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Sepsis is a life-threatening organ dysfunction syndrome caused by dysregulated host responses to infection. Not only does sepsis
pose a serious hazard to human health, but it also imposes a substantial economic burden on the healthcare system. The
cornerstones of current treatment for sepsis remain source control, fluid resuscitation, and rapid administration of antibiotics, etc.
To date, no drugs have been approved for treating sepsis, and most clinical trials of potential therapies have failed to reduce
mortality. The immune response caused by the pathogen is complex, resulting in a dysregulated innate and adaptive immune
response that, if not promptly controlled, can lead to excessive inflammation, immunosuppression, and failure to re-establish
immune homeostasis. The impaired immune response in patients with sepsis and the potential immunotherapy to modulate the
immune response causing excessive inflammation or enhancing immunity suggest the importance of demonstrating individualized
therapy. Here, we review the immune dysfunction caused by sepsis, where immune cell production, effector cell function, and
survival are directly affected during sepsis. In addition, we discuss potential immunotherapy in septic patients and highlight the
need for precise treatment according to clinical and immune stratification.
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FACTS

● Sepsis is a dynamic disorder of dysregulated inflammatory and
immune responses.

● Heterogeneity is present in patients with sepsis.
● There are currently no effective therapeutic options available

for sepsis in the clinic.
● Individualized immunotherapy based on the individual

immunological characteristics of sepsis patients is a reason-
able and promising therapeutic option.

OPEN QUESTIONS

● How to establish an early warning system for sepsis and
find effective biomarkers and immune checkpoints regard-
ing individual immunological characteristics of sepsis
patients?

● How to clarify the mechanisms of immune cell dysfunction
in sepsis for the understanding the personalized
treatment of these heterogeneous and dynamic stages of
sepsis?

● How to combine advanced technologies (such as multi-
omics analysis and artificial intelligence) for prospective
studies of personalized therapy in multiple clinical settings
to improve model universality?

INTRODUCTION
Sepsis is a life-threatening, complex clinical and biochemical
syndrome characterized by acute organ dysfunction that develops
due to the body’s dysfunctional response to microbial invasion [1].
Sepsis remains a significant cause of health loss worldwide, with
an estimated 48.9 million incident cases of sepsis and 11 million
sepsis-related deaths [2]. Our previous cross-sectional study
revealed that sepsis impacted one-fifth of ICU-admitted patients
and has a 90-day mortality rate of 35.5%, indicating a substantial
burden of sepsis on the Chinese mainland [3]. The pathophysiol-
ogy of sepsis is complex when the pathogen evades the host’s
defense mechanisms and continuously stimulates and damages
host cells so that many of the immune mechanisms initially
activated to provide protection have become deleterious due to
the inability to restore homeostasis, leading to persistent
hyperinflammation and immunosuppression [4]. From the 1970s
until the early 2000s, it was widely recognized that the high
mortality rate in sepsis was caused by multiple organ failure due
to immune damage resulting from an excessive inflammatory
response. However, all anti-inflammatory therapy strategies were
failed in clinical trials. In recent years, a substantial body of
research has shown that sepsis is characterized by concurrent
dysregulation of the innate immune system and suppression of
the adaptive immune system. This simultaneous imbalance and
persistence of inflammatory and anti-inflammatory responses
ultimately culminate in recurrent and persistent infections, organ
dysfunction, and ultimately, fatality for the patient (Fig. 1).
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Numerous individuals afflicted with sepsis may experience a
comparatively concise phase of hyperinflammation, nonetheless
are susceptible to developing immunocompromised states due to
extended hospitalization and recuperation. Indeed, a significant
proportion of individuals with sepsis die from secondary or
opportunistic infections while in a condition of immunosuppres-
sion. Hence, it is imperative to ascertain the immune status of
individuals with sepsis, elucidate the clinical and immunological
categorization of patients, and effectively regulate the exagger-
ated inflammatory response and immunosuppressive condition of
the septic patient’s body, all of which are crucial in the
management of sepsis. Here, we review the key factors of
immune dysregulation in sepsis and potential precision
immunotherapies.

Immune dysregulation in sepsis
Innate and adaptive immune cells activated by pathogen invasion
relocate locally to tissues to prevent microbial multiplication and
spread, and immunological homeostasis is attained when
inflammation is controlled. During the onset of sepsis, pro-
inflammatory and anti-inflammatory processes are activated
simultaneously. Innate and adaptive immune cells triggered by
both pathogens and DAMPs are in a state of hyperinflammation,
and cytokine storms produced by immune cells block infections to
some extent but also contribute to severe tissue damage.
Pathogens can spread throughout the body through damaged
blood vessels, causing an intense inflammatory response, leading
to systemic immune dysregulation and injury. Depletion of innate
and adaptive immune cells through apoptosis can lead to
immunosuppression. Multiple factors influence the immune
response in sepsis, including co-morbidities (e.g., malignancy,
diabetes, heart disease), the microbial inoculum quantity, and the
pathogen’s virulence. The principal pathogens causing sepsis
include bacteria, fungi, and viruses. Superantigens of Gram-
positive bacteria can cause significant direct harm to host cells.
Lipopolysaccharides, the surface toxins of Gram-negative bacteria,
can stimulate specific toll-like receptors, leading to a devastating
immune response. Although the clinical appearance of viral sepsis

