
ARTICLE OPEN

Inhibition of NRF2 enhances the acute myeloid leukemia cell
death induced by venetoclax via the ferroptosis pathway
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Venetoclax, an inhibitor that selectively targets B cell lymphoma-2 (BCL-2) that has been approved for treating adult acute myeloid
leukemia (AML) in combination with hypomethylating agents. However, its short duration of response and emergence of resistance
are significant issues. In this study, we found that the sensitivity of AML cells to venetoclax was considerably enhanced by ML385,
an inhibitor of the ferroptosis factor nuclear transcription factor erythroid 2-related factor 2 (NRF2). Using AML samples, we verified
that NRF2 and its target gene ferritin heavy chain 1 (FTH1) were highly expressed in patients with AML and correlated with poor
prognosis. Downregulation of NRF2 could inhibit FTH1 expression and significantly enhance the venetoclax-induced labile iron pool
and lipid peroxidation. By contrast, NRF2 overexpression or administration of the reactive oxygen species inhibitor N-acetylcysteine
and vitamin E could effectively suppress the anti-AML effects of ML385+venetoclax. Furthermore, the ferroptosis inducer erastin
increased the anti-AML effects of venetoclax. Our study demonstrated that NRF2 inhibition could enhance the AML cell death
induced by venetoclax via the ferroptosis pathway. Thus, the combination of ML385 with venetoclax may offer a favorable strategy
for AML treatment.
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INTRODUCTION
Acute myeloid leukemia (AML) is a malignancy that arises from the
stem cell precursors of the lineage of myeloid cells. Chromosomal
abnormalities and/or gene mutations usually drive the differentia-
tion failure and proliferation advantage of hematopoietic pre-
cursors, subsequently impeding normal hematopoiesis [1]. With
the substantially enhanced understanding of AML pathogenesis, B
cell lymphoma-2 (BCL-2), FMS-like tyrosine kinase 3 (FLT3),
isocitrate dehydrogenases types 1 and 2 (IDH1/2) inhibitors, and
other targeted therapeutic drugs have found utility in the clinical
management of patients with AML and special genetic alterations
[2–7]. However, the long-term overall survival (OS) of high-risk
patients remains unsatisfactory; in particular, the 5-year survival
rate of elderly patients is less than 20% [3, 4]. Thus, developing
new therapeutics for AML is imperative.
Venetoclax, the first and only US Food and Drug Administration

(FDA)-approved BCL-2 selective inhibitor, competes with Bim to
bind to BCL-2, disrupting the formation of the BCL-2-Bim complex
and activating the mitochondrial apoptosis pathway [8]. The FDA
granted approval to Venetoclax for the treatment of patients with
chronic lymphocytic leukemia and older AML. Notably, in patients
with newly diagnosed AML are elderly or have complications
unsuitable for induction chemotherapy, BCL-2 inhibitors com-
bined with low-dose cytarabine (Ara-C) or hypomethylating
agents (HMAs), such as azacitidine and decitabine, can improve

the survival of older or unfit patients. However, resistance to BCL-2
inhibitors in AML is a major cause of treatment failure [9, 10].
Therefore, the mechanism underlying the resistance to these
inhibitors must be studied, and new synergistic treatments should
be developed.
Nuclear transcription factor erythroid 2-related factor 2 (NRF2) is

a crucial regulatory factor of the antioxidant response, and its
constitutive activation can promote the occurrence of various
tumors and increase anti-tumor drug resistance [11, 12]. For
example, the expression of the oncogenes Myc, Braf, and Kras can
directly promote NRF2 transcription and initiate the antioxidant
program, reducing intracellular reactive oxygen species (ROS)
levels, enhancing cell protection and anabolism, and finally
promoting tumor progression and drug resistance [13, 14]. In
addition, epigenetic modifications and mutations in NRF2 and
Kelch-like ECH-associated protein 1 (Keap1) can activate NRF2,
which confers drug resistance [15–19]. Ectopic expression of NRF2
can clear ROS by up-regulating antioxidant enzymes [for example,
glutamate-cysteine ligase catalytic subunit (GCLC), heme
oxygenase-1 and NADH quinone oxidoreductase 1] and help
cancer cells escape death; by contrast, downregulating NRF2
expression in tumor cells can promote the killing induced by
therapeutic drugs [20]. Therefore, targeted inhibition of NRF2 has
potential in tumor treatment, but the role of NRF2 inhibitors in
AML treatment is unclear.
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Ferroptosis is an iron- and ROS-dependent form of cell death,
leading to the massive buildup of lipid ROS [21]. In recent studies,
targeting ferroptosis opens new avenues for the development of
anti-cancer therapy. Many critical ferroptosis proteins, such as
solute carrier family 7 member 11 (SLC7A11, the subunit of the
cystine/glutamate antiporter xCT), ferritin heavy chain 1 (FTH1, the
heavy chains of ferritin), and GCLC/ glutamate–cysteine ligase
modifier subunit (GCLM, which control the level of GSH), are well-
defined NRF2 target genes [22–25]. NRF2 is known to be a
negative regulator of ferroptosis [25]. However, its underlying
mechanisms of ferroptotic regulation in AML are not fully
understood.
Our previous study found that promyelocytic leukemia (PML)/

