
PERSPECTIVE OPEN

Clearance of apoptotic cells by neutrophils in inflammation
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When a cell dies of apoptosis, it is eliminated either by neighbouring cells or by attracted professional phagocytes. Although it was
generally believed that neutrophils also have the ability to perform efferocytosis, their contribution to the clearance of apoptotic
cells was considered less important compared with macrophages. Therefore, this ability of neutrophils remained unexplored for a
long time. Over the past decade, it has been shown that during inflammation, neutrophils contribute significantly to the clearance
of apoptotic neutrophils that accumulate in large numbers at the site of tissue damage. This “neutrophil cannibalism” is
accompanied by inhibition of pro-inflammatory activities of these cells, such as respiratory burst and formation of neutrophil
extracellular traps (NETs). Furthermore, efferocytosing neutrophils secrete anti-inflammatory mediators and mitogens including
hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), vascular endothelial growth factors (VEGF), and transforming
growth factor beta (TGFβ). Thus, efferocytosis by neutrophils is involved in resolution of inflammation. Recent research indicates
that it plays also a role in cancer. Many different solid tumours contain aggregates of dead tumour cells that have undergone
spontaneous apoptosis. Their extent correlates with poor clinical outcome in most cancer types. These clusters of apoptotic tumour
cells are strongly infiltrated by tumour-associated neutrophils (TANs) that acquired an anti-inflammatory and pro-resolving
polarization state. This review summarizes the potential consequences discussed in the current literature. Although the picture of
the role of efferocytosis by neutrophils in inflammation and cancer is becoming clearer, many questions are still unexplored.

Cell Death Discovery           (2024) 10:26 ; https://doi.org/10.1038/s41420-024-01809-7

FACTS

● Apoptotic cells release “find-me” signals which attract
predominantly neutrophils.

● Neutrophils accumulate in areas of tissue damage and
apoptotic tumour cells.

● After engulfment of apoptotic cells, neutrophils block
respiratory burst and NETosis.

● Efferocytosing neutrophils secrete a variety of soluble
mediators such as cytokines, chemokines, and mitogens
which create a pro-resolving and tumorigenic
microenvironment.

OPEN QUESTIONS

● Several of the molecules known to be involved in the process
of efferocytosis in macrophages are also expressed in
neutrophils, but for many of them there is still a lack of
evidence that they also fulfil this function there.

● The exact mechanism by which neutrophils adopt a regen-
erative and tumourigenic phenotype after the uptake of
apoptotic cells is still largely unexplored.

NEUTROPHILS IN INFLAMMATION
Neutrophils represent the first line of cellular innate immune
response to infection and tissue damage. Recent evidence indicate
that this short-lived myeloid cell population exhibits a great
phenotypic and functional diversity [1]. It not only plays an
important role in triggering inflammation in reaction to pathogens,
but also contributes to its subsequent resolution after their
clearance. Neutrophils accumulate quickly at the site of tissue
damage through a multi-step process called “neutrophil swarming”
[2]. Damage-associated molecular patterns (DAMPs) activate resi-
dent cells to release short-range chemoattractants for neutrophils.
Pioneer neutrophils from around the damage site migrate to the
tissue injury within minutes. The contact with pathogen-associated
molecular patterns (PAMPs) stimulates them to deploy a plethora of
antimicrobial weapons [3]. They form neutrophil extracellular traps
(NETs) to entrap invading pathogens. They release a variety of
antimicrobial and pro-inflammatory molecules from their granules
and produce reactive oxygen species to kill bacteria. Finally, they
clear pathogens by phagocytosis. Neutrophil-derived leukotriene B4
(LTB4) enhances the radius of recruitment of further neutrophils
from distant tissue sites [2]. Notably, neutrophils also support the
resolution of inflammation right from the start. They release anti-
inflammatory, resolving and angiogenic mediators such as IL-10,
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transforming growth factor β (TGFβ), lipoxin 4A, resolvins, protectins,
defensins, and vascular endothelial growth factor (VEGF) [4].
Neutrophils that have engulfed pathogens die through
phagocytosis-induced apoptosis [5]. Cytokine receptors such as IL-
1R on their surface, which are no longer functional, scavenge their
pro-inflammatory ligands from the microenvironment [6]. Neigh-
bourhood macrophages that phagocytose dying neutrophils adopt
an anti-inflammatory, resolving and reparative M2-like phenotype
[7–9]. Such resolving mechanisms begin to gain the upper hand as
soon as the infection is pushed back. The accumulation of
neutrophils at the site of tissue damage thus enables the
restructuring of the extracellular matrix, the formation of dense
aggregates that seal the wound tightly, and finally the initiation of
tissue repair processes. It must be emphasized that signals of tissue
damage are sufficient to trigger the attraction of neutrophils, which
accordingly can also be observed in response to sterile injury
without pathogens [3].

