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Metastasis is a formidable challenge in the prognosis of melanoma. Accurately predicting the metastatic potential of non-
metastatic melanoma (NMM) and determining effective postoperative adjuvant treatments for inhibiting metastasis remain
uncertain. In this study, we conducted comprehensive analyses of melanoma metastases using bulk and single-cell RNA sequencing
data, enabling the construction of a metastasis score (MET score) through diverse machine-learning algorithms. The reliability and
robustness of the MET score were validated using various in vitro assays and in vivo models. Our findings revealed a distinct
molecular landscape in metastatic melanoma characterized by the enrichment of metastasis-related pathways, intricate cell–cell
communication, and heightened infiltration of pro-angiogenic tumor-associated macrophages compared to NMM. Importantly,
patients in the high MET score group exhibited poorer prognoses and an immunosuppressive microenvironment, featuring
increased infiltration of regulatory T cells and decreased infiltration of CD8+ T cells, compared to the low MET score patient group.
Expression of PD-1 was markedly higher in patients with low MET scores. Anti-PD-1 (aPD-1) therapy profoundly affected antitumor
immunity activation and metastasis inhibition in these patients. In summary, our study demonstrates the effectiveness of the MET
score in predicting melanoma metastatic potential. For patients with low MET scores, aPD-1 therapy may be a potential treatment
strategy to inhibit metastasis. Patients with high MET scores may benefit from combination therapies.
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INTRODUCTION
Melanoma is projected to cause an estimated 97,610 new cases
and 7990 deaths in the United States in 2023 [1]. It is the deadliest
of the identified cutaneous malignancies. Following surgery, the
prognosis for non-metastatic melanoma (NMM) remains favorable,
with a 5-year overall survival (OS) rate of up to 95% [2]. However,
the development of tumor metastasis significantly impacts the
prognosis for melanoma. Despite the availability of sophisticated
molecularly targeted drugs, such as dabrafenib and trametinib,
the 5-year OS of metastatic melanoma (MM) is only 34% [3].
Therefore, predicting the metastatic potential of NMM and
implementing appropriate postoperative adjuvant treatments to
reduce the likelihood of metastasis are crucial scientific challenges
to improving patient prognosis.
The utilization of immunotherapy, including immune check-

point inhibitors (ICIs), tumor-infiltrating lymphocytes, and chimeric
antigen receptor T cells, highlights the shift towards precision
medicine in treating melanoma [4–6]. In the CheckMate 067
clinical trial, patients with untreated and unresectable MM who
received a combination therapy with nivolumab and ipilimumab
displayed a 6.5-year OS of 57% in those with BRAF-mutant and
46% in those with BRAF-wild-type tumors [7]. However, it remains

unclear whether immunotherapy could be used as postoperative
adjuvant treatment for NMM to inhibit metastasis with any
potential benefits for patients [8, 9].
Previous studies primarily focused on decoding melanoma

metastasis from a single molecule or single pathway perspective
[10–12]. However, the tumor microenvironment (TME) of mela-
noma is complex and dynamic, with intricate crosstalk between
cells, resulting in significant losses of key metastasis-related
information. The emergence of high-throughput sequencing
enabled the discovery of the evolutionary mechanisms of
melanoma metastasis in a new dimension. Bulk RNA sequencing
(bulk-seq) has enabled the profiling of gene expression and large-
scale clinical cohorts; however, bulk-seq masks intercellular
heterogeneity [13, 14]. Single-cell RNA sequencing (scRNA-seq)
enables the characterization of the transcriptional profiles of
individual cells [15, 16]. Combining bulk- and scRNA-seq enables
the appropriate use of clinical features from large cohorts and
transcriptional data from individual cells.
In the present study, we utilized both bulk- and scRNA-seq data

of cross-species to construct the metastasis score (MET score). The
MET score could predict the OS, metastatic potential, and
response rate to anti-PD-1 (aPD-1) in melanoma patients. We
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further validated the accuracy of the MET score using various
in vitro and in vivo assays. Our findings suggest that using aPD-1
as a postoperative adjuvant treatment can effectively inhibit
melanoma metastasis in patients with a low MET score. Moreover,
combination therapy is recommended for patients with a high
MET score.

RESULTS
Bulk-seq reveals a distinct but contradictory molecular
landscape of NMM and MM
To decode the metastasis of melanoma, integrated analysis of
cross-species bulk- and scRNA-seq data, in vitro and in vivo assays
were performed. The flow diagram of the study is displayed in
Fig. 1. The GSE46517 dataset containing gene expression data of
73 MM and 31 NMM samples was selected for bulk-seq analysis.
Genes of the keratin family, such as KRT15 and KRT16, were up-
regulated in NMM. In contrast, genes related to tumor metastasis,
such as SPP1 [17] and CENPM [18], were up-regulated in MM
(Fig. 2A, B). GO analysis, KEGG analysis, and GSEA revealed that the
up-regulated genes in MM were enriched in metastasis-related
pathways, including “positive regulation of Wnt signaling path-
way” and “positive regulation of histone modification” (Fig. 2C, E)
[19, 20]. Up-regulated genes in NMM were enriched in cell
junction-related pathways, such as “cell-cell adhesion mediator
activity,” “cell-matrix adhesion,” and “cell junction organization”
(Fig. 2D, F). Previous studies reported that compared with NMM,

the expression levels of SNAI2 [21–23], MMP2 [24–26], MIF [27–29],
and AP1S2 [30] were up-regulated in MM and were crucial roles in
the metastasis and malignant progression of melanoma. However,
in the GSE46517 cohort, SNAI2 and MMP2 were down-regulated in
MM (Fig. 2G). It was suspected that the characteristic of bulk-seq,
which homogenizes all cells, may have contributed to this
phenomenon. However, different tissues have different cellular
compositions, which can obscure a significant amount of
metastasis-related information. In general, the molecular land-
scapes of NMM and MM in GSE46517 were distinct, with MM
being enriched in metastasis-related pathways. However, the
limitations of bulk-seq may have led to some inaccuracies in the
results.