retinoic acid receptor-alpha (RARα) can maintain the nuclear
expression levels of NRF2 by inhibiting the degradation rate of the
NRF2 protein, and inhibition of the NRF2 signaling pathway makes
acute promyelocytic leukemia (APL) cells more sensitive to arsenic
trioxide (ATO) and Ara-C [26]. Therefore, targeted inhibition of
NRF2 has the potential to enhance the sensitivity of AML cells to
chemotherapeutic agents and even other targeted therapeutic
agents. The mechanism of venetoclax-induced cell death also
involves the generation of free radicals, inducing ROS accumula-
tion and glutathione depletion [27, 28]. Thus, the combination of
an NRF2 inhibitor with venetoclax may be an efficient way to
enhance leukemia inhibition in AML.

Here, we explored the anti-leukemia efficiency of the
NRF2-specific inhibitor ML385 together with venetoclax in
AML cell lines and elucidated the mechanism of their synergistic
effects, which may be due to activation of the ferroptosis
pathway.

RESULTS
Overexpression of NRF2 is associated with poor prognosis for
patients with AML
We previously showed that NRF2 was overexpressed in APL [26]. In
this study, we examined the mRNA level of NRF2 in PBMCs from
patients with newly diagnosed AML (patients without APL).
Consistent with previous results, NRF2 expression was significantly
elevated compared with that in healthy individuals (HIs) and AML
patients who achieved complete remission (AML-CR; Fig. 1A).
Moreover, patients with high NRF2 expression had inferior survival
rates (cut-off value was calculated using X-tile software; Fig. 1B). To
determine whether NRF2 overexpression influences the survival of
AML cells, we treated five types of AML cell lines (MV411,
MOLM13, HL60, THP1, and NB4) with ML385, a specific inhibitor of
NRF2. We observed that ML385 could significantly inhibit the
growth of above cell lines in a dose-dependent manner (Fig. 1C).
The above results indicated that NRF2 activation was associated
with AML cell survival.

Fig. 1 NRF2 is highly expressed in AML patients and associated with poor prognosis. A Comparison of NRF2 expression by qRT-PCR. The
expression of NRF2 was examined in PBMCs from healthy donors (n= 16) and primary AML (n= 25) and AML-CR (n= 8) patients. ACTB was
used as a housekeeping gene for normalization. Each data point represents one patient sample. B Kaplan–Meier curves were plotted using
AML patients with high or low NRF2 expression (n= 39). C Viability of the AML cell lines MV411, MOLM13, HL60, THP1, and NB4 that were
treated with ML385 at corresponding concentrations for 48 h. Data are shown as the mean ± 95% CI. *P < 0.05, **P < 0.01, ***P < 0.001 (A, C:
one-way ANOVA with Bonferroni post hoc test).
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Inhibition of NRF2 enhances the sensitivity of AML cells to
venetoclax
We have previously shown that NRF2 inhibition boosts the
sensitivity of APL cells to ATO and Ara-C [26]. In this research, we
constructed an MV411 cell line that stably overexpressed NRF2
(Fig. S1) and further found that NRF2 overexpression made the cell
line resistant not only to ATO and Ara-C but also venetoclax
(Fig. 2A). By contrast, the NRF2 inhibitor ML385 could significantly
promote the sensitivity of MV411 cells to ATO, Ara-C, and
venetoclax (Fig. 2B). Notably, the apoptosis of MV411 cells induced
by ML385 combined with venetoclax was more significant than
that induced by the combination with ATO or Ara-C (Fig. 2C). In
addition, ML385 (10 μM) acted synergistically with venetoclax
(0.1 μM) to induce AML cell death (combinational index= 0.08417;
Fig. 2D and Supplementary Table 1). This synergistic effect was
further confirmed in two additional AML cell lines (Fig. S2). In