EFFEROCYTOSIS BY NEUTROPHILS
Especially during the early phase of neutrophil swarming, the number
of resident macrophages is still very low and probably insufficient to
clear all apoptotic neutrophils. Kristina Rydell-Törmänen showed in a
mouse model of sterile lung inflammation that almost 50% of
neutrophils at the side of injury have phagosomes that contained
material from other neutrophils [10]. The authors termed this process
“neutrophil cannibalism”. The efferocytotic capacity of neutrophils is
similar to that of blood derived DCs, but clearly lower as compared to

blood-derived macrophages [11]. It increases in response to pro-
inflammatory cytokines such as TNF-α, interferon-gamma (IFN-γ) and
granulocyte-macrophage colony-stimulating factor (GM-CSF) and to
ligands of TLR2 (Malp2, Pam3CSK4), TLR4 (LPS), TLR7/TLR8 (R848), and
TLR9 (ODN 2006) [11, 12]. The efferocytotic ability of neutrophils is
not exclusively limited to apoptotic conspecifics but also includes
remnants of other cell types.

Detection of apoptotic cells
Apoptotic cells in general release various “find-me” signals that
specifically attract neutrophils, including CCL3, CXCL1, CXCL5,
CXCL8/IL8, tyrosyl tRNA synthetase (TyrRS) and endothelial mono-
cyte activating polypeptide II (EMAPII) [13–15] (Fig. 1). This suggests
that neutrophils may be intentionally recruited to help clear
apoptotic cell debris. It has to be noted that apoptotic cells release
also lactoferrin, which inhibits neutrophil migration [16]. However,
this “keep-out” signal seems not to be sufficient to antagonize other
chemoattractants in vivo. Garg and co-workers induced apoptotic
cell death in a lung carcinoma cell line before injecting them
intradermally into the mice ear pinna [17]. Cells exposed to the
immunogenic apoptosis inducer mitoxantrone stimulated rapid
recruitment of neutrophils, which in comparison to other leucocyte
subsets constituted the predominant immune cell population
accumulating at sites of apoptosis. Similarly, neutrophils accumulate
at sites of apoptotic hepatocytes of patients with hepatocellular
carcinoma [18].
The predominant “eat me” signal on the surface of apoptotic cells

is phosphatidylserine (PS). There is an extensive literature on the

Fig. 1 Efferocytosis by neutrophils. In response to sterile injury or local infection, neutrophils migrate to the site of tissue damage in a
multistep process termed “neutrophils swarming”. Neutrophils undergo apoptosis after phagocytosis of invading pathogens and contribute to
local apoptotic cells. Apoptotic cells release “keep-out” signals as well as “find-me” signals, many of which are strong chemoattractants for
neutrophils. Neutrophils detect “find-me” signals on the surface of apoptotic cells and engulf the cell remains. This leads to a blockade of
signalling pathways responsible for respiratory burst and NETosis. Furthermore, efferocytosing neutrophils expose specific cell surface
activation markers and secrete a variety of soluble mediators.
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different mechanisms that macrophages use to detect PS-positive
cell debris (reviewed in [8, 19]). They include directly binding
receptors such as adhesion G protein-coupled receptor B1
(ADGRB1), stabilin-2 or T-cell membrane protein 4 (TIM-4).
Furthermore, PS is also detected indirectly via soluble “bridging
factors” like growth-arrest-specific gene-6 (GAS6) or Milk fat
globule-EGF factor 8 protein (MFG-E8), which bind to PS and are
then themselves detected by specific receptors on the macrophage.
The MFG-E8 receptor αVβ3 integrin is also highly expressed in
neutrophils [20]. However, neutrophils do not express any direct PS
receptor (ADGRB1, stabilin-2, or TIM-4) or any receptor of GAS6.
Besides PS, there are also other ‘eat-me’ signals exposed on
apoptotic cells, including calreticulin, annexin A1, thrombospondin
1 binding sites, and complement proteins C1q or C3b binding sites
[21]. They are recognized by CD91, formyl peptide receptor 2, CD47,
CD93, and CD35, respectively. All of them are highly expressed in
neutrophils [22–26]. However, their functional role in efferocytosis
by these cells is still unexplored.