Clear evolutionary trajectory from NMM to MM at the single-
cell level
GSE189889 contained scRNA-seq data of five NMM and four MM
samples. After quality control and data preprocessing, all cells
from the nine samples were grouped into 16 clusters (Supple-
mental Material Fig. 1A–C). Nine cell types, including melanoma, T/
NK cells, fibroblasts, endothelial cells, macrophages, B cells,
smooth muscle cells, plasma cells, and mast cells, were annotated
using classical marker genes (Fig. 3A, B). The annotation of tumor
cells, i.e., melanoma, was confirmed by the “inferCNV” package
(Supplemental Material Fig. 1D). To explore the key cellular
components involved in the metastasis of melanoma, cell–cell
communication in NMM and MM was delineated and compared
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Fig. 1 Schematic diagram of the workflow of the study. The metastasis score was constructed using bulk and single-cell RNA sequencing
data through diverse machine-learning algorithms and verified by various in vitro assays and in vivo models.
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Fig. 2 Distinct but contradictory molecular patterns of NMM and MM at bulk-seq resolution. A, B Volcano plot (A) and heatmap (B)
showing the up-regulated genes in NMM and MM. C, D GO and KEGG analyses depicting the enriched pathways and biological function in
MM (C) and NMM (D). E, F GSEA showing the enriched gene lists in MM (E) and NMM (F). G Different expression levels of four metastasis-
related genes between MM and NMM. NMM non-metastatic melanoma, MM metastatic melanoma, bulk-seq bulk RNA sequencing, GO Gene
Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, GSEA gene set enrichment analysis. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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Fig. 3 Plain evolutionary trajectory from NMM to MM at the single-cell level. A t-SNE plot showing the nine cell types annotated in the TME
of melanoma. B Heatmap showing the marker genes of the nine cell types. C, D Bar (C) and box (D) plots comparing the different proportions
of the nine cell types between NMM and MM. E t-SNE plot showing the melanoma cells of NMM and MM. F Pseudotime analysis revealing the
evolutionary trajectory of melanoma cells. G Volcano plot depicting the up-regulated genes of NMM and MM at the single-cell level. H, I GO
and KEGG analyses showing the enriched pathways and biological function in MM (H) and NMM (I). J Violin plots showing the expression
levels of the four metastasis-related melanoma genes between MM and NMM at the single-cell level. NMM non-metastatic melanoma, MM
metastatic melanoma, t-SNE t-distributed stochastic neighbor embedding, TME tumor microenvironment, GO Gene Ontology, KEGG Kyoto
Encyclopedia of Genes and Genomes. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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using the “CellChat” package. The results indicated that cell
communication in MM was more tightly regulated than that in
NMM (Supplemental Material Fig. 2A, B), characterized by higher
interactions and stronger interaction strengths. In both NMM and
MM, macrophages had the strongest incoming interaction
strengths, while fibroblasts had the strongest outgoing interaction
strengths (Supplemental Material Fig. 2C, F). The signaling
patterns related to metastasis, such as ADGRE5 [31], PDGF [32],
and SPP1 [33] were elevated in MM compared to NMM
(Supplemental Material Fig. 2D, E, and S2G, H). The findings also
indicated that receptor-ligand pairs contribute to metastasis, such
as SPP1-CD44 [34, 35] and MDK-LRP1 [36], were elevated in MM
(Supplemental Material Fig. 2I, J).
We further compared the differences in the proportions of each

cell subtype between NMM and MM. A significantly lower
proportion of macrophages was observed in MM (Fig. 3C, D, and
Supplemental Material Fig. 1E). The macrophages were extracted
for subpopulation analysis. Since all macrophages were derived
from tumor tissues, we regarded them as tumor-associated
macrophages (TAMs). All TAMs were downgraded into five clusters
and further annotated as lipid-associated TAMs1 (LA-TAMs1), pro-
angiogenic TAMs (Angio-TAMs), LA-TAMs2, immune regulatory
TAMs (Reg-TAMs), and cytotoxic-TAMs based on previous findings
[37] (Supplemental Material Fig. 3A–C). Enrichment analyses
revealed that two LA-TAMs were enriched in “regulation of tumor
necrosis factor production,” “response to lipid,” and “membrane
lipid metabolic process”; Angio-TAMs were enriched in “positive
regulation of cell migration”; Reg-TAMs were enriched in
“regulation of CD8-positive, alpha-beta T cell activation”; and
Cytotoxic-TAMs were enriched in “regulation of interleukin-2
production” confirming the annotation of macrophages (Supple-
mental Material Fig. 3D). The proportion of LA-TAMs1 and Angio-
TAMs was decreased and increased, respectively, in MM tissues
(Supplemental Material Fig. 3E). Finally, pseudotime analysis
showed a clear evolutionary trajectory of TAMs from Reg-TAMs
to Cytotoxic-TAMs to LA-TAMs1 to Angio-TAMs to LA-TAMs2
(Supplemental Material Fig. 3F), which demonstrated the malig-
nant evolution during the process of metastasis.
To elucidate the mechanism of melanoma metastasis at a