addition, the anti-AML effects of ML385+ venetoclax could be
inhibited by the ROS inhibitors N-acetylcysteine (NAC) and Vitamin
E (Fig. 2E).
The combination of venetoclax with HMAs has been demon-

strated to improve outcomes for older or unfit patients with AML
[9]. However, retrospective and prospective studies have shown
that combinations of venetoclax and HMAs are passive in relapsed
or refractory AML (R/R-AML) treatment [29–31]. Here, we
demonstrated that treatment with the combination of venetoclax
and ML385 induced similar (in MOLM13) or even increased levels
(in MV411) of cell death in AML cell lines, compared with
treatment with venetoclax and azacitidine or decitabine (Fig. S3).
These results indicated that the combination of ML385 and
venetoclax induced significantly greater cell death than treatment
with venetoclax and HMAs. Thus, this kind of combination may
have a potential in treating R/R-AML.

Fig. 2 Inhibition of NRF2 can enhance the sensitivity of AML cells to venetoclax. A The viability of MV411-LV-NRF2 and MV411-LV-NC cells
treated with venetoclax (0.1 μM), Ara-C (1 μM), or ATO (1 μM) for 48 h. B The viability and (C) apoptosis of MV411 cells treated with ML385
(10 μM) alone or in combination with venetoclax (0.1 μM), Ara-C (1 μM), or ATO (1 μM) for 48 h. D The viability of MV411 cells treated with
ML385 and venetoclax at different concentrations for 48 h. E Viability of MV411 cells pretreated with 5mM NAC or vitamin E for 4 h followed
by treatment with the combination of venetoclax (0.1 μM) and ML385 (10 μM) for 48 h. Experiments were performed in triplicate, and the
mean ± 95% CI from three independent experiments was plotted. Error bars indicate standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001
(A–C, E: one-way ANOVA with Bonferroni post hoc test).
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Overexpression of NRF2 enriches the ferroptosis pathway
NRF2 is involved in the oxidative stress reaction, but it also
participates in other signal transduction pathways. To better
understand the potential NRF2 regulatory mechanism in AML, we
analyzed transcriptome sequencing data from NB4 cells that
overexpressed NRF2 (NRF2-OE) and found that the differentially
expressed genes in NRF2-OE cells were enriched for the ferroptosis
pathway (Fig. 3A, B). Using the Gene Expression Profiling Interactive
Analysis (GEPIA) database, we found that the ferroptosis-related
genes FTH1, SLC7A11, G6PD, GCLC, GCLM, and PIK3CB were
associated with the prognosis of patients with AML (Fig. S4). In
addition, the expression of these genes was positively correlated
with NRF2 expression and dysregulated in NRF2-OE cells (Fig. 3C).
We then performed qPCR assays to verify the gene expression levels
of FTH1, SLC7A11, G6PD, GCLC, and GCLM in our AML cohorts. The
data demonstrated that five of these genes were overexpressed in
our AML samples, (Fig. 3D) but no significant difference was found
in PIK3CB expression (data not shown). High expression of FTH1
(cut-off values was calculated using X-tile software) was found to be
associated with poor prognosis for patients with AML (Fig. 3E),
thereby suggesting that NRF2/FTH1 was relevant to the occurrence
and progression of AML. Furthermore, the use of the MV411 cell line

that stably overexpressed NRF2 verified that NRF2 overexpression
could promote the expression of FTH1 and SLC7A11 (Fig. 3F). By
contrast, NRF2-siRNA or the NRF2-specific inhibitor ML385 could
inhibit the expression of FTH1 and SLC7A11 (Fig. 3G, H). These
results suggested that NRF2 could regulate FTH1 and SLC7A11
expression and was favorable for AML cell survival.