Clearance of apoptotic cells
The subsequent events in efferocytosis comprise the engulfment
of apoptotic cellular corpses, followed by the formation and
maturation of the phagosome, culminating with the degradation
of the cargo within the phagolysosomal compartment. The
molecular mechanisms of this tightly regulated multi-step process
have been investigated in detail in macrophages (reviewed in
[27]). After activation of “eat-me” receptors, the submembranous
actin cortex undergoes specific rearrangements which activates
the Rho family of small GTPase RAC1 and promotes the formation
of a phagosome [27, 28]. The processing of engulfed cellular cargo
requires a non-canonical LC3-asscociated phagocytosis (LAP) [29].
LAP represents a specialized mechanism that utilizes components
of the autophagic machinery to enhance the degradation of
phagocytosed material in an immunologically silent manner [30].
LAP is triggered by the recruitment of LC3 (microtubule-associated
protein 1A/1B-light chain 3) proteins to the single-membrane
phagosomes (or LAPosome). For that, PI3KC3 complex needs to be
assembled, which consists of Rubicon, vps34, beclin-1, and vps15.
This complex converts the LAPosome-bound phosphatidylinositol
into the signalling lipid phosphatidylinositol 3-phosphate (PI3P)
[27, 28]. The PI3P-coated LAPosome stabilizes the NOX2 complex
which is responsible for ROS generation, leading to LC3 ligation
machinery activation and LC3-II recruitment to the LAPosome [31].
This last step facilitates the LAPosme-lysosome fusion, resulting in
a rapid degradation of the cargo. Recently, Prajsnar et al. identified
the LAP machinery in neutrophils, but unfortunately its activation
upon efferocytosis of apoptotic cells has not been investigated
[32].
Cunha et al. noted that engulfment of apoptotic corpses per se

does not result in immunosuppression, but it is rather the
subsequent accumulation of digested products which induces
immune tolerance [33]. The phagocytes overload with lipids and
cholesterol stimulates the activation of nuclear steroid receptors
from the liver X receptors (LXRs) and peroxisome proliferator-
activated receptors (PPARs) families [34, 35]. Apart from mediating
lipid homoeostasis, LXRs and PPARs induce the clearance of
apoptotic cells via expression of phagocytic receptors and
opsonins, resembling a positive feedback loop. The anti-
inflammatory effects attributed to efferocytosis are also mediated
by these pathways, by promoting upregulation of the anti-
inflammatory cytokines TGFβ and IL-10 whereas the pro-
inflammatory cytokines TNFα, IL-1β, and IL-6 are downregulated
[19]. A similar response has been observed in neutrophils that had
phagocytosed apoptotic neutrophils [11, 36]. They showed an
elevated expression of anti-inflammatory TGFβ and of neutrophil
chemoattractants CXCL1 and CXCL8/IL8, and a lower secretion of
pro-inflammatory cytokines TNFα and CXCL10/IP-10. Furthermore,
they downregulate respiratory burst due to a reduced