is similar to that of bacterial sepsis, the immunological response is
different. Macrophages boost the production of type I and type II
interferons after exposure to the virus, and further activated
neutrophils and lymphocytes play a critical role against the virus.
Unlike other pathogens, fungal infections are usually connected
with a situation of immunosuppression, and it is only after an
immunological imbalance that the fungus invades deeper tissues,
leading to sepsis. Fungal sepsis, hence, has a higher mortality rate
compared to viral and bacterial sepsis. The progression of sepsis
follows a certain pattern of immunodynamic change, with patients
having distinct immune statuses at different times and stages, and
the same immune cells presenting varied patterns of immune
status. Innate and adaptive immune responses are considerably
altered during the development of sepsis, which may impair the
host’s ability to destroy invading pathogens, further leading to the
recurrence of latent infections and susceptibility to secondary
infections (Fig. 2).
During early sepsis, macrophages’ toll-like receptor 4 (TLR4)

recognizes LPS, activating the nuclear factor-κB (NF-κB) and
mitogen-activated protein kinase (MAPK) pathways to release
proinflammatory cytokines and clear pathogenic microorganisms
[5]. Meanwhile, massive apoptosis of macrophages and secretion
of large amounts of anti-inflammatory mediators by M2-like
macrophages make it difficult for the host to respond effectively
to the pathogen. Excessive neutrophil activation and neutrophil
extracellular traps (NETs) release may induce a shift in endothelial
cells toward a proinflammatory and procoagulant phenotype and
macrophage polarization toward the M1 phenotype [6, 7].
However, pro-inflammatory cytokines can upregulate guanosine
cerebrospinal fluid levels, which can lead to an excessive release
of circulating immature neutrophils [8]. NK cells activation is
dysregulated and secretes large amounts of cytokines, contribut-
ing to a positive feedback loop and amplifying the pro-
inflammatory cytokine storm [9]. However, the number of NK
cells, cytokine production, and cytotoxic proteins from NK cells are
decreased during the immunosuppressive stage of sepsis. Sepsis
also can lead to apoptosis of dendritic cells(DCs) cells, block their
maturation process and induce paralysis to reduce the number of

Fig. 1 Host immune response in sepsis. Activation of both proinflammatory and anti‐inflammatory immune responses occurs promptly after
sepsis onset. The host response to severe sepsis can have four different clinical trajectories: (1) early MOF leading to death, (2) rapid recovery,
(3) late deaths, or (4) late sequelae or long-term deaths. SIRS, systemic inflammatory response syndrome; CARS compensatory anti‐
inflammatory response syndrome, MOF multi-organ failure, NETs Neutrophil extracellular traps, MDSCs Myeloid-derived suppressor cells, ICU
intensive care unit, PICS persistent inflammation, immunosuppression, and catabolism syndrome.
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DCs [10]. In addition, the levels of surface molecules associated
with the function of DCs are changed, leading to immune
tolerance.
Numbers of CD4 T cells decrease after the onset of sepsis, and

absolute CD4 T-cell numbers return to pre-septic levels after a
month in most patients, but failure to restore sufficient numbers
of immunocompetent CD4 T cells is associated with a poor
prognosis [11, 12]. Impaired CD4 T cell function after sepsis,
characterized by decreased cytokine secretion and increased
expression of inhibitory receptors, restricts the assistance provided
to other immune cells [13]. Sepsis also disrupts the expression and
function of CD4T cell subsets (Th1, Th2, Th17 and Treg subsets).
Our previous study showed that Th2/Th1 values were significantly
upregulated in previously immunocompetent patients at the
onset of community-acquired severe sepsis, and their sustained
dynamic increase was associated with ICU-acquired infection and
28-day mortality [14]. The Th17/Treg balance is regarded as a key
factor in the homeostasis of the internal immune environment,
and imbalance has been shown to be associated with the
aggravation of illness in patients with sepsis [15]. Additionally, the
composition and phenotype of the circulating CD8 T cell pool are

altered after sepsis, inducing a rapid loss of naïve CD8 T cells and
memory CD8 T cells leading to transient lymphocytopenia with
early signs of immune paralysis [16]. B-cell number, phenotype,
and effector functions are also significantly altered in sepsis
patients and are inconsistent across populations [17]. Our current
understanding of immune cells in the development of sepsis
remains limited, but scientific advances continue to fill critical
knowledge gaps and are also gradually identifying new potential
therapeutic targets.