higher resolution, sub-cluster analysis was performed on mela-
noma cells (Fig. 3E). The pseudotime analysis revealed the
evolutionary trajectory of melanoma cells from NMM to MM
(Fig. 3F). GO and KEGG analyses demonstrated that metastasis-
related pathways, such as the “epithelial to mesenchymal
transition” and “autophagy,” were enriched in MM cells [38, 39],
whereas “cell adhesion molecule binding” and “antigen proces-
sing and presentation” pathways were enriched in NMM cells (Fig.
3H, I). Finally, the expression levels of SNAI2, MMP2, MIF, and
AP1S2 were elevated in melanoma cells of MM (Fig. 3G, J),
consistent with the results of previous studies. The collective
findings provided a comprehensive analysis of the TME and
cell–cell communication of NMM and MM, revealing a clear
evolutionary trajectory from NMM to MM at the single-cell level.

Prognosis and metastatic potential of melanoma can be
predicted by the MET score
Differential expression analysis was performed between NMM and
MM at the bulk-seq level and between NMM cells and MM cells at
the scRNA-seq level. A total of 231 commonly up-regulated genes
in MM (i.e., potential metastatic-related genes) were screened
from bulk- and scRNA-seq analyses (Fig. 4A, Supplemental Material
Table 4). These genes were collected to establish the MET score.
Univariate Cox regression analysis with a bootstrap algorithm,
LASSO regression analysis, and multivariate Cox regression
analysis with a bootstrap algorithm were performed, and four
prognostic potential metastatic-related genes were identified for
the establishment of the MET score (Supplemental Material Fig.
4A, B and Fig. 4B). The MET score was calculated using the

aforementioned formula, and patients were stratified into low or
high MET score groups based on the median MET score (Fig. 4C),
indicating low or high metastatic potential, respectively. The
survival analysis demonstrated that patients with high MET score
had a worse OS compared to those with low MET score (Fig. 4D).
The findings were validated in the GSE65904 cohort (Supple-
mental Material Fig. 4C, D). The MET score was confirmed as an
independent prognostic factor for melanoma in the TCGA-SKCM
cohort (Supplemental Material Fig. 4E). The subgroup analysis
revealed that the MET score retained its prognostic prediction
ability under different clinicopathological conditions (Supplemen-
tal Material Fig. 5). The MET score was also applied to the pan-
cancer analysis, which revealed its consistent prognostic predic-
tion effect in various types of cancer, such as kidney chromo-
phobe, head and neck cancer, lower-grade glioma, and others
(Fig. 4E). The “AddModuleScore” function of “Seurat” was used to
calculate the MET score at the single-cell level. Angio-TAMs and
melanoma cells, particularly MM cells, exhibited elevated MET
scores compared to other cell types (Fig. 4F). In summary, the MET
score was established and validated using bulk- and scRNA-seq
data. The score may predict the metastatic potential and
prognosis of melanoma.

B16F10 cells display higher MET scores than B16F0 cells
Based on the understanding that B16F0 serves as the parental cell
line for B16 murine melanoma cells, while B16F10 is a highly
metastatic subclone [40], it is plausible to hypothesize that the
characteristics of B16F10 align with the high MET score group,
whereas those of B16F0 correspond to the low MET score group.
To confirm this hypothesis, scRNA-seq analysis of B16F0 and
B16F10 was performed. As depicted in Fig. 5A, B16F0 and B16F10
cells exhibited clear distinctions, manifesting distinct transcrip-
tome signatures. The MET score computed for each cell revealed a
significantly higher MET score in B16F10 cells compared to B16F0
cells (Fig. 5B). The results of gene set variation analysis (GSVA)
showed that B16F10 cells had higher t-value for “glycolysis,”
“hypoxia,” and “Wnt/beta-catenin signaling,” whereas B16F0 had
higher t-value of “myogenesis,” “DNA repair,” and “interferon-
gamma response” (Supplemental Material Fig. 6A). The GO and
KEGG analyses revealed that the up-regulated genes of B16F10
were enriched in metastasis-related pathways, such as “positive
regulation of epithelial cell migration,” “HIF-1 signaling pathway,”
and “PI3K-Akt signaling pathway” (Supplemental Material Fig. 6B)
[41–43]. To confirm the characteristics of our B16F0 and B16F10
cells for further in vivo and in vitro assays, RNA-seq was conducted
on both cell lines, and the MET score was recalculated based on
the newly generated data. Our B16F10 cells also had a higher MET
score than B16F0 cells at the RNA-seq level (Fig. 5C). GSEA
revealed that B16F10 up-regulated genes were enriched in
“epithelial-mesenchymal transition” and “JNK signaling” (Supple-
mental Material Fig. 6C) [38, 44].
In vitro assays were performed to validate the metastatic ability

of B16F0 and B16F10 cells. Wound healing, migration, and
invasion assays were performed, and the results consistently
demonstrated that B16F10 cells exhibited a higher metastasis
ability compared to B16F0 cells. This was evidenced by the
increased migration and invasion capabilities of B16F10 cells, as
observed in Fig. 5D–H.
In vivo assays were performed to assess the metastatic ability of

B16F0 and B16F10 cells. A lung metastasis model was established by
injecting 106 B16F0-Luc or B16F10-Luc cells into the tail vein of 6-
week-old C57BL/6 mice. Bioluminescence imaging revealed that mice
injected with B16F10-Luc cells exhibited high fluorescence intensity
(Fig. 5I), providing further evidence of the enhanced metastatic ability
of B16F10 cells. Moreover, mice injected with B16F10-Luc cells
displayed a worse OS compared to those injected with B16F0-Luc
cells (Fig. 5J). Subcutaneous xenograft tumor models were also
established, and no significant differences in tumor weight and
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volume were found between B16F0 and B16F10 cells (Fig. 5K).
Collectively, the findings of the scRNA-seq and RNA-seq analyses and
the in vitro and in vivo assays provided robust evidence supporting
the high metastatic potential of B16F10 cells. These findings further

substantiated the notion that B16F10 cells corresponded to the high
MET score group and B16F0 cells corresponded to the low MET score
group, suggesting their relevance as representative models for
studying melanoma metastasis.

