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Neutrophils have both antimicrobial ability and pathogenic effect in the immune system, neutrophil extracellular traps (NETs)
formation is one of the representative behaviors of their dual role. NETs formation was triggered by pathogen-related components
and pathogen non-related proteins as cytokines to exert its effector functions. Recent studies indicate that the pathogenicity of
NETs contributed to several skin diseases such as psoriasis, Stevens-Johnson syndrome, toxic epidermal necrolysis, and neutrophilic
dermatosis. Especially in neutrophilic dermatosis, a heterogeneous group of inflammatory skin disorders characterized with sterile
neutrophilic infiltrate on dermis, NETs formation was reported as the way of participation of neutrophils in the pathogenesis of
these diseases. In this review, we describe the different processes of NETs formation, then summarized the most recent updates
about the pathogenesis of neutrophilic dermatosis and the participation of NETs, including pyoderma gangrenosum and PAPA
syndrome, Behçet syndrome, hidradenitis suppurativa, Sweet Syndrome, pustular dermatosis and other neutrophilic dermatosis.
Furthermore, we discuss the link between NETs formation and the development of neutrophilic dermatosis.
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FACTS

● Neutrophil extracellular traps have been reported in some skin
diseases.

● Aberrant neutrophil activation is crucial in the development of
neutrophilic dermatoses.

● Neutrophil extracellular traps play a crucial role in the
pathogenesis of neutrophilic dermatoses.

OPEN QUESTIONS

● How do neutrophils generate neutrophil extracellular traps?
● What role does neutrophils play in the pathogenesis of

neutrophilic dermatoses?
● Are neutrophil extracellular traps considered a pivotal factor in

the pathogenesis of neutrophilic dermatoses?
● What is the regulatory mechanism underlying the generation

of neutrophil extracellular traps in neutrophilic dermatoses?

INTRODUCTION
Neutrophils are the main innate immune effectors in human
defense system. In physiologic conditions, neutrophils exit in
peripheral blood as the first line of antimicrobial system [1]. After
septic or aseptic injury, abundant neutrophils released from the
bone marrow into the circulation and compromised tissue [2].
Lower neutrophil blood counts caused by impaired maturation of

neutrophil granulocytes lead to recurrent and life-threatening
infections beginning after birth [3], which indicate that neutrophils
play a vital role in human homeostasis. In other ways, however,
neutrophils can also initiate and exacerbate life-threatening
diseases like Stevens-Johnson syndrome and toxic epidermal
necrolysis [4], play the harmful role in human system. As a double-
edged sword for immune system, neutrophils have antimicrobial
ability and pathogenic effect after inappropriate activation.
Activated neutrophils work through several ways to exert their

effector functions, including phagocytosis, degranulation, and
neutrophil extracellular traps (NETs) formation [5]. The release of
NETs occurs through a cell death process named NETosis [6]. It can
be triggered by a variety of agents such as pathogens, cytokines,
pathogen-associated molecular pattern molecules, damage-
associated molecular patterns molecules, immune complexes [7].
In humans, two heterogenous groups of neutrophils have been
reported: typical polymorphonuclear neutrophils (PMNs) and low-
density granulocytes (LDGs) found in individuals suffering from
autoimmunity [8]. As LDGs reported with higher staining for
neutrophil elastase (NE) and lower staining for secretory leukocyte
proteinase inhibitor (SLPI, an inhibitor for NE) in contrast to PMNs,
LDGs are more prone to occur NETosis [9]. In addition to
neutrophils, eosinophils, macrophages, mast cells, and basophils
have all reported to release extracellular DNA to form different
DNA trap types [10–14].
Upon septic or aseptic conditions, the dysregulation of NETs

release can cause damage in multi-system in humans. NETs was
reported in the pathophysiology of several conditions including
infection, sepsis, cancer, thrombosis and connective tissue
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diseases [15]. With regard to dermatological diseases, the research
on NETosis was involved in psoriasis, pustular dermatosis and
neutrophilic dermatosis [16, 17]. Especially in neutrophilic
dermatosis, a recent study has revealed the role of neutrophils
in autoinflammation and tissue damage in these diseases.
Therefore, we sought to update the effect of NETs in the
pathogenesis of neutrophilic dermatosis.