phosphorylation of p38 MAPK and PKCδ, the kinases involved in
NADPH oxidase activation [37]. Incubation with anti-TGFβ1
antibodies restores respiratory burst [36]. The inhibitory effect of
neutrophil cannibalism on respiratory burst is exploited by
invading bacteria to their own advantage. For instance, Leishma-
nia major-infected neutrophils acquire enhanced capacity to
engulf apoptotic cells. The uptake of apoptotic cells inhibits
respiratory burst, protecting thereby the bacteria [37]. Manfredi
et al. found that MPO and elastase are translocated into
phagolysosomes during the process of efferocytosis to facilitate
cargo degradation, making these enzymes unavailable for
participating in chromatin decondensation – a prerequisite for
NET formation [38]. Thus, neutrophilic efferocytosis impedes
NETosis and primes these cells towards a non-inflammatory and
resolving phenotype. We could demonstrate recently that
neutrophils engulf apoptotic cell-derived extracellular vesicles
(aEV) from hepatocytes and several cancer cell lines [39]. This is
associated with an increase of cell surface activation markers
CD11b, CD16, CD45, CD66b, CD62L, and secretion of various
mitogens, including hepatocyte growth factor (HGF), fibroblast
growth factor 2 (FGF2), VEGF, and transforming growth factor
alpha (TGFα). Neutrophils express HGF mRNA and store the active
protein in secretory vesicles and gelatinase granules [40]. The
release of HGF and other mitogens in response to aEV results in an
elevated metabolic activity and proliferation of co-cultured
hepatocytes [39]. This indicates that efferocytosing neutrophils
induce tissue regeneration in response to an uptake of apoptotic
cells. Strong corroboration for this hypothesis comes from an
observation in patients undergoing partial hepatectomy, a surgical
procedure that results in massive local apoptosis at the resection
margins of the remaining liver lobes [39]. Free HGF as well as
neutrophil-bound HGF in the circulation of these patients
correlate with the degree of apoptosis. Notably, higher levels of
HGF are associated with improved liver regeneration.

NEUTROPHILS IN CANCER
Fridlender et al. identified two distinct populations of tumour-
associated neutrophils (TANs): anti-tumourigenic N1 and pro-
tumourigenic N2 TANs [41]. The latter type prevails in many
human cancers [42]. It releases a variety of cytokines, chemokines,
and growth factors that promote tumour cell survival and
proliferation, such as prostaglandin E2 (PGE2), CCL17,
interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), VEGF,
and epidermal growth factor (EGF) (Fig. 2) [43]. N2 TANs also
secrete collagenase (MMP8) and gelatinase B (MMP9), which
facilitate the invasion of tumour cells by remodelling the
extracellular matrix [44]. In addition, their arginase-1 (ARG1)
degrades extracellular arginine, which dampens the proliferation
of T cells [45]. Thus, N2 TANs resemble in many respects to
neutrophils after uptake of apoptotic cells.
Spontaneous apoptosis of single tumour cells can be observed

in many treatment-naive patients. It was shown already more than
25 years ago in prostate cancer that an elevated frequency of
tumour cell apoptosis correlates with a higher 5-years progression
rate [46]. Similarly, colorectal cancer patients with a higher
number of apoptotic cancer cells have a worse overall survival
[47]. Table 1 summarizes numerous studies investigating the
relationship between cancer apoptosis rate and clinical outcome
in 18 different cancer types. A positive association between
apoptosis and poor prognosis was found in most cancers types.
Only thyroid carcinoma, neuroblastoma, and glioblastoma showed
an inverse relationship. Thus, tumour cell apoptosis promotes the
progression of remaining viable tumour cells. Apoptotic cells
release the growth factor FGF-β, PGE2, and VEGF, which have a
direct promoting effect on the proliferation of adjacent tumour
cells (recently reviewed in [48]). However, there is strong evidence
that the pro-tumourigenic effect of apoptosis is mainly mediated
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by the phagocyte response during apoptotic cell clearance [49].
Most studies focussed on macrophages, whereas the contribution
of efferocytosing neutrophils to tumour growth is much less
investigated. Dead tumour cells are not equally distributed
throughout the tumour tissue. Many solid cancers show dense
cribriform nests or pseudoluminal structures with central aggre-
gates of disintegrated dead tumour cells [50]. We found recently
in colorectal cancer patients that such massive dead cell
accumulations stain positive for caspase-cleaved cytokeratin 18
and CXCL8/IL-8, indicating that they derive from apoptotic tumour
cells, which release a neutrophil chemoattractant (Fig. 2) [15].
Accordingly, the great majority of aggregates is highly infiltrated
with neutrophils and anti-inflammatory polarized TAMs. Blocking
the apoptotic cell-derived CXCL8/IL-8 prevents neutrophil-induced
anti-inflammatory macrophage polarization. These data fit to the
above-proposed concept that neutrophils play a major role in
efferocytosis in cases of massive accumulations of apoptotic dead
cell remnants.
Interestingly, also activation of LAP promotes tumour immune

