptic and FS susceptibility were assessed after
LSKL treatment (Fig. 6A). The results showed that epileptic
susceptibility was lower in the 41°C+ LSKL group than that in
the 41°C+saline group (p= 0.004; Fig. 6B). Moreover, the FS
body temperature threshold was increased after LSKL treatment
(p= 0.004; Fig. 6C), and the number of FJB-positive signals was
significantly reduced following LSKL treatment (EC, p= 0.036;
DG, p= 0.027; Fig. 6D, E).
Additionally, LSKL administration resulted in decreased cleaved

caspase-3 levels (3 days: cortex, p= 0.002; hippocampus,
p= 0.005; Fig. 6F, G) and increased caspase-3 levels (Fig. 6F, H).

LSKL administration alleviates neuronal damage and
apoptosis induced by subsequent FS stimuli
After LSKL administration (41°C+ LSKL+ FS group), the number
of FJB-positive signals was reduced (EC, p= 0.004; DG, p= 0.046;
Fig. 6I, J), with decreased cleaved caspase-3 (3 days: cortex,

Fig. 1 Sub-FS stimuli may increase FS and epileptic susceptibility and promote neuronal injury. A Experimental design. B Threshold
dosages of PTZ at P14 (n= 6/group). C Threshold body temperature for induction of febrile seizures at P9 (n= 8/group). D, E Number of FJB-
positive signals and representative images of FJB staining in the EC at 3 days (n= 4/group, scale bar = 50 μm). F–K Gray bands and normalized
gray values of cleaved caspase-3 and caspase-3 relative to GAPDH at 3 days and 2 months (n= 4/group). Mean ± SEMs were presented.
*P < 0.05, **P < 0.01, ***P < 0.001 vs control group and #P < 0.05, ##P < 0.01 vs 41°C group (One-way ANOVA with LSD post-hoc test).
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p= 0.039; hippocampus, p= 0.006; Fig. 6K, L) and increased
caspase-3 (Fig. 6K, M).

LSKL administration decreases excitatory synapse and
glutamate levels
TSP-1 and TGF-β1 levels were determined in LSKL-treated rats
(41°C+ LSKL group). Although the TSP-1 levels after LSKL treatment
were not significantly changed compared to those of the saline
group (Fig. 7A, B), the TGF-β1 levels were elevated by LSKL
treatment similar to that observed in those after siRNA transfection
(Fig. 7A, C). To verify synapse changes, PSD-95, VGLUT1, and
synapsin I were detected at 24 hours and 3 days. The PSD-95 levels
were considerably reduced by LSKL treatment (24 hours: cortex,
p= 0.006; hippocampus, p= 0.002; 3 days: cortex, p= 0.024;
hippocampus, p= 0.036, respectively; Fig. 7D, F) with downregu-
lated VGLUT1 and synapsin I (Fig. 7E–H). The immunohistochemistry
results confirmed the decreased PSD-95 levels in the 41°C+ LSKL
group (Fig. 7I, J; Supplementary Fig. 8C, D) with decreased levels of
VGLUT1 and CaMKII (Fig. 7K–N). Moreover, the increased glutamate
levels and the power of beta waves by sub-FS stimuli were partly
reversed by LSKL intervention (Fig. 7O, P).

DISCUSSION
FS are induced by hyperthermia and represent one of the most
common types of seizures [8]. FS can lead to irreversible synaptic
reorganization [36] and recurrent spontaneous epileptic seizures
[1]. However, most infants with hyperthermia do not experience
seizures (sub-FS), and it remains elusive whether changes in
epileptic susceptibility and synapses occur after sub-FS stimuli.
Our findings indicate that sub-FS stimuli in rat pups may increase
seizure and epileptic susceptibility and aggravates the neuronal
damage caused by subsequent FS. Moreover, the synapse levels,
especially excitatory synapse levels, were increased, with synchro-
nously elevated TSP-1 and TGF-β1 levels. These changes
correlated with temperature intensities. Decreases in TSP-1
expression by siRNA transfection or inhibition of TSP-1 activity
by LSKL treatment significantly attenuated synaptogenesis and
partly prevented the increased susceptibility.