MECHANISMS OF NETS FORMATION
NETs formation is one of the major ways for neutrophils to exert
their dual physiological functions described above. Appropriate
NETs release is the first-line immune response to assist human
body resist the invasion of external stimuli, while dysregulated
NETs will lead to a variety of immune diseases [7]. The concept of
NETs was first put forward by Takei et al. in 1996 and the
systematic research of NETs was reported by Brinkmann et al. in
2004 [18, 19]. In general, the NET formation involves the extrude
large amounts of intracellular contents accompanied with cell
death and termed this process with NETosis (Fig. 1) [6]. According
to the survival status of neutrophils, the process of NETs formation
is divided into two types: lytic form of NETosis with the death of
neutrophils and non-lytic form of NETosis with survival of
neutrophils [19–21]. Although the non-lytic form of NETosis is
considered should not be called as NETosis based on its definition
[22].
NETs formation can be initiated by various factors, including

microorganisms such as bacteria, fungi and their products like
cytokines, chemokines and oxidized mitochondrial DNA [23–26].
In the initial of cell-death-dependent NETosis, neutrophils were
stimulated with phorbol 12-myristate 13-acetate (PMA), which
activates protein kinase C (PKC) and lead to the generation of
reactive oxygen species (ROS) with nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [27]. Upon activation
of NADPH oxidase and ROS, the secretion of PAD4 is facilitated,
acting upon eosinophilic granules, thereby promoting the release

of proteins such as NE and MPO. Activated myeloperoxidase
(MPO) and NE from azurophilic granules by ROS dislocated into
the nucleus, leading to the disconnection of histones with
chromatin, resulting in chromatin decondensation [19, 27]. In
addition, immune complexes such as nicotine can trigger NETosis
independently of NADPH oxidase [28], but still accompanied with
cell death, named NADPH oxidase-independent, mitochondrial
ROS-dependent NETosis [26]. Besides, NETs formation generated
with non-lytic form when exposure to bacteria such as S. aureus
[29]. The chromatin material released from live cells using an
intact plasma membrane through intracellular vesicles [30].
In addition to the processes mentioned above, calcium

channels on the cell membrane also participate in NETs
production. Studies have shown that the opening of calcium
channels on the cell membrane is necessary for raising
intracellular calcium levels and triggering NETosis after neutrophil
activation. It has also been demonstrated that reducing the
concentration of extracellular free calcium can effectively inhibit
NETs production, which further confirms the participation of
calcium channels [31–34]. Blocking receptors such as Toll-like
receptors (TLR) 2, cluster of differentiation (CD) 18, and G protein-
coupled receptors (GPCRs) can also inhibit the generation of NETs
in response to corresponding stimuli, indicating the involvement
of TLR2, CD18, and GPCRs in NETs production [20, 33, 35].
Additionally, Janus kinase (JAK) 2 is also involved in the process of
NETs formation [36, 37].
Gasdermin D (GSDMD) is also involved in NETs formation. Chen

et al. found in 2018 that GSDMD can induce NETosis in
neutrophils, leading to cell death, which is a novel form of
GSDMD-mediated cell death [38]. Subsequently, Silva et al. found
that blocking GSDMD can reduce NETs and alleviate symptoms in
a septic mouse model [39]. In later studies, Silva et al. also found
that GSDMD-mediated NETs formation is involved in tissue
damage caused by COVID-19 [40]. The mechanism by which
GSDMD mediates NETs formation may be that the pores formed
by GSDMD promote the release of NE and MPO from azurophilic