tolerance. LAP-sufficient tumour animal models revealed accumu-
lation of M2 macrophages which support the pro-tumorigenic
effects of tumour-associated macrophages (TAMs) [33]. Conse-
quently, T cell differentiation is skewed towards regulatory T cells

that support inflammation resolution [19, 33]. Indeed, LAP-
deficient TAMs trigger STING-mediated type I interferon responses
inducing a pro-inflammatory gene expression and increasing
CD8+ T cell function. Remarkably, the overexpression of Rubicon
in cancer patients, which is required for LAP but not autophagy,
have been suggested as a potential poor prognostic marker [51].
In line with that, evidence suggest that specifically targeting LAP
within the tumour microenvironment through pharmaceutical
means promotes an anti-tumour response in a T cell-dependent
manner [33]. Hence, development of therapies targeting
efferocytosis-related pathways, in macrophages as well as
neutrophils, could present a promising approach for cancer
treatment.
Neutrophils support tumour growth and spreading not only in

the tissue but also in the blood stream. They form heterologous
clusters with circulating tumour cells (CTCs) which prolongs their
half-life (Fig. 2) [52]. CTC-neutrophils clusters support cell cycle
progression, proliferation and survival of tumour cells resulting in
extended metastatic potential [53]. Patients with CTC–neutrophil
clusters have poorer outcomes compared to those with homo-
typic CTC clusters [54]. CTC-neutrophil clusters may also include
NETs, which promote adhesion and extravasation of CTCs at the
site of metastasis [55, 56]. However, sequencing analysis of

Fig. 2 Efferocytosis by neutrophils in cancer. Spontaneous or therapy-induced tumour apoptosis leads to attraction of tumour-associated
neutrophils (TANs). They are exposed to tumour-derived factors (dotted line) and engulf apoptotic cell remains. Both polarizes efferocytosing
neutrophils towards an anti-inflammatory and pro-resolving N2-like phenotype. These TANs secrete numerous soluble mediators, which
modulate tumour cells (Tu), tumour-associated macrophages (TAMs), tumour infiltrating lymphocytes (TILs), endothelial cells (ECs) and the
extracellular matrix (ECM) in a pro-tumourigenic way. In addition, cancer may intravasate into adjacent vessels resulting in circulating tumour
cells (CTCs). The blood stream is a harsh environment and many of CTCs have a short half-life. CTCs may form clusters with high abundant
blood cells such as platelets or neutrophils (polymorphonuclear leucocytes or PMNs). They form NETs protecting CTCs and supporting
extravasation and metastasis. Apoptotic CTCs within clusters are expected to bind neutrophils for efferocytosis, which would further support
CTC survival and proliferation. However, experimental proof for this role of efferocytosis by neutrophils is still pending.
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CTC-associated neutrophils revealed a N2-like gene expression
profile, indicating that not all neutrophils in the clusters form NETs
[41]. N2 neutrophils offer CTCs protection from immune surveil-
lance by inhibition of CD8+ T cells NK cells [57]. The blood-stream
is a harsh environment for CTCs and single tumour cells may die
quickly. They may be efferocytosed by adjacent neutrophils in the
cluster, leading to mitogenic support of remaining tumour cell in
the cluster. In summary, anti-inflammatory neutrophils support
tumour growth and spreading in a variety of ways. Although there
is growing evidence that efferocytosis contributes to tumorigenic

TAN polarization, further research is needed to confirm this
concept.