Fig. 4 Predicting the metastatic potential and prognosis of melanoma by MET score. A Venn plot showing the common up-regulated
genes in MM at bulk- and scRNA-seq levels. B Forest plot of four potential metastatic-related genes most related to the prognosis of
melanoma screened by multivariate Cox regression analysis with a bootstrap algorithm. C Scatter plot showing the low and high MET score
group in the TCGA-SKCM cohort. D Kaplan–Meier survival curves based on the MET score in the TCGA-SKCM cohort. E Validation of the
prognosis prediction efficiency of the MET score in pan-cancers. F t-SNE plots showing the MET score in all cell types (upper panel), melanoma
cells (middle panel), and macrophages (lower panel). MET score metastasis score, MM metastatic melanoma, bulk-seq bulk RNA sequencing,
scRNA-seq single-cell RNA sequencing, t-SNE t-distributed stochastic neighbor embedding, TCGA-SKCM The Cancer Genome Atlas Skin
Cutaneous Melanoma. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 5 B16F0 and B16F10 could represent low and high MET score groups, respectively. A t-SNE plot showing the distribution of the B16F0
and B16F10 cells. B Comparison of MET score between B16F0 and B16F10 cells at the single-cell level. C Comparison of the MET score of B16F0
and B16F10 cells based on RNA-seq data. D, E Wound healing (D), Transwell migration (E, upper panel), and invasion (E, lower panel) assays of
B16F0 and B16F10 cells. F–H Statistical charts of wound healing (F), migration (G), and invasion (H). I Bioluminescence assay showing the
fluorescence intensity of the lung metastasis focuses on C57BL/6 mice injected with B16F0-Luc and B16F10-Luc cells. J Kaplan–Meier survival
curves of subcutaneous xenograft tumor mice injected with B16F0 and B16F10 cells. K Subcutaneous xenograft tumor models showing the
tumor weight and volume in C57BL/6 mice injected with B16F0 and B16F10 cells. t-SNE t-distributed stochastic neighbor embedding, MET
score metastasis score. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All experiments were performed at least three times.
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Immunosuppressive microenvironment of the high MET score
group may contribute to tumor metastasis
Previous studies have reported the pivotal role of immune cell
interactions within the tumor ecosystem in influencing both
metastasis and the response to immunotherapy in patients

[45–47]. Therefore, we hypothesized that distinct differences in
the immune microenvironment exist between the two MET score
groups. Utilizing transcriptome data and CIBERSORT analysis, we
observed upregulation of resting mast cells and downregulation
of gamma delta T cells in the high MET score group within the
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TCGA-SKCM cohort. Furthermore, in the GSE65904 cohort, the
high MET score group displayed up-regulated expression of Tregs
(Supplemental Material Fig. 7A, B). TIP analysis further supported
these observations; the low MET score group exhibited higher
recruitment of antitumor immune cells, including CD8+ T cells and
NK cells (Fig. 6A). These findings suggest an immunosuppressive
microenvironment associated with the high MET score group that
potentially contributes to tumor metastasis. Immunofluorescence
and flow cytometry results confirmed that CD8+ T cells were
down-regulated and Tregs were up-regulated in the B16F10
induced subcutaneous xenograft TME (Fig. 6B, C). To explore the
potential impact of the MET score on immunotherapy response,
the expression levels of common immune checkpoints were
compared between the low and high MET score groups in the
TCGA-SKCM cohort. Intriguingly, the analysis of immune check-
point expression in the cohort revealed elevated levels of CD274,
CTLA4, LAG3, PDCD1 (encoding PD-1 protein), and TIGIT in the low
MET score group (Supplemental Material Fig. 7C). A prior analysis
of 46 melanoma samples treated with aPD-1 therapy revealed
significantly higher expressions of PD-1 and PD-L1 in the response
group compared to the no-response group [48]. Thus, we suspect
that the low MET score group may have a higher likelihood of
responding to aPD-1 compared to the high MET score group. Four
bulk-seq melanoma immunotherapy cohorts were used to
construct the MET score; the results confirmed our hypothesis
(Fig. 6D). To further assess the efficacy of the MET score in
predicting immunotherapy response, we extended our analysis to
a scRNA-seq cohort with available data on aPD-1 response in
melanoma patients. The results consistently demonstrated that
individuals belonging to the low MET score group exhibited a
notably higher response rate to aPD-1 in comparison to those
categorized within the high MET score group (Fig. 6D, and
Supplemental Material Fig. 8A–C). These findings support the
hypothesis that the immune microenvironment associated with
the low MET score group may be more conducive to immu-
notherapy efficacy in melanoma patients. Immunohistochemical
assays were performed to further investigate the expression level
of PD-1, an important immune checkpoint commonly targeted in
melanoma immunotherapy. The results confirmed higher expres-
sion of PD-1 in the TME of the B16F0 induced subcutaneous
xenograft model (Fig. 6E, F). Taken together, the immunosuppres-
sive microenvironment of the high MET score group and higher
expression levels of PD-1 in the low MET score group suggest that
the low MET score group, represented by the B16F0 cells, may
exhibit a higher potential for PD-1/PD-L1 pathway-mediated
immunotherapy response.