Previous studies demonstrated that hyperthermia could change
neuronal excitability. Hyperthermia led to epileptiform population
spikes in hippocampal slices of immature rats [37] and reduced
neuronal inhibition in the hippocampal CA1 subregion of neonate
rats [38]. These findings suggest that hyperthermia may lead to
absolutely or relatively increased excitability and influence seizure
susceptibility. This suggestion is further supported by our results.
Epileptic susceptibility was significantly increased in
hyperthermia-treated pups, even without seizure induction. Pups
treated with sub-FS stimuli were not only more likely to acquire FS,
but also to sustain more severe FS-induced neuronal damage.
However, there were no differences in epileptic susceptibility
among groups at 6 weeks after sub-FS stimuli. Evidently, in those
children experiencing hyperthermia without seizures, the suscept-
ibility to epilepsy and FS may be elevated in the early period.
As the structural and functional basis of neural networks,

synapses are vital in the development of the nervous system and
the formation of hyperexcitatory diseases, including epilepsy
[15, 16]. In the epileptic brain, neural network formation is
characterized by abnormal synaptogenesis [15, 39], and remodel-
ing of synapses can lead to increased excitability and epileptic
susceptibility [40–42]. Based on our findings of increased
susceptibility to both FS and epilepsy following sub-FS stimuli,
we speculate that hyperthermia, even without reaching that of the
seizure threshold, may induce synaptic changes in the brain. The
increased levels of synapses, especially excitatory synapses, with
elevated glutamate level were found after sub-FS stimuli. As the
major excitatory neurotransmitter in the central nervous system,
glutamate is mainly released from the presynaptic terminal via a
calcium-dependent manner [43], and taken up by astrocytes and
neurons [44]. Eventually, glutamate is packaged into glutamater-
gic neuronal vesicles, where glutamate is available for release [45].
Hence, the majority of glutamate is stored intracellularly. In order
to detect the intracellular glutamate, we used liquid nitrogen to
freeze and thaw the tissues repeatedly, and thoroughly crushed
the cells with the ultrasonic crushing instrument. The results
confirmed the increased concentration of glutamate, which
indicated potentially elevated excitation neurotransmission after
sub-FS treatment. Combined with the increased excitatory

Fig. 2 Sub-FS stimuli may aggravate neuronal damage and apoptosis caused by subsequent FS stimuli. A, B Number of FJB-positive
signals and representative images of FJB staining in the EC at 3 days after FS stimuli (n= 4/group, scale bar = 50 μm). C–E Gray bands and
normalized gray values of cleaved caspase-3 and caspase-3 relative to GAPDH (n= 4/group) at 3 days after FS stimuli. Mean ± SEMs were
presented. *P < 0.05, **P < 0.01 vs control group (One-way ANOVA).
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synapses and ratio of normalized PSD of beta waves after sub-FS
stimuli, our results suggested that the increased excitability may
be the mechanism underlying elevated susceptibility after sub-FS
stimuli.
We observed the most substantial increases in the number of

excitatory synapses in the EC and the CA3 region of the
hippocampus, which are important in the formation of epilepsy
and seizures. The hippocampus, one of the largest structures of the
medial temporal lobe, is closely related to the occurrence of epilepsy
[46]. Structural and functional defects of the hippocampus were
found in patients with temporal lobe epilepsy, the most common

type of epilepsy [47, 48]. During epilepsy formation, hyperexcitatory
pathological changes occur in the hippocampus [46, 49]. For
example, hippocampal mossy fiber sprouting constitutes excitatory
feedback to the DG and CA3 region. This process provides the
pivotal reorganization of excitatory connections [50, 51] and
suppresses inhibitory transmission [52]. In the hippocampus, the
predominant afferent pathway originates from the EC, the bridge
between the hippocampus and cerebral cortex [53]. In general,
information is transmitted from the EC to the DG through several
tightly packed cellular layers, reaches the CA3 pyramidal cells, and is
fed back to the EC via the CA1. CA3 axon collateralization plays an