Immunotherapy
Imbalance of the immune system in sepsis patients is one of the
main causes of their poor prognosis. The pathogenesis of sepsis
includes not only excessive inflammatory response, but also a
number of molecular and cellular events that contribute to
immunosuppression. Numerous clinical studies on immunother-
apy have focused on how to modulate immune response and
enhance immunity in patients with sepsis (Supplemental Table 1).
Restoring immune function and immune balance can reduce harm
to organ function in patients with immune imbalances, protecting
the organs.The regulatory effect on the immune-response

Fig. 2 Sepsis-induced immune dysregulation. A Innate immune dysfunction in sepsis. B Adaptive immune dysfunction in sepsis. When
septic insults happen, both the innate and adaptive immune responses are drastically changed. Shortly after detection of an infectious agent,
the innate immune cells attempt to clear the overwhelming infection as quickly as possible, followed by activation of the adaptive immune
system through activation of the Th cells and cytotoxic T cells. Under normal conditions, after the resolution of the infection, the patient’s
body will return to homeostasis. In inflammatory responses due to severe infections, immune cells undergo various phenotypic changes as
the immune system fails to resolve inflammation appropriately. Immune cell production, effector cell function, and survival are directly
affected, resulting in ubiquitous immunosuppression. HLA-DR human leukocyte antigen-antigen D related, PD-1 programmed cell death
protein 1, IL interleukin, TCR T-cell receptor.
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modulation is primarily concerned with the inflammatory
response, i.e. the balancing and regulating effect on the
inflammatory response. Immunity enhancement can further
maintain the immune homeostasis of the organism through the
reconstruction of immune function. Many patients with sepsis
have a relatively brief phase of hyperinflammation, so the success
of drugs targeting inflammation may be effective only for a very
short period of time. Patients with sepsis may also become
immunocompromised, so a “one-size-fits-all” treatment strategy
for sepsis-induced immune imbalance is bound to fail. In general,
precise regulation of the excessive inflammatory response and
immunosuppressive state of the body in sepsis patients is the key
to treating sepsis (Fig. 3).

Modulate immune response
Specific antibodies of inflammatory mediators
IL-1: IL-1ra administration in late sepsis decreases hypothalamic
oxidative stress and increases vasopressin production, enhancing
blood pressure and animal survival [18]. Knaus et al. found that
patients with sepsis treated with recombinant human (rh)IL-1ra
had a significant increase in survival time [19]. However, a further
retrospective analysis showed that survival was not statistically
significant in all patients treated with rIL-1ra compared with the
placebo group [20]. The study by Opal et al. was terminated after
an interim analysis found that a 72-hour continuous intravenous
infusion of anakinra(rIL-1ra) failed to reduce mortality statistically
significantly [21]. A reanalysis by Shakoory et al. found that
anakinra significantly improved survival in patients with sepsis
complicated by hepatobiliary dysfunction and disseminated
intravascular coagulation (HBD/DIC) [22]. Based on early soluble
urokinase plasminogen activator receptor(suPAR), subcutaneous
anakinra reduced severe respiratory failure and restored the pro/
anti-inflammatory balance [23]. The PROVIDE trial defined a rapid
classification of sepsis from an immunological perspective in
patients with macrophage activation-like syndrome (mALS), or
immune paralysis who were randomly assigned to anakinra or
rhIFNγ or placebo treatment groups, with 42.9% of patients
surviving after 7 days with a decrease in sequential organ failure
assessment (SOFA) score [24]. In the ongoing clinical trial
(NCT04990232), based on the measurement of circulating ferritin
and HLA-DR expression, patients were classified as hyper-

inflammatory or immunoparalysis and were randomly assigned
to either a placebo arm or an immunotherapy arm(anakinra or
rhIFN-γ) [25]. The above studies show that treatment with anakinra
in personalized adjuvant immunotherapy is promising but should
be confirmed with more optimized trial protocols in future studies.
The above studies suggest that personalized adjuvant immu-
notherapy after determining a patient’s immunophenotype will
hopefully benefit sepsis patients.

TNF-α. Neutralizing monoclonal anti-cachectin/TNFα monoclonal
antibodies injected only one hour before a bacterial attack in
baboons prevented shock, while two hours prevented essential
organ dysfunction and mortality [26]. In patients with severe
sepsis or septic shock, high doses of the murine anti-TNF-α
antibody, CB0006, were well tolerated, with a tendency to improve
survival in the subgroup with high plasma TNF-α concentrations
[27]. Polyclonal ovine anti-TNF-α fragment antigen binding (Fab)
fragments (CytoFab) on plasma TNF-α were effectively reducing
serum and BAL TNF-α and serum IL-6 concentrations, and
increasing the number of ventilator-free and ICU-free days at
day 28 [28]. Reinhart et al. retrospectively stratified severe sepsis
or septic shock patients based on IL-6 concentrations and showed
that MAK 195 F reduced mortality in patients with baseline IL-6
concentrations above 1000 pg/mL [29]. However, the subsequent
study of sepsis patients with IL-6 concentrations >1000 pg/mL
who were randomly assigned to receive afeliomab or placebo was
terminated early after the primary efficacy endpoint was
estimated not to be met due to interim analysis [30]. More and
more research is showing that immune dysregulation in sepsis
cannot be attributed to a single cytokine or cell population
alteration. Future clinical research may focus on stratifying sepsis
patients according to specific biomarkers; however, the manage-
ment of sepsis is a gradual endeavor.