ML385 sensitizes AML cells to the cell death induced by
venetoclax via activation of the ferroptosis pathway
The above results indicated that ML385 may sensitize AML cells to
the cell death induced by venetoclax via activation of the
ferroptosis pathway. Thus, we further analyzed the cell death;
the levels of the intracellular labile iron pool; and the lipid
peroxidation of the AML cell lines MV411, MOLM13, and HL60
induced by the combination of ML385 and venetoclax. The results
demonstrated that the percentage of cell death for all three cell
lines increased with the simultaneous application of ML385 and
venetoclax. This result was accompanied with increased levels of
the intracellular labile iron pool and lipid ROS (Fig. 4). Similarly,
down-regulation of NRF2 expression by siRNA could promote an
increase in the labile iron pool, lipid ROS, and apoptosis induced
by venetoclax in MV411 cells (Fig. 5). These results suggested that

Fig. 3 Overexpression of NRF2 can enrich the ferroptosis pathway. A Volcano and (B) KEGG enrichment plots comparing the differential
expression of mRNAs in NB4-LV-NRF2 cells relative to NB4-LV-NC cells. C Intersection between AML prognostic genes and genes that are
highly correlated with NRF2 expression in the GEPIA database and differentially expressed genes in cells with NRF2 overexpression.
D Comparison of FTH1, SLC7A11, G6PD, GCLC, and GCLM expression in PBMCs from HIs (n= 8) compared with AML patients (n= 38).
E Kaplan–Meier curves were plotted using AML patients with high or low FTH1 expression (n= 39). F–H qRT–PCR analysis of NRF2, FTH1, and
SLC7A11 expression in MV411-LV-NRF2 or MV411 cells after knocking down NRF2 or MV411 cells treated with ML385 at corresponding
concentrations. Data are shown as the mean ± 95% CI. *P < 0.05, **P < 0.01, ***P < 0.001 (D, F: two-tailed unpaired Student’s t-tests; G, H one-
way ANOVA with Bonferroni post hoc test).
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the susceptibility of AML cells to venetoclax could be enhanced by
inhibiting NRF2 through activation of the ferroptosis pathway.

Ferroptosis inducer erastin enhanced the anti-AML effects of
venetoclax
Given that inhibition of NRF2 can raise the sensitivity of AML
cells to venetoclax through ferroptosis, we wondered if

ferroptosis inducers had the same effect. To validate this
hypothesis, we combined erastin, a cystine transporter inhibitor
that induces ferroptotic cell death, and venetoclax to treat
MV411 cells. We found that erastin could also promote the level
of the labile iron pool, lipid ROS, and apoptosis in MV411 cells
induced by venetoclax (Fig. 6A–C), and the combination of
erastin and venetoclax significantly inhibited the viability of

Fig. 4 ML385 promotes ferroptosis in AML cells induced by venetoclax. A The levels of the intracellular labile iron pool, B lipid ROS, and
C apoptosis of MV411 (left), MOLM13 (middle) and HL60 (right) cells treated with venetoclax (0.1 μM), ML385 (10 μM), or the combination of
venetoclax and ML385 for 48 h. Experiments were performed in triplicate, and data are shown as the mean ± 95% CI. ML ML385. Vene,
Venetoclax.
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MV411 cells (Fig. 6D). Thus, these results demonstrated that
erastin increased the susceptibility of AML cells to venetoclax,
which was similar to the effects of ML385.

DISCUSSION
In this work, we observed for the first time that the expression of
NRF2 was correlated with AML survival, and the sensitivity of AML
cells to venetoclax was considerably enhanced by the NRF2
inhibitor ML385.
The widespread utilization of venetoclax has introduced a new

challenge of resistant, while in patients with R/R-AML or high-risk
classification, venetoclax treatment showed no response [32, 33].
Developing venetoclax-based combination therapies is one
strategy for overcoming resistance and expand the scope of
agent application. Recent studies have shown that combining
venetoclax with small-molecule inhibitors (such as FLT3 inhibitors,
MCL-1 inhibitors, and cyclin-dependent kinase 9 inhibitors) has a
synergistic effect in the treatment of high-risk AML [34–37].
Notably, we found that the NRF2 inhibitor ML385 could
considerably improve the sensitivity of AML cells to venetoclax,
and this effect was better than that of venetoclax combined with
HMAs. This paradigm provides a highly attractive therapeutic
strategy for combining NRF2 inhibitors and venetoclax for the
treatment of AML. Mechanistically, NRF2 may make AML cells
more sensitive to BCL-2 inhibitors via activation of the ferroptosis
pathway.
NRF2 is an essential regulator of the cellular antioxidant