Fig. 3 Sub-FS may increase TSP-1/TGF-β1, excitatory synapse and glutamate levels. A–C Gray bands and normalized gray values of TSP-1
and TGF-β1 relative to GAPDH at 3 days (n= 4/group). D–H Gray bands and normalized gray values of PSD-95, Synapsin I and VGLUT1 relative
to GAPDH at 3 days (n= 4/group). I, J Number of positive PSD-95 signals and representative immunohistochemical results of PSD-95 (green) in
EC at 3 days (scale bar = 5 μm, n= 4/group). Blue, DAPI. K–N Immunohistochemical results of VGLUT1 (green) and CAMKII (red) in EC at 3 days
(scale bar = 10 μm, n= 4/group). Blue, DAPI. O Content of glutamate (n= 6/group) in EC and CA3 and (P) ratio of normalized power spectra
intensity of beta waves (n= 5/group) at 3 days. Mean ± SEMs were presented. *P < 0.05, **P < 0.01, ***P < 0.001 vs control group (One-way
ANOVA).
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important role in this cycle [53]. Hence, it would be reasonable to
speculate that increased excitatory synapses in the CA3 and EC
induced by sub-FS stimuli may impact susceptibility and subsequent
seizures. Our results support this hypothesis. Following sub-FS
stimuli, the seizure threshold was significantly decreased, the
number of excitatory synapses increased, and the neuronal damage
was more severe in subsequent FS.
TSP-1, an astrocyte-secreted protein, is closely related to

synaptogenesis in vitro and in vivo [54]. TSP-1 expression is
essential for the ultrastructural formation of synapses, especially
excitatory synapses [19, 55]. Increased TSP-1 levels promote
synaptogenesis in young humans and newborn animals [56, 57].
Our previous study confirmed the contribution of TSP-1 in
amygdala kindling-induced epileptogenesis by promoting synap-
togenesis [17]. Reducing TSP-1 expression by siRNA transfection
substantially inhibited synaptogenesis, especially excitatory

synapse formation, and prevented epileptogenesis [17]. Interest-
ingly, in sub-FS-treated rat pups, the levels of TSP-1 and synapse/
excitatory synapses were concomitantly upregulated. Decreasing
TSP-1 expression by siRNA transfection led to inhibited synapto-
genesis (especially excitatory synapse formation), reversed seizure
susceptibility, and attenuated neuronal damage in subsequent FS.
Thus, TSP-1-induced synaptogenesis is critically involved in sub-
FS-induced pathological processes.
TSP-1 affects synaptogenesis in the brain mainly by activating

latent TGF-β1, and synapses deteriorate in the absence of TGF-β1
[17, 58, 59]. TGF-β1, a disulfide-linked homodimeric protein, is
usually secreted in an inactive form bound to LAP for storage [60].
TSP-1 can activate TGF-β1 through K412RFK415, a specific amino
acid sequence of TSP-1, interacting with the LSKL sequence of the
latent TGF-β1–LAP complex [25]. Exogenous LSKL peptides
competitively inhibit TSP-1 binding without affecting TSP-1

Fig. 4 Reduced TSP-1 expression decreases susceptibility and neuronal injury induced by sub-FS stimuli and alleviates neuronal damage
induced by subsequent FS stimuli. A Experimental design. B Threshold dosages of PTZ at P14 (n= 6/group). C Threshold body temperature
for induction of febrile seizures at P9 (n= 8/group). D, E Analysis and representative images of FJB staining at 3 days after 41°C stimulus (scale
bar = 50 μm). F–H Gray bands and normalized gray values of cleaved caspase-3 and caspase-3 relative to GAPDH at 3 days after 41°C stimulus.
I, J Representative images (scale bar = 50 μm) and number of positive signals of FJB staining at 3 days after FS stimuli. K–M Gray bands and
quantitative analysis of cleaved caspase-3 and caspase-3 at 3 days after FS stimuli. D–M n= 4/group. Mean ± SEMs were presented. *P < 0.05,
**P < 0.01, ***P < 0.001 vs siRNA-NC group (Unpaired T-test).
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expression [23, 61, 62]. Following LSKL treatment, synaptogenesis
and epileptogenesis were attenuated in amygdala-kindled animals
[17]. Similarly, in sub-FS-treated pups, inhibiting TGF-β1 activation
by LSKL treatment significantly reduced the number of synapses,
especially excitatory synapses, prevented the increase of seizure
susceptibility. Evidently, TSP-1 participated in the sub-FS-induced
increase in susceptibility by promoting the formation of synapses/
excitatory synapses, and the TSP-1/TGF-β1 pathway is the primary
mechanism. Interestingly, the TGF-β1 levels were significantly
increased after either LSKL administration or TSP-1-targeting
siRNA transfection. The TGF-β1 upregulation may be compensa-
tory owing to obstructed downstream functions.