IL-3. IL-3 promotes myelopoiesis and cytokine storm in cecal
ligation and puncture (CLP)-induced acute sepsis, and inhibiting
IL-3 activity protected mice from sepsis-induced increases in
neutrophils, inflammatory monocytes, and inflammatory cyto-
kines, reducing organ damage and improving survival [31]. Anti-IL-
3 antibody treatment significantly improved survival in septic
mice, possibly associated with increased Treg percentage and

Fig. 3 Potential immunotherapy for patients with sepsis-modulate the immune responses or enhance immunity. A Modulate immune
responses that provoke excessive inflammation during sepsis. B Enhance immunity during sepsis. The immune response in sepsis is a highly
individualized process. Sepsis patients’ immune responses vary depending on their immunological condition at the time of infection, age,
comorbidities, environmental variables, and microbiome. Precise immunotherapy can significantly improve the prognosis of sepsis. LPS
lipopolysaccharide, TLR4 toll like receptor 4, IL interleukin, TNF-α tumor necrosis factor-alpha, G-CSF Granulocyte colony-stimulating factor,
GM-CSF granulocyte macrophage colony stimulating factor, IFN-γ interferon-gamma, APC antigen-presenting cell.

M. Cao et al.

4

Cell Death Discovery           (2023) 9:465 



function [32]. IL-3 has a dual role in sepsis, stimulating innate
immune responses that are detrimental in the acute phase but
protective in the immunosuppressive phase by improving antiviral
defense mechanisms. IL-3 also could protect viral pneumonia in
sepsis by promoting the recruitment of circulating plasmacytoid
DCs into the lung and T cell initiation [33]. High levels of IL-3 in the
plasma of septic patients are associated with increased mortality
[31].

TLR4. TLR4 deficiency or antibody blockade has been shown to
be beneficial and can effectively protect animals from sepsis-
induced shock and high mortality [34, 35]. NI-0101 is the first
monoclonal antibody to block TLR4 signaling and prevent
cytokine release in healthy volunteers after receiving LPS [36].
Patients with high APACHE scores may benefit from eritoran, a
synthetic lipodisaccharide that binds to MD2-TLR4 and competi-
tively blocks LPS to TLR4 [37]. Unfortunately, eritoran was
withdrawn from further clinical testing in 2011, which failed to
be efficacious in clinical trials [38]. In a randomized, double-blind,
placebo-controlled trial, TAK-242 treatment did not suppress
cytokine levels or reduce 28-day all-cause mortality in patients
with severe sepsis [39]. Due to septic patients’ complicated and
varied immunological status, TLR4 inhibitors may benefit patients
early in the sepsis’ inflammatory phase or in combination with
other medicines.

Glucocorticoids
The first clinical trial using glucocorticoids for sepsis demonstrated
a significant mortality reduction in patients with high-dose
glucocorticoids [40]. However, later studies reported that short-
term administration of high-dose glucocorticoids was associated
with worsening secondary infection and increased risk of death,
and that low to moderate doses of glucocorticoids also did not
improve survival or shock reversal in sepsis [41–44]. Combining
hydrocortisone with fludrocortisone significantly reduced 90-day
all-cause mortality in patients with septic shock [45]. A recent
meta-analysis of metabolic resuscitation with vitamin C, gluco-
corticoids, vitamin B1, or a combination of these drugs did not
significantly reduce long-term mortality (90 days to 1 year) in
adults with sepsis or septic shock compared with placebo/usual
care [46]. 25-60% of patients with sepsis experience relative
adrenal insufficiency (RAI). Glucocorticoid treatment of mice with
CLP-induced sepsis was found to be beneficial in RAI mice but
detrimental in mice without RAI [47]. In the first phase 3 trial by
Annane et al., low doses of hydrocortisone significantly reduced
mortality in patients with septic shock and RAI [48]. Genome-wide
profiling of peripheral blood leukocytes from septic patients
defined two distinct sepsis response signatures (SRS1 and SRS2)
[49, 50]. Antcliffe et al. showed that septic patients with the
immunocompetent SRS2 endocrine phenotype had significantly
higher mortality with corticosteroids [51]. Genome-wide expres-
sion profiling using microarray technology and analytics may
target a subclass of patients to benefit most from immunotherapy,
providing personalized and precision medicine. Thus, further
precision medicine approaches based on the RAI and SRS2
endocrine phenotype in patients with sepsis will probably benefit
patients from glucocorticoids treatment, which needs further
validation in clinical trials.