Fig. 1 The formation of neutrophil extracellular traps (Created with Biorender.com). After being stimulated by external factors, neutrophils
activate NADPH to release ROS. The activation of NADPH and ROS leads to the secretion of PAD4, which acts on eosinophilic granules and
induces the release of proteins such as NE and MPO. These granular proteins will cause chromatin decondensation, and the secreted PAD4 will
lead to histone citrullination. After the neutrophil plasma membrane ruptures, the decondensed chromatin combines with the granular
proteins and is released to form a network-like DNA structure extracellularly. GSDMD is involved in the formation of eosinophilic granules and
membrane pores. There are two types of neutrophils that can produce NETs, PMNs and LDGs. The production of NETs by neutrophils is
involved in the occurrence of various skin diseases, such as pyoderma gangrenosum, PAPA syndrome, Behcet’s syndrome, pyogenic
hidradenitis, adult Still’s disease, subcorneal pustular dermatosis, and Schnitzler’s syndrome. NADPH: nicotinamide adenine dinucleotide
phosphate, ROS: reactive oxygen species, PAD: peptidylarginine deiminase, NE: neutrophil elastase, MPO: myeloperoxidase, DNA:
deoxyribonucleic acid, PMNs: polymorphonuclear neutrophils, LDGs: low-density granulocytes, NETs: neutrophil extracellular traps, GSDMD:
gasdermin D.
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granules, while NE can reactivate GSDMD formation in a loop, and
GSDMD also participates in the formation of membrane pores on
neutrophils, releasing chromatin and bound granule proteins
through the pores.

NEUTROPHILIC DERMATOSIS
Pyoderma gangrenosum and pyogenic arthritis, PG and acne
(PAPA) syndrome
Pyoderma gangrenosum (PG) is a typical neutrophilic dermatosis
characterized by painful skin ulcers with undermined borders and
peripheral erythema [41]. The frequency of second immune-
related systemic diseases in PG patients was 33% to 56.8% [42, 43],
including inflammatory bowel disease, inflammatory arthritis and
hematological malignancies. The most recognized inducer of
disease is trauma, which causes the dysregulation of inflammatory
cytokines and immune responses. The release of cytokines like IL-
36 leading to the recruitment of neutrophils, cause the
upregulated expression of neutrophil-attracting cytokines like IL-
8, finally result in tissue damage [44].
One guess about how neutrophils produce its marked effect is

through NETs formation. NETs formation was first reported in the
PG skin lesion samples when compared to Schnitzler’s syndrome
as a positive control [45]. This manifestation was further confirmed
in recent studies [46, 47], one of them concluded 17 PG cutaneous
lesions, with 62.9% neutrophils showing NETs, higher than
different entities of neutrophilic dermatoses including Sweet’s
syndrome and subcorneal pustular dermatosis [46].
PAPA syndrome is one of syndromic PG, which belongs to the

autosomal dominant disorder. The study of PAPA syndrome
revealed the elevated circulating LDGs and these LDGs displayed
enhanced NETs formation and impaired NETs degradation. The
research also indicated the effect of IL-1 signaling in exacerbated
neutrophil responses in PG patients [48].

Behçet syndrome
Behçet syndrome is a systemic vasculitis that affects both small
and large veins and arteries, involving the multi-organs including
skin, mucosa, eyes, etc. [49]. The pathophysiology of Behçet
syndrome is complicated, with a strong contribution of genetic
factors that almost half of patients carry the allele HLA-B*51
[50, 51]. As a result, some researchers preferred Behçet syndrome
to the group of MHC-I-opathy disease with T lymphocyte-
mediated immune dysfunction [52–54]. Besides, Behçet syndrome
is also an autoinflammatory syndromes with neutrophil hyper-
activation [16]. It is very important to reveal the mechanism of
infiltrated neutrophils in circulation and other organs.
Circulating Neutrophils from patients with Behçet syndrome