Caspases are a family of cysteinyl aspartate-specific proteases
that are highly conserved in multicellular organisms and function
as central regulators of apoptosis and caspase-3 has been
identified as a key mediator of apoptosis in neuronal cells [63].
Caspase-3 are also involved in non-apoptotic functions. For
example, cleaved caspase-3 may induce local elimination of
dendritic spines and spine loss without causing cell death and
contribute to long-term depression [64, 65]. However, non-
apoptotic effects of cleaved caspase-3 are varied and complex,
even opposite. In prolonged seizures, neuronal G protein-
activated inwardly-rectifying potassium (GIRK) channel subunits
are cleaved by activated caspase-3, and down-regulation of GIRK

Fig. 5 Reduced TSP-1 expression decreases excitatory synapse and glutamate levels. Gray bands and normalized gray values of TSP-1/TGF-
β1 (A–C), PSD-95/synapsin I (D–F) and VGLUT1 (G, H) at 24 hours and 3 days (n= 4/group). The immunohistochemistry results of PSD-95
(green, scale bar = 3 μm, I, J), VGLUT1 (green, scale bar = 10 μm, K, L) and CAMKII (red, scale bar = 10 μm, M, N) in EC. I–N n= 4/group, Blue,
DAPI. O Ratio of normalized power spectra intensity of beta waves (n= 5/group) and (P) glutamate content (n= 6/group). Mean ± SEMs were
presented. *P < 0.05, **P < 0.01, ***P < 0.001 vs siRNA-NC group (Unpaired T-test).
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channels may decrease their basal and GPCR-activated K+ current,
disrupting the ability to dampen excitability [66]. Additionally, in
hyperexcitatory diseases, such as epilepsy and febrile seizures,
although synaptic pruning may occur, increased excitatory
synaptic proliferation, and ultimately excitatory network forma-
tion, accompanied by apoptosis mediated by activated caspase-3,
are the dominant pathological features [67, 68]. Hence, we
speculate that during the increase of susceptibility induced by
sub-FS stimuli, cleaved caspase-3 may contribute to the elimina-
tion of dendritic spines. However, the elimination effect of cleaved
caspase-3 may be covered by the effects of TSP-1, which promotes
axonal sprouting and synaptic proliferation [20, 22].
Notably, vGAT levels, a marker of inhibitory synapses [34], were

slightly reduced in the hippocampal CA3, although the numbers of
excitatory synapses were significantly elevated. We can speculate
that the reduced number of inhibitory synapses aggravated the
imbalance between excitation and inhibition in neuronal

transmission pathways. In some pathological states, e.g.,
electrically-induced partial status epilepticus, directional pruning
and clearing of inhibitory hippocampal synapses by activated
microglia may contribute to the generation of hyperexcitable
networks [69, 70]. Triggering receptor expressed on myeloid cells-
2 (TREM2) is the pivotal molecule that mediates microglial synaptic
clearance. Increased TREM2 levels promote microglial activation and
greatly enhance synaptic phagocytosis [71, 72]. TREM2-regulated
microglial phagocytosis may underlie the reduced number of
hippocampal inhibitory synapses; further experiments are required
to elucidate these contributions in detail.
Taken together, we found that even without seizures,

hyperthermia may alter synaptogenesis, increase epilepsy and
FS susceptibility in early periods, and lead to more severe damage
by subsequent FS in a temperature-dependent manner. These
changes are closely related to the TSP-1/TGF-β1 pathway. Our
findings indicate that children experiencing hyperthermia without