Other immunomodulatory drugs
Ulinastatin (UTI) is a multifunctional Kunitz-type serine protease
inhibitor with anti-inflammatory and neuroprotective effects [52].
Intravenous administration of UIT inhibits inflammatory mediators
and lymphocyte apoptosis levels in CLP-model mice with sepsis
[53]. A retrospective study found that the use of UTI in 263
patients with severe sepsis reduced mortality by 23.5% [54].
However, in a multicenter randomized controlled study, UIT
treatment reduced all-cause mortality at 28 days in a multivariate

analysis, however there was no statistical difference in mortality in
the intention-to-treat analysis [55]. A meta-analysis including
13 studies showed that UIT improved all-cause mortality, APACHE
II scores, and inflammatory cytokine profiles in patients with sepsis
or septic shock [56]. There remains an urgent need for larger
randomized clinical trials to evaluate the impact of UTI in patients
with sepsis.
Xuebijing (XBJ) injection is a Chinese herbal medicine contain-

ing extracts from five herbs, and it has been incorporated into the
routine sepsis care in China since 2004. XBJ inhibited inflammation
and regulated Tregs/Th17 in various animal models of sepsis
[57–59]. Our previous multicenter, randomized, double-blind,
placebo-controlled trial showed that treatment with XBJ reduced
28-day mortality in patients with sepsis compared to the placebo
group [60]. A meta-analysis including 16 randomized controlled
trials demonstrated that XBJ combined with routine treatment
improved 28-day mortality in patients with sepsis [61]. In China,
approximately 250,000 patients are treated with XBJ each year,
and XBJ has been shown to be safe and well tolerated. Although
XBJ is a potentially effective treatment for sepsis, additional
research is still needed to understand its pharmacokinetics,
interactions with antibiotics and pharmacological mechanisms of
action.
Macrolides are a class of antimicrobials primarily against Gram-

positive cocci and atypical pathogens. However, growing evidence
shows that macrolides can be used as modulators of the host
immune response in sepsis [62, 63]. Clarithromycin accelerated the
resolution of ventilator-associated pneumonia (VAP) and weaning
from mechanical ventilation in patients with sepsis and VAP [64].
Compared to the placebo group, sepsis patients in the clarithro-
mycin group showed a decrease in serum IL-10 to TNF-α ratio and
restoration of the balance between pro- and anti-inflammatory
mediators [65]. Intravenous clarithromycin did not affect overall
mortality in patients with sepsis, but clarithromycin may provide
long-term survival benefits while also reducing the cost of
hospitalization for patients [66, 67].

Enhance immunity
Immunostimulatory factor
G-CSF and GM-CSF: GM-CSF has been shown to reverse
monocyte hyporesponsiveness in vitro and in vivo studies to
increase blood monocyte levels, upregulate monocyte respon-
siveness, and increase HLA-DR expression, which is known to
enhance antigen presentation and adaptive immune responses
[68–70]. Premature neonates with sepsis or/and neutropenia
treated with rhG-CSF adjuvant therapy were discharged with
lower all-cause mortality and faster recovery of total leukocytes
and ANC [71, 72]. Marlow et al. administered subcutaneous GM-
CSF at a dose of 10 μg/kg daily for five days to infants less than
31 weeks of gestation and small-for-gestational-age (SGA), and
showed no adverse outcomes during subsequent 2- and 5-year
follow-up periods [73, 74]. However, a meta-analysis showed that
a significant increase in the reversal rate of infection with G-CSF or
GM-CSF therapy, patients patients with severe sepsis/septic shock
did not have a benefit in 14- or 28-day mortality [75]. Meisel et al.
treated patients with sepsis (monocytic HLA-DR [mHLA-DR] <8,000
monoclonal antibodies (mAb) per cell for 2 d) GM-CSF and
observed a trend toward improved disease severity and restora-
tion of mHLA-DR expression and cytokine release [76]. G-CSF or
GM-CSF application may lead to different outcomes in different
stages of severe sepsis and is more applicable in patients with
severe immunosuppression, making individualized and precise
therapy guided by biomarkers based on immune status extremely
important.

Tα1. Thymosin alpha 1 (Tα1) is an endogenous modulator of the
innate and adaptive immune system. Tα1 plays an important
biological role in activating and restoring sepsis in patients with a
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dysregulated immune response [77]. Tα1 may effectively improve
the prognosis of patients with severe sepsis, improving HLA-DR
expression, and reducing the incidence of secondary infections
[78, 79]. In a meta-analysis of whether Tα1 was used in
combination with UTI, the combination of UTI and Tα1 for severe
sepsis reduced mortality at 28 and 90 days, whereas Tα1 alone
reduced mortality only at 28 days [80]. Tα1 may be more effective
as an immune modulator in patients with immunosuppressed
states. A recent clinical trial (NCT02867267) in China further
evaluated the efficacy and safety of Tα1 for sepsis, and
recruitment in the study is now complete, and some information
can be brought to light through this study.