Monotherapy of aPD-1 effectively inhibits metastasis of
melanoma in the low MET score group
Lung metastasis mouse models were constructed to investigate
whether the low MET score group exhibited a higher response
rate to aPD-1 compared to the high MET score group. C57BL/6
mice were randomly divided into four groups: B16F0-PBS, B16F10-
PBS, B16F0-aPD-1, and B16F10-aPD-1 (n= 6 per group) (Fig. 7A).
At baseline, the bioluminescence assay confirmed the absence of
lung metastasis in all four groups (Fig. 7B). At the endpoint, a

significant decrease in fluorescence intensity was observed in the
B16F0-aPD-1 group compared to the B16F0-PBS group, indicating
that aPD-1 monotherapy effectively inhibited lung metastasis in
the low MET score group. However, no significant difference in
fluorescence intensity was observed between the B16F10-PBS and
B16F10-aPD-1 groups, suggesting that aPD-1 treatment did not
significantly impact lung metastasis in the high MET score group
(Fig. 7B, C). The mice were euthanized, and the lungs were
subsequently removed for hematoxylin and eosin (H&E) staining
and immunofluorescence assays (Fig. 7D). H&E staining confirmed
that treatment with aPD-1 significantly reduced the number of
lung metastatic foci in mice injected with B16F0 cells. However, no
significant difference was observed in mice injected with B16F10
cells after aPD-1 treatment (Fig. 7C, E). Lastly, the immune
microenvironment within the lung metastatic foci of the four
groups was investigated. The aPD-1 treatment increased the
infiltration of CD8+T cells in the B16F0 groups. However, no
significant changes were observed in the infiltration of Tregs after
aPD-1 treatment (Fig. 7F). In general, the high response rate to
aPD-1 was verified in the low MET score group based on the
mouse lung metastasis models.

DISCUSSION
Metastasis plays a pivotal role in the progression of melanoma and
is strongly associated with reduced patient survival [1, 49].
Accurate prediction of metastatic potential in resected NMM
and the selection of suitable postoperative adjuvant treatments to
prevent metastasis are crucial in improving patient prognosis.
Immunotherapy, particularly the use of ICIs, has significantly
enhanced the prognosis of advanced and unresectable MM
[4, 50, 51]. However, the efficacy of ICIs in preventing the
development of metastases in resected NMM remains contentious
and requires further investigation. American Society of Clinical
Oncology guidelines do not currently recommend adjuvant
pembrolizumab and nivolumab for patients with resected stage
II melanoma, except in the context of clinical trials [9]. However,
when used as adjuvant therapy, toripalimab exhibited comparable
distant metastasis-free survival and improved safety compared to
high-dose interferon-α2b in patients with resected mucosal
melanoma [8]. In the present study, we developed and validated
the MET score using cross-species bulk-seq and scRNA-seq data
and in vitro and in vivo experiments. Our findings reveal that the
MET score serves as a robust prognostic indicator and accurately
predicts the metastatic potential of melanoma. The MET score is
also a valuable tool in determining the response rate to aPD-1
immunotherapy in melanoma patients. Thus, the MET score holds
great promise as a powerful resource for guiding effective
therapeutic strategies in managing melanoma.
First, metastasis of melanoma was investigated using bulk-seq,

shedding light on the underlying mechanisms. An intriguing
discrepancy was observed in the expression levels of two well-
established metastasis-related genes, SNAI2 and MMP2, in MM
samples from the GSE46517 dataset [21–26]. This discrepancy
highlights the limitations of bulk-seq in fully capturing the
complex dynamics of melanoma metastasis. To gain a