were more prone to release spontaneous or stimulated NETosis
compared healthy control, with higher level of soluble CD40
ligand, peptidylarginine deiminase 4 and interleukin-17 [55–57].
Markers of NETs levels including cell-free DNA and
myeloperoxidase-DNA were elevated in Behçet syndrome patients
and DNAse treatment significantly decreased thrombin genera-
tion in Behçet syndrome plasm, indicated that inhibition of NETs
may represent as a potential therapeutic target for Behçet
syndrome [58]. Besides, macrophages stimulated with Behçet
syndrome-derived NETs produced higher levels of IL-8 and TNF-α
compared to heathy controls, and promoted IFN-γ CD4 T cells
differentiation [59]. Conversely, morning saliva from patients with
Behçet syndrome prone to oral ulcers failed to induce NETosis, it
may demonstrate the different disordered homeostasis in the oral
cavity [60].

Hidradenitis suppurativa
Hidradenitis suppurativa is an inflammatory disorder that mani-
fested with painful nodules, abscesses and sinus tracts [61]. The
disease usually occurs in adulthood and last for a long time, and

affect the patients both in physical and mental health because of
its severe pain and bad smell [62, 63]. The initial part of disease
onset is immune cells activation induced by microbial compo-
nents and danger-associated molecular patterns (DAMPs). These
immune responses lead to the release of cytokines including IL-1β
and tumor necrosis factor (TNF) [64], then induce the production
of chemokines such as CXCL8, CXCL11, CCL2 and CCL20 in
keratinocytes and CXCL1 and CXCL6 in fibroblasts [65, 66].
Dysregulated cytokines and chemokines contribute together to
the infiltration of neutrophils, T cells, B cells, monocytes and
developed the disease [67].
The prominent presence of NETs was found in the hidradenitis

suppurativa lesions and coexisted with plasmacytoid dendritic
cells, in association with a type I interferon (IFN) gene signature.
Also, the NETs were correlated with disease severity. Circulating
neutrophils also manifested enhanced spontaneous NETs forma-
tion compared to healthy control neutrophils [68]. Besides, the
increased formation of NETs was associated with tunnels
according to the immunohistochemistry of hidradenitis suppur-
ativa biopsy specimens [69]. To find the association between
microbial components and NETs, the result of the RNA gene
amplicon sequencing showed that Finegoldia magna was over-
abundant in skin samples and derived local inflammation to
promote the formation of NETs [70, 71].

Pustular dermatosis
Pustular dermatoses are a group of skin diseases characterized by
aseptic pustules of varying sizes, with the pathological feature of
massive neutrophil infiltration in the pustules [16]. Pustular skin
diseases include generalized pustular psoriasis (GPP), impetigo
herpetiformis (IH), acute generalized exanthematous pustulosis
(AGEP), and subcorneal pustular dermatosis (SPD) [72–75]. The
onset of these diseases is related to neutrophil infiltration, but the
specific form of neutrophil activation and regulation mechanism
are still unclear.
Research has demonstrated that compared with HC, there is a

significant increase in the proportion of neutrophils producing
NETs in the skin lesions of patients with SPD. This suggests a
potential involvement of NETs in the pathogenesis of SPD [46].
IL-36 and its receptor antagonist (IL-36Ra) are crucial in maintain-
ing physiological homeostasis [76–78]. Loss-of-function mutations
in IL36RN, which encodes IL-36Ra, lead to a dominantly inherited
autoimmune inflammatory disease termed Deficiency of
Interleukin-36 Receptor Antagonist (DITRA) [79]. Using imiquimod
cream to construct a psoriasis mouse model in IL-36Ra knockout
mice, researchers found that the epidermis significantly prolifer-
ates, the number of neutrophils increases, and NETs expression
significantly increases, indicating the involvement of IL-36 in NETs
formation and the pathogenesis of psoriasis [80]. MPO, similar to
IL-36, also plays a crucial role in neutrophil NETs formation and
other physiological functions [81, 82]. Haskamp et al. discovered
that mutations in MPO genes in 31 GPP patients affected
neutrophils and monocytes, which results in reducing the
induction of NETs formation in MPO-deficient neutrophils.
Furthermore, CD47 expression is increased in MPO-deficient
neutrophils. CD47 is an inhibitory protein for monocyte-
mediated phagocytosis. The elevated CD47 expression can inhibit
the phagocytosis of neutrophils by monocytes, thereby prolong-
ing the survival time of neutrophils [83].