IFN-γ. IFN-γ may be harmful during the pro-inflammatory phase
of sepsis, which can stimulate monocytes and cause a vicious
cycle of hyperinflammation [81]. However, IFN-exogenously
administered would reverse markers of monocyte deactivation
and ameliorate post-sepsis immunosuppression. 18 healthy male
volunteers were treated with IFN-γ or GM-CSF or placebo after
intravenous administration of Escherichia coli endotoxin, and IFN-
γ partially reversed human immunoparalysis [82]. Patients with
invasive Candida and/or Aspergillus infections regained partial
immune function after IFN -γ treatment [83]. Classifying sepsis
patients into independent immune classification strata based on
ferritin and HLA-DR receptors/monocytes may improve the
chances of successful immunotherapy trials in sepsis [84]. Patients
with increased monocyte HLA-DR expression after IFN-γ treatment
early (<4 days) or late (>7 days) after a sepsis episode improved
immune host defense in sepsis-induced immunosuppression [85].
IFN-γ may be a potential immunomodulatory therapy to reverse
immunoparalysis in vivo in humans during sepsis.

IL-7. In several models of sepsis infection involving bacteria,
fungi, and viruses, IL-7 treatment blocked CD4 and CD8T cell
apoptosis, restored IFN- and immune effector cell recruitment, and
improved mouse survival [86–88]. IL-7 levels are decreased in
patients with sepsis [89]. IL-7 immunotherapy improved clinical
symptoms, cleared the fungus, reversed lymphopenia, and
reversed the profound loss of CD4+ and CD8+ T cells induced
by sepsis [90–92]. Bidar et al. found that patients with severe
COVID-19 admitted to the ICU exhibited severe T-cell depletion,
which could be reversed in vitro by rhIL-7 [93]. In some cases,
reports showed that IL-7 could be safely used in patients with
severe COVID-19 and absolute lymphocytopenia and can benefit
patients [94, 95]. IL-7 is safe and well tolerated and is a promising
new immune-adjuvant therapy for sepsis.

IL-15. IL-15-deficient (IL-15 KO) mice are resistant to septic shock
but IL-15 treatment exacerbates the severity of sepsis by
activating NK cells and promoting IFN-γ production. Masafumi
et al. showed that three subcutaneous injections of 1.5 μg IL-15
enhanced long-term T-cell depletion, increased NK and macro-
phage levels, and reduced mortality in mice [96]. The levels of
plasma IL-15 were modestly increased and increased mortality in
patients with severe lymphopenia compared to patients without
lymphopenia [97]. Elevated serum IL-15 levels in patients with
sepsis after emergency abdominal surgery were associated with
prognosis and organ dysfunction, with non-survivors having
significantly higher basal IL-15 levels than survivors, and this
difference persisted throughout the course of the study [98].
Although IL-15 has a stimulatory effect on many immune cells, it
may also promote systemic inflammation and organ damage in
treating sepsis and has also been shown to have potentially toxic
effects. Therefore, IL-15 needs further study as an immunother-
apeutic agent in sepsis.

IL-33. IL-33 treatment played a protective activity against sepsis
and also significantly reduced mortality in CLP septic mice

[99–101]. IL-33 promotes inflammation by binding to its receptor
ST2 (IL1RL1), expressed primarily on immune cells, making the IL-
33/ST2 axis a bridge between immune system coordination and
tissue damage [102]. Administration of IL-33Rα (ST2)-blocking
antibody reduced IL-10 levels 24 hours after CLP, and a survival
benefit was observed within 72 hours [103]. ST2 deletion affected
septic dendritic cells’ phenotype and maturation and down-
regulated myeloid precursors and inflammatory NK cells [104].
During the immunosuppressive phase of sepsis, IL-33 levels
increased and remained high for five months after recovery
[105]. IL-33/ST2 is a novel axis associated with poor immune
function in sepsis, and this axis may benefit patients as a
personalized treatment for sepsis.

Immune checkpoint
PD-1/PD-L1. Upregulation of programmed cell death protein 1
(PD-1) on neutrophils may be associated with sepsis-induced
immunosuppression [106]. Huang et al. have demonstrated that
the survival of PD-1−/− mice is improved in a mouse model of
sepsis induced by the cecal ligation-and-puncture procedure
[107]. By blocking PD-L1 in animal models of sepsis, lymphocyte
apoptosis was inhibited, macrophage dysfunction was reversed,
and survival was improved [108, 109]. Treatment with anti-PD-1
and anti-PD-L1 specific antibodies prevented and/or reversed
T-cell depletion and reversed immune dysfunction [110]. Our
previous study showed that PD-1 expression on memory CD8+
T cells identifies patients with a poor prognosis during sepsis
[111]. In the first clinical evaluation in sepsis, the anti-PD-L1
immune checkpoint inhibitor appeared to be well tolerated and
had the potential to restore immune status [112]. Immunotherapy
has been shown to be effective in clinical trials for several types of
malignancies, with FDA-approved anti-PD-1 blocking antibodies
like nivolumab and pembrolizumab [113]. Nivolumab therapy also
appeared to be well tolerated and safe in treating patients with
sepsis or septic shock [114, 115]. Using nivolumab appears to
improve selected immune markers such as ALC and monocyte
human leukocyte antigen-DR subtype transcript levels. Immune
checkpoints play an important role in sepsis, but immune
checkpoint modulation strategies for sepsis still need to be
further refined and personalized to balance the immune status of
patients to prevent immune disorders.