response; it can combine with antioxidant reaction elements in

DNA to regulate the expression of antioxidant proteins and
protect cells from oxidative stress damage [11, 38]. Constitutive
activation of NRF2 can promote the occurrence of various tumors
and increase tumor drug resistance [11, 12]. Thus, NRF2 inhibition
has remarkable potential in tumor treatment [39, 40]. Studies have
reported that the NRF2 signaling pathway is highly triggered in
AML [41–43], while NRF2 pathway inhibition improves the
sensitivity of AML cells to daunorubicin and Ara-C [43–46]. FTH1
and SLC7A11 are key genes in regulating ferroptosis. Recently, it
has been reported that NRF2 can inhibit ferroptosis by activating
the expression of FTH1 and SLC7A11, respectively, then inhibiting
the labile iron pool and promoting the synthesis of glutathione
[47–51]. Notably, Lei Feng et al. found that SLC7A11 deletion in
NRF2-OE KYSE 150 cell lines restored the lipid peroxidation levels
and cell death induced by radiotherapy [47]. In agreement with
prior findings, we found that the expression levels of NRF2 mRNA
and FTH1, SLC7A11 were drastically increased in samples from
patient with primary AML compared with those in HIs and patients
with AML-CR. Patients with a higher NRF2 expression level had a
lower survival rate compared to those with a lower NRF2
expression level. For the first time, we found that use of the
NRF2 antagonist ML385 (ML385 is an innovative and selective
NRF2 inhibitor that can specifically bind the Neh1 domain of NRF2,
inhibiting downstream target gene expression) could induce the
apoptosis of AML cells. More importantly, ML385 can significantly
and synergistically enhance the anti-AML effects of venetoclax.
Previously, NRF2 inhibitors such as valproic acid, ATRA, brusatol,
and luteolin have been reported to induce the apoptosis of AML
cells alone or in combination with other agents [46, 52–54]. As

Fig. 5 Inhibition of NRF2 promotes the ferroptosis induced by venetoclax in AML cells. A The levels of the intracellular labile iron pool,
B lipid ROS, and (C) apoptosis of MV411 cells after knocking down NRF2. Experiments were performed in triplicate, and the mean from three
independent experiments was plotted. Error bars indicate 95% CI. *P < 0.05, **P < 0.01, ***P < 0.001. A–C one-way ANOVA with Bonferroni post
hoc test).
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reported by Cheng C et al., combining Ara-C with brusatol
increases the sensitivity of AML cell lines to Ara-C; however, we
found more elevated cell death when combining ML385 with
venetoclax compared with Ara-C or ATO.
Mechanistically, we found that venetoclax treatment alone

induced the labile iron pool and lipid ROS; however, inhibition of
NRF2 expression suppressed FTH1 expression and greatly
augmented the venetoclax-induced labile iron pool and lipid
ROS. Our findings suggested that NRF2 might augment the
responsiveness of AML cells to BCL-2 inhibitors through activation
of the ferroptosis pathway. Additionally, the use of erastin, a
ferroptosis inducer, could also improve the sensitivity of AML cells
to venetoclax, which was similar to the effects of ML385. Although
venetoclax induces apoptosis in cancer cells by stimulating the
mitochondrial apoptosis pathway, other mechanisms could not be
ruled out. Ferroptosis is a novel programmed cell death pathway
that is dependent on iron and ROS. Indeed, significant advance-
ments in recent years have enhanced our comprehension of the
role of ferroptosis in the initiation and progression of various types
of tumors. However, the role of ferroptosis in AML is still not fully
understood. A previous study indicated that the administration of
low-dose erastin promoted the death of HL-60 cells induced by
Ara-C and doxorubicin [55]. Here, our data demonstrated that
erastin could enhance the anti-AML effects of venetoclax in MV4-
11 cells. Thus, targeting the ferroptosis pathway may be a
promising avenue for AML treatment, particularly in synergism
with other agents.
The results presented here are supportive but not conclusive, so

further investigations are warranted. First, the molecular mechan-
ism involved in the regulation of the ferroptosis pathway by NRF2

is not yet fully elucidated. Second, although the synergistic effect
of ML385 and venetoclax has been validated in vitro, the
synergistic effect in vivo remains to be experimentally confirmed.
Overall, we observed that inhibition of NRF2 boosted the

sensitivity of AML cells to BCL-2 inhibitors through the ferroptosis
pathway (Fig. 7). Thus, the combination of ML385 with venetoclax
may offer a favorable strategy for AML treatment.