Other neutrophilic dermatoses
Other neutrophilic dermatoses also showed the formation of NETs
in skin lesions and circulation, including Schnitzler’s syndrome and
adult-onset Still’s disease (AOSD).
Schnitzler’s syndrome is a rare autoinflammatory disorder

characterized by neutrophil-dominated inflammation, which is
induced by IL-1β [84]. Immunofluorescence co-staining showed
widespread and substantial NETs formation in lesion skin of
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Schnitzler’s syndrome patients compared to the control skin.
Blood neutrophils from patients showed significantly elevated
NETosis rates compared to control neutrophils following stimula-
tion with PMA [45].
AOSD is a rare systemic autoimmune inflammatory disease with

an unknown etiology [85]. The disease is characterized by
recurrent high fever, arthritis and joint pain, transient skin rash,
leukocytosis, and hyperferritinemia [86–88]. The pathogenesis of
AOSD remains uncertain, and multiple factors, such as infection,
genetics, and immune dysfunction, may contribute to the onset of
the disease. Macrophages and neutrophils, in addition to the
cytokines released after their activation, play a crucial role in the
pathogenesis of AOSD. Various external stimuli, such as DAMPs,
can activate the inflammasome and ultimately cause dysregulated
cytokine secretion by increasing the expression levels of IL-1β and
IL-18, leading to cytokine storms and disease onset [89–92].
Additionally, the inflammasome pathway also participates in the
pathogenesis of AOSD and its complications, macrophage
activation syndrome, by mediating cytokine secretion through
GSDMD [93]. Studies have found that AOSD patients have
significantly increased levels of cell-free DNA, NET-DNA com-
plexes, and α-defensin in circulation, as well as NE-positive and
MPO-positive neutrophils in AOSD skin lesions compared to HC.
Furthermore, these indicators are positively correlated with
disease severity, and AOSD patients have a significantly enhanced
ability of neutrophils to spontaneously produce NETs [89, 94, 95].
The number of LDGs and the expression levels of NETs are
significantly higher in active AOSD patients, and the serum levels
of NETs are positively correlated with the number of joint swelling
and monocyte count [96]. Research has also found that type I
interferons can trigger NETs enrichment in mitochondrial DNA of
AOSD patients, highlighting IFN as a potential target for AOSD
treatment [97].

CONCLUSIONS
Neutrophilic dermatosis are a heterogeneous group of cutaneous
disorders characterized by the histologic finding of a predomi-
nantly sterile neutrophilic infiltrate within the various layers of the
skin, in the epidermal layer like pustular dermatoses, in the dermal
layer like Sweet’s syndrome, in the hypodermal layer like
pyoderma gangrenosum and in the overlapping layer like PAPA
syndrome [98, 99]. All of which share a common pathological
feature of non-infectious neutrophilic infiltration. While the clinical
manifestations, laboratory indicators, and mechanisms of onset
vary among this group of diseases, activated neutrophils play an
important role in the pathogenesis of each. Research has found
that the production of NETs by neutrophils may serve as a major
form of neutrophil activation in the pathogenesis of NDs. This is
demonstrated by the elevated expression levels of NETs in skin
lesions and serum of NDs patients, enhanced ability of neutrophils
from NDs patients to spontaneously produce NETs, and increased
expression levels of upstream regulators of NETs production such
as IL-36 and IFN. However, the regulatory mechanism of
neutrophil production of NETs in these diseases lacks further
investigation and exploration. In light of these findings, it is
imperative to deepen our understanding of the mechanisms
underlying neutrophil activation in NDs. Such an understanding
may pave the way for the development of novel therapies that
can effectively target the dysregulated immune response and
promote better outcomes for patients affected by this group of
disorders.
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