CTLA-4. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is
a coinhibitory cell surface protein expressed on T cells. Thus,
overexpression of CTLA-4 downregulates T cell activation and
proliferation and suppresses the host immune response, prevent-
ing an overreaction of the immune system. Inoue et al. showed
increased expression of CTLA-4 on CD4, CD8, and regulatory
T cells in a CLP mouse model, resulting in significantly improved
survival at low doses and worsened survival at high doses when
anti-CTLA-4 treatment was administered [116]. Chang et al.
confirmed that immuno-adjuvant therapy with anti-PD-1, anti-
PD-L1 and anti-CTLA-4 antibodies reversed sepsis-induced immu-
nosuppression and improved survival in mice [117]. CTLA-4 is also
highly expressed in CD4 T cells, CD8 T cells, and/or inhibitory
receptors in monocytes from patients with sepsis [118, 119]. CTLA-
4 genetic variants can be an important predictor of survival in
sepsis patients, and precise anti-CTLA-4 therapy can be stratified
according to CTLA-4 gene variants [120, 121].

TIM-3. T cell immunoglobulin and mucin domain-containing protein
3 (TIM-3) have been suggested to play an important role in
maintaining immune homeostasis in sepsis. TIM-3 gene variants were
associated with altered 28-day mortality and susceptibility to Gram-
positive infections in patients with sepsis [122]. Upregulation of Tim-3
expression is associated with poorer disease severity and prognosis in
sepsis patients [123]. Blocking the Tim-3/Galectin-9 signalling axis
inhibits NKT apoptosis in sepsis [123]. Huang et al. found that Tim-3
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regulates sepsis-induced immunosuppression by inhibiting the NF-κB
signalling pathway in CD4 T cells [124]. Blocking the immune
checkpoint molecule Tim-3 may be a promising immunomodulatory
strategy for the future clinical treatment of sepsis.

LAG-3. Lymphocyte activation gene 3 (LAG-3) is an immunor-
egulatory cell surface protein that negatively regulates T cell
proliferation, activation, and homeostasis and is highly expressed
in sepsis [118]. Genetic variation in LAG-3 is associated with
altered disease severity and outcome in patients with sepsis, and
28-day mortality is significantly lower in LAG-3 rs951818 AA-
homozygote patients than in C allele carriers [125]. LAG-3
knockout or anti–LAG-3 antibody blockade protected mice
undergoing CLP from sepsis-associated immune dysfunction and
maybe a new target for the treatment [126].

TIGIT. TIGIT is a novel coinhibitory molecule expressed on
peripheral memory and regulatory CD4+T cells and NK cells.
TIGIT was upregulated in Treg and NK cells of healthy and cancer
sepsis mice [127]. Furthermore, the anti-TIGIT antibody reversed
sepsis-induced T cell apoptosis in cancer septic mice and
increased their 7-day survival in cancer septic mice. Expression
of TIGIT on T cells was significantly upregulated in sepsis patients,
and in vitro blockade of TIGIT using an anti-TIGIT antibody
restored the frequency of cytokine-producing T cells in sepsis
patients [128]. Our previous study showed that the anti-TIGIT Ab
reversed sepsis-induced T-cell apoptosis in cancer septic mice and
resulted in a significant survival benefit [129].

VISTA. V-domain Ig suppressor of T cell activation (VISTA) has
been identified as an immune checkpoint molecule that
negatively regulates T-cell activation. Treatment with a high-
affinity anti-VISTA antibody (clone MH5A) improved survival in
septic mice and resulted in reduced lymphocyte apoptosis,
decreased cytokine expression, and increased bacterial clearance
[130]. Gray et al. showed that VISTA could regulate CD4+ Treg in
response to an infectious attack during sepsis progression,
exerting a protective effect and reducing septic morbidity/
mortality [131]. VISTA also induces tolerance and transcriptional
reprogramming of the anti-inflammatory program in macro-
phages to attenuate innate inflammation in vivo [132].