CONCLUSION AND OUTLOOK
There is ample evidence that efferocytosis by neutrophils plays an
important role in the response to dead cell accumulation. During
inflammation, they contribute to the clearance of aggregates of
apoptotic neutrophils. In cancer, they participate in the removal of
dead tumour cell aggregates. The neutrophil response after

Table 1. Correlative assessment of spontaneous apoptosis in situ with cancer patients’ outcome in several tumour types.

Tumour type Method to detect apoptosis OSa Comment Refs.

Non-Hodgkin’s lymphoma TUNEL ↓ High grade vs low grade [59]

TUNEL+H&E ↓ High versus low tumour cell turnover [60]

Breast carcinoma IHC/Caspase-3 ↓ OE is 75% of invasive BC [61]

H&E ↓* *Recurrence-free survival [62]

TUNEL+H&E ↓ >0.50% (shorter OS) [63]

FC+H&E ↓ [62]

IHC/Cleaved caspase-3 ↓ [64]

Ovarian carcinoma IHC/HtrA20 ↑ Increased response to chemotherapy [65]

ELISA (Smac/DIABLO) ↑ Serum concentrations [66]

FC+ IHC (Caspase-3) ↑ Metastasis [67]

IHC /Cleaved caspase-3 ↓ [68]

TUNEL ↓ ovarian serous carcinoma [69]

Cervical cancer IHC/Cleaved caspase-3 ↓ [68]

Colorectal carcinoma IHC/Cleaved caspase-3 ↓ [68]

IHC (M30) ↓ Higher turnover tumours [47]

TUNEL+H&E ↓ [70]

TUNEL+H&E ↑ [71]

Lung carcinoma TUNEL+H&E ↓ Non-small cell lung carcinoma [72]

TUNEL ↓ Non-small cell lung carcinoma [73]

Gastric carcinoma IHC /Cleaved caspase-3 ↓ [68]

TUNEL ↑ advanced gastric carcinoma [74]

Prostate carcinoma H&E ↓ [75]

H&E ↓* *Actuarial progression rate at 5 years [46]

TUNEL ↓* *Disease recurrence [76]

Thyroid carcinoma TUNEL ↑ papillary thyroid carcinoma (PTC) [77]

Bladder carcinoma H&E ↓ [78]

IHC ↓ Invasive transitional cell carcinoma [79]

Pancreatic carcinoma TUNEL ↓ Higher AI in undifferentiated vs. differentiated cancers [80]

TUNEL ↓ [81]

Salivary glands TUNEL ↓ [77]

Hepatocellular carcinoma H&E ↑ low growth index [82]

H&E ↓* *Disease-free survival [83]

Neuroblastoma TUNEL ↑ [84]

Mesothelioma TUNEL+H&E ↓ [85]

TUNEL ↓ Pleural mesothelioma [86]

Tongue carcinoma TUNEL ↓ Early stage squamous carcinoma [87]

Laryngeal carcinoma TUNEL ↓ Squamous cell carcinoma [88]

Glioblastoma TUNEL+H&E ↑ [89]

Patient-derived histological samples were analyzed by using either DNA end-labelling techniques (TUNEL), plain morphology combined with hematoxylin and
eosin (H&E), immunohistochemistry (IHC), flow cytometry (FC), or enzyme-linked immunosorbent assay (ELISA). Clinical studies in which patients were treated
before assessment were excluded from the analysis.
aOverall survival (if not otherwise indicated in the comments field) at increased apoptosis.
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engulfing apoptotic cells contributes to the resolution of inflamma-
tion and tissue regeneration. However, in the case of cancer, this can
be harmful. A meta-analysis of expression signatures from more
than 18,000 human tumours found that neutrophils are the tumour-
associated cell type linked with the worst prognosis [58].
Neutrophilic efferocytosis might contribute to this situation. As
professional phagocytes, neutrophils have the full machinery for
engulfment and express many receptors for the detection and
binding of dead cells. However, it is also still unclear whether
neutrophils distinguish between the different types of cell death
from which their target cells have died. Although an increasingly
clear picture is emerging on efferocytosis by neutrophils, there are
still many unanswered questions awaiting exploration.

DATA AVAILABILITY
Data sharing not applicable to this article as no datasets were generated or analyzed
during the current study.
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