Fig. 6 Different metastasis potential of the two MET score groups may result from different immune microenvironment. A TIP analysis
revealing the different recruitment of immune cells in the two MET score groups. B Immunofluorescence assay showing the infiltration levels
of CD8+ T cells and Tregs in the B16F0 and B16F10 induced subcutaneous xenografts. C Flow cytometry assay of infiltration levels of
CD8+ T cells, CD4+ T cells, and Tregs in the B16F0 and B16F10 induced subcutaneous xenografts. D Different immunotherapy response rates
of the two MET score groups in the four bulk-seq melanoma immunotherapy cohorts and one scRNA-seq melanoma immunotherapy cohort.
E Immunohistochemical assay showing the different expression levels of PD-1 in the B16F0 and B16F10 induced subcutaneous xenografts.
F Bar plot of the immunohistochemical assay. MET score metastasis score, TIP tracking tumor immunophenotype, bulk-seq bulk RNA
sequencing, scRNA-seq single-cell RNA sequencing. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. All experiments were performed at least
three times.
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Fig. 7 Early intervention with aPD-1 significantly inhibits lung metastasis in the low MET score group. A Workflow of the lung metastasis
model. C57BL/6 mice were divided into four groups, namely, B16F0-PBS, B16F10-PBS, B16F0-aPD-1, and B16F10-aPD-1 (n= 6 per group), and
B16F0-Luc or B16F10-Luc cells were injected into the tail vein. B Bioluminescence assay showing the fluorescence intensity of lung metastasis
focuses on C57BL/6 mice at baseline (left panel) and endpoint (right panel). C Statistical charts of the bioluminescence assay (upper panel) and
H&E staining assay (lower panel). D Image showing the dissected lungs of C57BL/6 mice in these four groups. E Representative H&E images of
lung metastasis focuses. F Immunofluorescence assay showing the infiltration levels of CD8+ T cells and Tregs in the lung metastasis focuses
of the four groups. aPD-1 anti-PD-1, MET score metastasis score, H&E hematoxylin and eosin. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
All experiments were performed at least three times.
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comprehensive understanding, it is imperative to employ high-
resolution sequencing technologies that can provide a more
nuanced view of the metastatic process. To reconcile this
discrepancy, scRNA-seq analysis was conducted on both NMM
and MM samples. Subpopulation analysis of TAMs revealed
distinct changes in the composition of TAM subsets in MM
compared to NMM. Specifically, the proportion of LA-TAMs1
decreased, and Angio-TAMs increased in MM. LA-TAMs have been
implicated in promoting the inflammatory response and immune
system activation, while LA-TAMs associated with lipid catabolism
exhibit immunosuppressive properties and tolerance [52, 53]. On
the other hand, Angio-TAMs are characterized by high expression
of angiogenic genes and can facilitate metastasis by promoting
tumor cell intravasation and extravasation [54, 55]. Pseudotime
analysis revealed a progressive transition from an anti- to pro-
tumor phenotype in TAMs. Furthermore, the expression levels of
four previously identified metastasis-related genes were com-
pared at single-cell resolution. Interestingly, all four genes were
up-regulated in MM, providing a clear resolution to the contra-
diction observed in the bulk-seq analysis. This finding highlights
the power of scRNA-seq in capturing cellular heterogeneity and
elucidating the intricate mechanisms underlying melanoma
metastasis.
In addition, by leveraging the shared up-regulated genes in MM

and employing various machine-learning algorithms, we success-
fully developed the MET score as a predictive tool for assessing
the metastatic potential of melanoma. The validity of the MET
score was further confirmed through pan-cancer and scRNA-seq
analyses, which demonstrated the ability of the MET score to
accurately predict both metastatic potential and prognosis in
patients with various types of cancer.
Based on previous findings that highlighted the highly

metastatic nature of B16F10 as compared to B16F0 [40], it was
hypothesized that B16F10 cells would exhibit a higher MET score
compared to B16F0 cells. Consequently, these two cell lines were
considered suitable representatives of the low and high MET score
groups, respectively. This hypothesis was confirmed through
comprehensive scRNA-seq and RNA-seq analyses. In addition, a
series of functional assays, including wound healing, invasion,
migration, and in vivo tumor metastasis models, were conducted.
The data unequivocally demonstrated the enhanced metastatic
potential of B16F10 cells compared to B16F0 cells. These collective
findings robustly support using these two cell lines as representa-
tive models for characterizing the high and low MET score groups.
Given the well-established impact of the TME on metastasis and
response to ICIs in melanoma patients [46, 47, 56], it was
postulated that differences in the immune microenvironment
between the two MET score groups would exist. Using the
advanced analytical techniques of CIBERSORT and TIP, we
observed that the high MET score group exhibited an immuno-
suppressive microenvironment characterized by elevated infiltra-
tion levels of Tregs and reduced infiltration levels of CD8+ T cells
compared to the low MET score group. To validate these findings,
immunofluorescence and flow cytometry assays were performed.
The findings confirmed the previous observations, revealing the
upregulation of Tregs and downregulation of CD8+ T cells within
the TME induced by B16F10 cells in the subcutaneous xenograft
model. These results further support the notion of an immuno-
suppressive microenvironment associated with the high MET
score group, suggesting a potential mechanism underlying the
enhanced metastatic potential of B16F10 cells. As ICIs have
become a cornerstone of melanoma immunotherapy, it was
crucial to assess the expression levels of common immune
checkpoints in relation to the MET score groups. Interestingly, in
the low MET score group, there was a notable elevation in the
expression levels of several immune checkpoints, including
CD274, CTLA4, LAG3, PDCD1, and TIGIT. These findings suggest
that patients within the low MET score group may exhibit a more

favorable response to immunotherapy. Thus, the MET score in
melanoma immunotherapy cohorts of bulk- and scRNA-seq levels
was determined. Unexpectedly, the low MET score group showed
a higher response rate to immunotherapy. Considering that PD-1
is the predominant target in melanoma immunotherapy, various
PD-1 inhibitors, including nivolumab [57, 58], pembrolizumab
[59–61], and toripalimab [62, 63], have been extensively utilized in
clinical settings for MM treatment. PD-1 was chosen for further
investigation and analysis. Immunohistochemistry verified the
higher expression of PD-1 in the B16F0 induced subcutaneous
xenograft TME. Previous study had reported the association
between PD-1 expression levels and aPD-1 response rate [48]. We
hypothesized that aPD-1 could effectively inhibit the metastasis of
resected NMM in the low MET score group, thus serving as a
promising adjuvant therapy.
To further validate the hypothesis that aPD-1 can effectively