Immunoglobulin
Low levels of immunoglobulins are positively associated with the
severity of critical illness and mortality in patients with sepsis
[133]. A recent meta-analysis showed that the use of intravenous
IgM-enriched immunoglobulins (IVIgGM) in adult sepsis patients
may be associated with reduced mortality and shorter mechanical
ventilation lengths [134]. However, in 2021, the Surviving Sepsis
Campaign guidelines recommend against intravenous immuno-
globulins in patients with sepsis or septic shock due to low quality
of evidence [135]. Martinez et al. showed in a case-control analysis
that treatment with IgGM in patients with sepsis significantly
reduced 28-day mortality based on a validated selection of
severity-matched comparators [136]. Patients with sepsis with low
IgG levels (<670 mg/dL) had significantly lower mortality with
intravenous immunoglobulin at 28 and 90 days [133]. Early
administration (within 12 hours) of IgM- and IgA-enriched
intravenous polyclonal immunoglobulins reduced the risk of in-
ICU mortality in patients with septic shock caused by any
pathogens [137]. There is a pressing need for more precise use
of immunoglobulins in terms of patients’ selection, dosage, and
timing in sepsis, which has to be verified by future clinical studies
and may provide the greatest benefit.

Mesenchymal stem cell
Mesenchymal stem cells (MSCs) have attracted attention for sepsis
treatment due to their anti-inflammatory and tissue regenerative

potential to modulate innate and adaptive immune systems. MSCs
can also act distantly on their targets through paracrine and
extracellular vesicles (EVs) secretion-mediated pathways. Allo-
geneic adipose-derived MSCs (ADSCs) in CLP model mice at a
dose of 2 × 107 cells/kg significantly reduced mortality, bacterial
load, systemic inflammation, and multi-organ damage [138]. MSC-
derived EVs attenuated pulmonary edema and inflammation in
acute lung injury induced by an LPS-induced sepsis model in mice
[139]. The use of umbilical cord-derived human MSCs for treating
15 patients with severe sepsis was well tolerated in the first phase
1 clinical trial [140]. Perlee et al. infused healthy subjects with
allogeneic adipose MSCs (ASCs) followed by intravenous (2 ng/kg)
LPS and found that high doses of MSCs were able to increase pro-
and anti-inflammatory factors during the process [141]. Infusion of
MSCs in patients with septic shock did not elevate cytokine levels
and organ damage while dose-dependently attenuating pro-
inflammatory cytokines [142]. MSCs may be a safe and effective
strategy to treat sepsis, however, large-scale randomized con-
trolled studies are required to convince present evidence.

Discussion and future perspectives
Sepsis is a dynamic disorder of dysregulated inflammatory and
immune responses. Our previous study employed machine
learning and bioinformatics to evaluate genome-wide gene
expression profiles in sepsis patients’ blood to construct a model
that efficiently classifies sepsis into immunoparalysis and immu-
nocompetent endotypes [143]. Seymour et al. sorted sepsis into
four clinical phenotypes after a retrospective analysis of all clinical
and laboratory variables in the electronic health records of 20,189
patients with sepsis using machine learning [144]. Baghela et al.
used machine learning and data mining to analyze gene
expression signatures to classify patients with early sepsis into
five distinct mechanistic endotypes [145]. However, there is still a
large gap between the creation of AI algorithms and clinical
implementation, and further prospective studies in multiple
clinical settings are needed to improve the generalizability of
these AI models.
The application of immune monitoring in treating patients with

sepsis may facilitate early identification and diagnosis, allowing
pre-emptive action to reduce the risk of secondary infection,
organ dysfunction, and death. Using biomarkers to personalize
and monitor therapy allows physicians to modulate the immunity
of sepsis patients in real-time with selective immunotherapeutic
agents. The following points may be noted for the use of
immunotherapeutic agents in sepsis. Firstly, we need to be aware
that unnecessary suppression of immune checkpoints can disrupt
normal immune homeostasis and may cause side effects such as
inflammation and autoimmune diseases. Therefore, the mechan-
isms of action of therapeutic agents and their adverse effects need
to be precisely elucidated. Secondly, phenotypic analysis of the
patient’s immune status and the development of a panel of
biomarkers to enable targeted immunomodulatory interventions
against sepsis-induced immune alterations. Finally, establishing
rapid bedside testing, where targeted therapies will progress with
the different stages of sepsis rather than being limited to
treatments based on clinical presentation, makes sepsis treatment
a prospective strategy.

CONCLUSION
Clinical trials have demonstrated that the use of “one-target” and
“one-size-fits-all” treatment plans is unlikely to be effective for
sepsis due to the intricate host response and the diverse
pathophysiological changes. Therefore, it is important to develop
an early warning system that can help us better understand the
intricate biology, genetics, immunology, and clinical factors
involved in sepsis to achieve accurate clinical phenotypes and
precision treatment. Subsequent research endeavors should aim
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to enhance the comprehension of sepsis immune status, monitor
immune progression, identify biochemical and immune risk
factors, and explore biomarkers in sepsis patients. Furthermore,
clarifying clinical and immune stratification and implementing
strategies for AI-assisted clinical translation are essential for
advancing sepsis management.
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