MATERIALS AND METHODS
Clinical samples
Peripheral blood mononuclear cells (PBMCs) from 88 patients with de novo
AML and 25 HIs were analyzed in this study. The clinical information of
AML and HIs was described in our previous work [26, 56]. Prior consent was
obtained for all samples included in this study, and this study received
approval from the Ethics Committee of the Affiliated Hospitals of Jinan
University.

Cultured cells and inhibitors
The human AML cell lines MV4-11, MOLM13, HL60, THP-1, and NB4 were
grown in RPMI 1640 medium supplemented with 10% fetal bovine serum.
All cells were generated at 37 °C in a humidified atmosphere with 5% CO2.
Venetoclax and ML385 were procured from Selleck Chemicals (Shanghai,
China).

Generation of stable cell lines
To ectopically express NRF2, a lentivirus overexpressing NRF2 (LV-NRF2)
and a control virus (LV-NC) were obtained from OBiO Technology. The
MV4-11 cells were exposed to lentiviruses with a multiplicity of infection
(MOI) of 30. Stable pools were selected by treating with 5 μg/mL
puromycin for a duration of 5 days.

Fig. 6 Ferroptosis inducer Erastin enhanced the anti-AML effect of venetoclax. A The levels of intracellular the labile iron pool, (B) lipid ROS,
(C) apoptosis, and (D) cell viability of MV411 cells treated with venetoclax (0.1 μM), erastin (10 μM), or the combination of venetoclax and
erastin for 48 h. Experiments were performed in triplicate, and the mean from three independent experiments was plotted. Error bars indicate
95% CI. *P < 0.05, **P < 0.01, ***P < 0.001. (A–D: one-way ANOVA with Bonferroni post hoc test).
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RNA interference
The Neon Transfection System (Invitrogen, CA, USA) was employed to
transfect MV4-11 cells with 100 pmol of small interfering RNAs (siRNAs),
following the established protocol [26, 57]. The siRNAs were procured from
RiboBio (Guangzhou, China), with the siRNA sequences being provided in
Supplementary Table 2.

RNA extraction and Quantitative real-time PCR
Total RNA was extracted using TRIzol reagent (Invitrogen, CA, USA), and the
High-Capacity cDNA Reverse Transcription Kits (Applied Biosystems, CA, USA)
were employed to synthesize first-strand cDNA, following the manufacturer’s
instructions [58]. Quantitative real-time PCR (qRT-PCR) was performed using
SYBR Green and ACTB was used as an internal control. The primer sequences
can be found in Supplementary Table 3. The qRT-PCR cycling program
consisted of an initial step at 95 °C for 15min, followed by 40 cycles of
denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 30 s.

Calcein AM and C11-BODIPY staining
To evaluate the level of ferroptosis, target cells were cultured with Calcein
AM (1 μM, Abcam, MA, USA) or C11-BODIPY (2.5 μM, Abclonal, Wuhan,
China) according to the manufacturers’ instructions.

Apoptosis assays
After the respective treatments, cells were washed with chilled PBS.
Subsequently, they were stained using the Annexin V/PI Apoptosis Kit
(MultiSciences, Hangzhou, China). Flow cytometry analysis was conducted in
conformity with the manufacturer’s instructions to assess apoptosis levels.

Cell proliferation assays
The Cell Counting Kit-8 (CCK-8, Biosharp, China) was utilized to evaluate
cell viability, following the manufacturer’s instructions. Initially, AML cells
were seeded at a concentration of 5000 cells per well and cultured in RPMI
1640 medium supplemented with 10% FBS along with the corresponding
drugs for different time points. At the end of each experiment, the CCK-8
reagent was added to the wells. Following incubation at 37 °C for 2 h, the
absorbance of each well was measured at 450 nm using a microplate
reader. A blank control without cells was used to account for background
absorbance. After calculations, cell viability was normalized to the
respective controls. The combinational index for drug combinations

was calculated through CompuSyn software, and combinational index
values < 1 indicate drug synergy.

Statistical analysis
Data are presented as the mean ± 95% confidence intervals (CI). All
experiments were conducted with three or more biological replicates per
experimental group. Statistical analysis was performed using SPSS
22.0 software. The statistical significance of differences between groups
was assessed using the Student’s t test (unpaired and two-tailed) or one-
way ANOVA with Bonferroni post hoc test for multiple comparisons. A
significance level of less than 0.05 (P < 0.05) was considered statistically
significant. *P < 0.05, **P < 0.01, ***P < 0.001, and ns no significance.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author upon reasonable request.
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