inhibit postoperative metastasis in the low MET score group, we
conducted in vivo experiments using tail vein lung metastasis
mouse models. At baseline, bioluminescence assay results
confirmed the absence of lung metastases in all four groups of
mice. However, at the endpoint, a notable decrease in fluores-
cence intensity and a significant reduction in the number of lung
metastasis foci were observed in the B16F0-aPD-1 group
compared to the B16F0-PBS group. In contrast, no significant
difference was observed between the two B16F10 groups. These
findings strongly support the view that aPD-1 treatment is highly
effective in inhibiting postoperative metastasis in the low MET
score group. Finally, immunofluorescence analysis revealed that
treatment with aPD-1 led to enhanced infiltration of CD8+ T cells
in the TME of lung metastases in the B16F0 groups. These findings
indicate better responsiveness to aPD-1 of the low MET score
groups compared to the high MET score group. Thus, aPD-1 is
recommended as a postoperative adjuvant treatment strategy to
reduce the risk of metastasis in NMM with a low MET score,
indicative of lower metastatic potential. For patients with a high
MET score, indicating a higher metastatic potential, the combina-
tion of high-dose interferon-α2b as a potential treatment option
may be warranted.
One limitation of our study is that due to the rarity of

melanoma, we could not expand the MET score to our melanoma
cohort. However, to address this challenge, we validated the MET
score using large publicly available melanoma cohorts at both the
bulk- and scRNA-seq levels. This approach allowed us to leverage
the existing data from a broader population and strengthened the
robustness and generalizability of our findings.

CONCLUSIONS
We successfully developed and validated the MET score using a
comprehensive approach that incorporates cross-species bulk-
and scRNA-seq data, as well as in vivo and in vitro assays. The MET
score is a reliable predictor of the metastatic potential and
prognosis of melanoma. For patients with a low MET score,
indicating a lower metastatic potential, we recommend using aPD-
1 as a postoperative adjuvant treatment to effectively reduce the
risk of metastasis following resection. A combination therapy
approach might be more suitable for patients with a high MET
score, suggesting a higher metastatic potential.

MATERIALS AND METHODS

Data sources
Data from different sources were utilized to develop and validate the
MET score. Bulk- and scRNA-seq data for NMM and MM were obtained
from the GSE46517 and GSE189889 datasets, respectively. To establish
the MET score, gene expression, clinical features, and survival data
were downloaded from The Cancer Genome Atlas Skin Cutaneous
Melanoma (TCGA-SKCM) cohort. External validation was performed
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using the GSE65904 cohort, which includes gene expression and
survival data for melanoma. Pan-cancer transcriptome data were
obtained from the Xena visual integration and exploration tool [64].
In addition, scRNA-seq data of the B16F0 and B16F10 cell lines were
obtained from the GSE156444 dataset. RNA-seq data of our B16F0 and
B16F10 cell lines are provided in Supplemental Material Table 1. Four
melanoma bulk-seq cohorts (GSE35640, GSE78220, GSE91061, and
GSE115821) and one melanoma scRNA-seq cohort (GSE120575) with
immunotherapy response data were used to test the efficiency of the
MET score in predicting immunotherapy responses. Taken into
consideration the impact of any anti-tumor drug therapy on gene
expression patterns, we exclusively retained samples from patients
who had not received prior targeted therapy or immunotherapy before
surgery for the construction of the MET score.

Bulk-seq analysis
Differential expression analysis was performed between NMM and MM
using “DESeq2,” and the results were visualized using the R packages
“ggplot2” and “ComplexHeatmap” [65]. Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment
analysis (GSEA) revealed specific pathways enriched in NMM and MM using
the “clusterprofiler” package.

scRNA-seq analysis
In the quality control stage, only cells with >200 detected genes and <20%
of mitochondrial genes were retained. Cell cycle effect was considered by
the “CellCycleScoring” function of the “Seurat” package.
The “NormalizeData,” “FindVariableFeatures,” “ScaleData,” and “RunPCA”

functions of the “Seurat” package were used to preprocess the data. The
“harmony” package was used for batch-effect removal. Graph-based
clustering and t-distributed stochastic neighbor embedding (t-SNE) were
performed for visualization.
Using the “FindAllMarkers” function, the marker genes of each cluster

were identified. The cells were manually annotated using classical marker
genes (Supplemental Material Table 2). The “infercnv” package was used to
confirm the annotation of tumor cells based on chromosome copy number
alterations. The “CellChat” package was used for cell–cell communication
analysis. Subsequently, macrophages and tumor cells were extracted
separately for sub-cluster analyses, and the aforementioned data
preprocessing procedures were performed. Pseudotime analysis was
performed to reveal the cell evolution process by the “monocle” package.
Finally, GO and KEGG analyses demonstrated enriched pathways in NMM
and MM at the single-cell resolution.

Construction of the MET score
Univariate Cox regression analysis with a bootstrap algorithm, least
absolute shrinkage and selection operator (LASSO) regression analysis, and
multivariate Cox regression analysis with a bootstrap algorithm were
performed to screen the potential metastatic-related genes that were
highly correlated with OS. The bootstrap coefficient of the included
potential metastatic-related gene was defined using the formula: bootstrap
coefficient = coefficient

bootstrap standard deviation [66]. The MET score was obtained using

the following formula: MET score =
Pn

i¼1bootstrap coefficient
ðincludedpotentialmetastatic� related geneiÞ ´ expression level ðincluded
potentialmetastatic� related geneiÞ:

Immune microenvironment analysis
CIBERSORT was used to quantify the immune microenvironment using the
deconvolution algorithm in the TCGA-SKCM and GSE65904 cohorts
[67, 68]. Tracking of the tumor immunophenotype (TIP) was used to
explore the anticancer immune status of the two groups based on the
tumor immune cycle in seven stages [69].