Fig. 6 LSKL treatment decreases susceptibility and neuronal injury after sub-FS stimuli and alleviates neuronal damage induced by
subsequent FS stimuli. A Experimental design chart. B Threshold dosages of PTZ at P14 (n= 6/group). C Threshold body temperature of
febrile seizures at P9 (n= 8/group). D, E Number of positive signals and images of FJB staining (scale bar = 50 μm). F–H Gray bands and
analysis of cleaved caspase-3 and caspase-3. I, J Images (scale bar = 50 μm) and number of positive signals of FJB staining at 3 days after FS
stimuli. K–M Gray bands and analysis of cleaved caspase-3 and caspase-3 at 3 days after FS stimuli. D–M n= 4/group. Mean ± SEMs were
presented. *P < 0.05, **P < 0.01, ***P < 0.001 vs saline group (Unpaired T-test).
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seizures may have an enhanced susceptibility in early periods and
suggest the TSP-1/TGF-β1 pathway as a potential target to prevent
epilepsy and FS.

MATERIALS AND METHODS
Animals
Adult male and female Sprague-Dawley rats (280–300 g, Certificate No.
SCXK 2019-0003; Jinan Pengyue Experimental Animal Center, Shandong,
China) were given water and food ad libitum. After one week of adaptive

feeding, male rats cohabited with female rats until pregnancy occurred.
The birth date of the rat pups was recorded as P0. The experiments were
performed between 9:00 and 17:00. A total of 308 rats were used in this
study, of which 12 were excluded from analyses due to seizures. No rat
died due to sub-FS stimuli. During the experiment, the examiners were
blinded to data acquisition and analyses.

Sub-FS stimuli and induction of prolonged febrile seizures
P8 rats were placed in a thermotank which was preheated for 2 h, while
the temperature was controlled under the corresponding temperature

Fig. 7 LSKL administration decreases excitatory synapse and glutamate levels. Gray bands and normalized gray values of TSP-1/TGF-β1
(A–C), PSD-95/synapsin I (D–F) and VGLUT1 (G, H) at 24 hours and 3 days (n= 4/group). I, J Number of positive PSD-95 signals and
representative immunohistochemical results of PSD-95 (green) in EC at 3 days (scale bar = 3 μm, n= 4/group). K, L Immunohistochemistry
results of VGLUT1 (green) in EC at 3 days (scale bar = 10 μm, n= 4/group). M, N Representative immunohistochemical results of CAMKII (red)
in EC at 3 days (scale bar = 10 μm, n= 4/group). Blue, DAPI. O Ratio of normalized power spectra intensity of beta waves (n= 5/group) and (P)
content of glutamate (n= 6/group) at 3 days. Mean ± SEMs were presented. *P < 0.05, **P < 0.01, ***P < 0.001 vs saline groups (Unpaired
T-test).
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conditions. The rats were randomly divided into control and three sub-FS
groups (exposed to 39°C, 40°C, or 41°C [73] for 15min). Rats experiencing
seizure during the heating period were excluded from analyses. Control
animals were placed in the unheated incubator.
To evaluate the injury in adulthood induced by juvenile sub-FS stimuli,

PFS were induced on P9. Pups were randomly exposed to 44.0 ± 0.5°C
temperatures for 90min, and we ensured that the seizures lasted longer
than 30min [74]. The brains of rats from the PFS group were extracted at
2 months.

Susceptibility assessment
First, epileptic susceptibility was detected by injecting PTZ via tail veins at
P14 because rats at that age are old enough to stand and walk and
presented obvious generalized seizures after PTZ treatment. PTZ (5 mg/ml,
0.05ml/min; Sigma) was slowly injected into the tail veins of P14 rats until
seizures reached stage 4 or 5 by Racine’s criteria[28, 29]. The threshold
dose was calculated as follows: PTZ threshold dose (mg/kg) = (PTZ
concentration (mg/ml) × infusion volume (ml))/ rat body weight (kg) [13].
Moreover, the threshold body temperature to induce seizures was

measured to evaluate the susceptibility of the animal to FS. The threshold
temperature for FS induction was determined as follows: P9 rats, which are
susceptible to hyperthermia convulsions depending on the degree of brain
development [75, 76], were placed in a thermotank heated to 44.0 ± 0.5°C
[74] and retained in the tank until seizures were observed. The body
temperature at which FS occurred was recorded.