Cell culture and transfection
The B16F0 (RRID: (CVCL_0604)) and B16F10 (RRID: (CVCL_0159)) cell lines
purchased from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) were cultured as previous reported [70]. CMV-Luc-Puro
lentiviral vectors (Genomeditech, Shanghai, China) were transfected into
B16F0 and B16F10 cells and used for the bioluminescence assay. B16F0-
Luc and B16F10-Luc cells were filtered using puromycin (2mg/mL; Yeasen,
Shanghai, China) for 10 days to establish stable cell lines. All experiments
were performed with mycoplasma-free cells.

RNA-seq of B16F10 and B16F10 cells
RNA-seq was performed on the B16F10 and B16F10 cell lines. Briefly,
RNA was extracted using the TRIzol reagent (Invitrogen, Carlsbad, CA,
USA). An mRNA library was constructed by Genergy Bio-Technology
(Shanghai, China). The library was sequenced using a Novaseq6000
apparatus (Illumina, San Diego, CA, USA). The reads were aligned to the
CRCh38 human reference genome. The “edgeR” package was used for
normalization, and the expressions of RNA were transformed to
fragments per kilobase of transcript per million mapped reads for
further analysis.

Wound healing, invasion, and migration assays
For the wound healing assay, when cells reached confluence, artificial
wounds were created by scratching the growth with a sterile 200 μL pipette
tip. Photographs were taken at 0 and 24 h using a camera attached to a
light microscope (Olympus, Tokyo, Japan). For the invasion assay, Matrigel
(BD Biosciences, Franklin Lakes, NJ, USA) was equally spread in a Transwell
chamber and inoculated with 104 cells in 200 μL of serum-free Dulbecco’s
modified eagle medium. This was followed by the addition of 600 μL of
medium containing 20% fetal bovine serum (FBS) to the lower chamber.
After 60 h, the chambers were fixed in 4% paraformaldehyde (Biosharp,
Guangzhou, China) and stained with crystal violet (Yeasen). Samples were
examined by light microscope (Olympus) and photographed. For the
migration assay, the same protocol was followed, except that Matrigel was
not added, and the time of cell culture was adjusted to 24 h.

In vivo assays
A schematics diagram representing the workflow was created using
Figdraw (https://www.figdraw.com/static/index.html/). For the metastasis
model, 1 × 106 B16F0-Luc or B16F10-Luc cells were injected into the tail
vein of 6-week-old C57BL/6 mice (n= 6 per group). Bioluminescence
assays were performed by injecting 200 μL D-luciferin potassium salt
(15mg/mL; Yeasen) into the enterocoelia. The fluorescence intensity of
lung metastases was observed using an IVIS Lumina III apparatus
(PerkinElmer, Waltham, MA, USA). The survival status of the mice was
recorded daily, and survival analysis was performed.
Subcutaneous xenograft tumor models of B16F0 and B16F10 cells were

also established by injecting 5 × 106 cells per mouse into the armpits of
C57BL/6 mice (n= 4 per group). The mice were sacrificed 20 days after
injection. Tumors were weighed and measured (volume = L × W2 × 0.5,
where L and W represent the largest and smallest diameters, respectively).

Immunofluorescence, flow cytometry, and
immunohistochemical assays
An immunofluorescence assay was used to detect the infiltration levels of
CD8+ T cells and regulatory T cells (Tregs) in the TME. Cells were fixed with
4% paraformaldehyde, incubated with 0.3% Triton X-100 (Yeasen), blocked
with 5% FBS, and incubated with the primary antibody at 4 °C overnight,
followed by incubation with the appropriate secondary antibody. Nuclei
were counterstained with 4’,6-diaminoamino-2-phenylindole (Yeasen).
Fluorescence intensity was detected by confocal laser scanning micro-
scope (Zeiss, Oberkochen, Germany).
Flow cytometry was performed to confirm the infiltration levels of

CD8+ T cells and Tregs in the TME. Subcutaneous xenograft tumors were
harvested after the mice were euthanized. Tumors were digested with
collagenase IV (Sigma-Aldrich, St. Louis, MO, USA) and DNase I (Sigma-
Aldrich). For fluorochrome-labeled membrane markers, single-cell
suspensions were resuspended in phosphate-buffered saline (PBS)
(Genom, Jiaxin, China) with 0.1% bovine serum albumin (Gibco, Carlsbad,
CA, USA) and then stained. For fluorochrome-labeled intranuclear
markers, single-cell suspensions were treated with Fixation/Permeabili-
zation Solution Kit (BD Biosciences, Franklin Lakes, NJ, USA) and then
stained. Data were collected using BD Fortessa X20 (BD Biosciences) and
analyzed using FlowJo V10 software (https://www.flowjo.com/solutions/
flowjo/downloads).
Immunohistochemical assays were performed to identify the expression

levels of PD-1 in tumor tissues. The slides were baked, dewaxed, and
rehydrated. Antigen extraction was performed after incubation with 0.3%
H2O2. The sections were incubated with primary and secondary antibodies
at 4 °C overnight. The sections were then stained with diaminobenzidine
(Sigma-Aldrich), counterstained with hematoxylin (Yeasen), dehydrated
with ethanol (Yeasen), cleared with xylene (Sigma-Aldrich), and covered
with resin (Yeasen).
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All antibodies are listed in Supplemental Material Table 3.

Statistical analyses
Statistical analyses, including student’s t-test, Wilcoxon rank-sum test, one-
way analysis of variance, log-rank test, and Cox regression analyses, were
performed using R 4.1.1 (R foundation for statistical computing, Vienna,
Austria). Unless otherwise stated, the statistical significance cut-off value
was set at P < 0.05.

DATA AVAILABILITY
RNA-seq data of B16F0 and B16F10 cells are available on Supplemental Material
Table 1.
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