Western blotting
At 3 days, 2 weeks, and 2 months after sub-FS stimuli, rats were
anesthetized and decapitated. Brains were quickly removed to separate
the hippocampus and cortex on ice. After measuring protein content using
a BCA Protein Assay Kit (P0012; Beyotime), proteins were separated using
10% and 12% SDS-PAGE gel (P0012AC; Beyotime) and transferred to a
polyvinylidene fluoride membrane (220mA, 60 or 100min, respectively).
Subsequently, these membranes were blocked with 5% skim milk for 3 h.
After incubation with the primary antibodies anti-synapsin I (1:1 000;
ab254349; Abcam), anti-PSD95 (1:1 000; ab2723; Abcam), anti-VGLUT1 (1:1
000; ab227805; Abcam), anti-TGF-β1 (1:1 000; ab179695; Abcam), anti-TSP-
1 (1:1 000; A00667-1; Boster), anti-caspase-3 (1:1 000; 9662; Cell Signaling
Technology), anti-cleaved caspase-3 (1:1 000; ab2302; Abcam), or
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 1:1 000; AB-P-R-
001; Goodhere) overnight at 4°C, and the horseradish peroxidase-
conjugated secondary antibody (1:3 000; ZB-2301 and ZB-2305; Beijing
Zhongshan) for 2 h at 37°C, the membranes were exposed (ImageQuant
LAS 500, USA). Gel bands were analyzed using ImageJ (version 1.49;
National Institutes of Health; United States) software and are presented as
ratios to GAPDH.

Immunohistochemistry
After adequate perfusion with 0.9% saline and 4% paraformaldehyde,
extracted brains were dehydrated and embedded in Tissue-Tek, then sliced
into sections. The brain sections were blocked with 10% bovine serum
albumin and then incubated using the primary antibodies anti-PSD95
(1:200; ab18258; Abcam), anti-VGLUT1 (1:200; ab227805; Abcam), anti-
CaMKII (phospho T286) (1:250; ab171095; Abcam), and anti-SLC32A1/vGAT
(1:200; ab211534; Abcam) for 1.5 h, followed by incubation with the
secondary antibody (fluorescein isothiocyanate-conjugated; 1:200; A0562
and A0568; Alexa Fluor 555-labeled Donkey Anti-Mouse IgG (H+ L); 1:200;
A0460; Beyotime) for 2 h in the dark at 37°C. After incubation with 4’,6-
diamidino-2-phenylindole (DAPI; 1:3 000; 50 µl/section; C1005; Beyotime)
at room temperature for 15min in darkness, the slices were covered with
coverslips and observed using a fluorescence microscope (Olympus,
Japan). The obtained images were analyzed using ImageJ.

Fluoro-Jade B staining
FJB staining was used to detect damaged neurons [77]. After successively
being placed in 1% NaOH/80% alcohol for 5 min and 70% alcohol for
2 min, the slices were immersed in 0.06% potassium permanganate
solution for 15min. The slices were washed with water, then placed in
0.0004% FJB solution (AG310-30MG, EMD Millipore, USA) for 35min in the
dark, then rewashed with water and dried. After treatment with xylene for
3 min, the brain slices were observed under a fluorescence microscope
(Olympus, Japan). The images were presented in grayscale and analyzed
using ImageJ.

LSKL and siRNA interventions
The most serious appearance after sub-FS stimuli was presented in the
41°C group. Therefore, 41°C treatment was used in the subsequent
experiment to evaluate the effect of the intervention. The drugs were
slowly injected into the lateral ventricle (3.5 mm caudal to and 1.5 mm left
of bregma, 3 mm in depth) via a microinjection needle connected to a
micro4 controller (World Precision Instruments, USA). The intracerebroven-
tricular injection lasted for 2 min. After an additional 2 min, the needle was
slowly removed.
To evaluate the effects of TSP-1, siRNA targeting TSP-1 [78] was

synthesized by Tuoran Biological Technology (Shanghai, China) with the
sequences: 5’-GCCAGUAUGUUUACAACGUdTdT-3’ and 5’-ACGUUGUAAA-
CAUACUGGCdTdT-3’; negative control (siRNA-NC), 5’-UUCUCCGAACGUGU-
CACGUTT-3’, and 5’-ACGUGACACGUUCGGAGAATT-3’.
Twenty-four hours before sub-FS stimuli, the siRNA group was treated

with anti-TSP-1 siRNA (0.2 μl, 0.5 μg/μl), whereas the control group was
treated with negative siRNA (0.2 μl, 0.5 μg/μl). This intervention was
performed every 48 h.
To suppress TGF-β1 activation by TSP-1, 30 min before sub-FS stimulus,

LSKL (0.5 μl, 20 μg/μl) was injected into the lateral ventricle once every day
[17] in the LSKL group, whereas saline (0.5 μl) was used in the
control group.

Glutamate concentration detection
After sub-FS stimuli, glutamate concentrations were detected by high-
performance liquid chromatography (HPLC, Agilent Technologies, USA)
equipped with a fluorescence detector [28]. After rat decapitation, the EC
and CA3 were rapidly dissected on ice, mixed with 50% methyl alcohol
(methyl alcohol: H2O= 1:1, 19 mL/g), then frozen and thawed four times
with liquid nitrogen. After sufficient fragmentation of the cells and
centrifuging (14 000 rpm, 4°C, 10 min), the supernates were diluted five
times and filtered using a 0.45 and 0.22 μm microporous filter
membrane. The standard curve was obtained (y= 531.69x - 17.623,
R2= 0.9999) with the glutamate standard (B21916, shyuanye, China). The
diluent, AQC (A131410, Alladin, China) and sodium borate buffer
(S885293, Macklin, China) were mixed in a ratio of 10:20:70, and
underwent derivatization at 55°C for 10 min. After adding 400 μl of
filtered water, we analyzed the samples using a Supersil ODS2 C18
column (200 mm × 4.6 mm, 5 µm, Elite Analytical Instrument Co., Ltd.,
China) at 30°C with 246 nm (excitation wavelength) and 399 nm
(emission wavelength). The samples were separated by gradient eluent
at a flow rate of 1 mL/min by the mobile phase which included eluent A
(90 mM sodium acetate, 93% ultrapure and 7% acetonitrile, pH = 5.3)
and eluent B (methanol:acetonitrile:water = 20:60:20). The gradient
separation procedure was as follows: 0-5 min, 2% B; 6–10 min, 5% B; 11-
12 min, 0% B; and 13–20 min, 100% B. The data were analyzed using
Origin 9.0 and Prism 9.0.

Electroencephalographic (EEG) testing
EEG was recorded after sub-FS. After rats were anesthetized and
immobilized, the stainless steel electrodes (0.5 mm tips uncoated; A.M.
Systems, USA) were implanted into the left cortex [anteroposterior (AP),
-2.3 mm; mediolateral (ML), -2.1 mm; dorsoventral (DV), -1.3 mm] for EEG
recording in accordance with brain atlases (the third section) [79].
Subsequently, when the pups woke, the EEG of each animal was
continuously recorded for 3 h using a Powerlab device (1-80 Hz, AD
Instruments, Australia). We calculated the PSD value in beta frequency
bands. For normalizing the PSD value of EEG power, we analyzed the
proportion of the beta frequency band in the five frequency bands
(delta: 1-4 Hz; theta :4-8 Hz; alpha: 8-13 Hz; beta: 13-30 Hz; gamma: 30-
80 Hz [80]) for each pup. The data were analyzed using Origin 9.0 and
Prism 9.0.

Statistical analyses
Rat numbers in each group were determined using the balanced one-way
analysis of variance (ANOVA) based on our pre-experiment. In this study, all
values are presented as mean ± standard error of the mean (SEM). All
statistical analyses were performed with SPSS version 25.0 (SPSS Inc., USA).
Statistical tests were justified, and the data met normal distribution and
variance homogeneity. One-way ANOVA and an unpaired t-test were used
to evaluate the differences between groups, the least significance
difference (LSD) t-test was performed as a post-hoc test. In all analyses,
p < 0.05 was considered to indicate statistical significance.
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