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Radiotherapy is often used to treat various types of cancers, but radioresistance greatly limits the clinical efficiency. Recent studies
have shown that radiotherapy can lead to ferroptotic cancer cell deaths. Ferroptosis is a new type of programmed cell death caused
by excessive lipid peroxidation. The induction of ferroptosis provides a potential therapeutic strategy for radioresistance. As the
most common post-transcriptional modification of mRNA, m6A methylation is widely involved in the regulation of various
physiopathological processes by regulating RNA function. Dynamic m6A modification controlled by m6A regulatory factors also
affects the susceptibility of cells to ferroptosis, thereby determining the radiosensitivity of tumor cells to radiotherapy. In this
review, we summarize the mechanism and significance of radiotherapy induced ferroptosis, analyze the regulatory characteristics of
m6A modification on ferroptosis, and discuss the possibility of radiosensitization by enhancing m6A-mediated ferroptosis. Clarifying
the regulation of m6A modification on ferroptosis and its significance in the response of tumor cells to radiotherapy will help us
identify novel targets to improve the efficacy of radiotherapy and reduce or overcome radioresistance.
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FACTS

● Radiotherapy can induce ferroptosis, a new type of pro-
grammed cell death.

● Inducting ferroptosis provides a potential therapeutic strategy
for radioresistance.

● m6A modification is involved in the regulation of ferroptosis in
cancers.

● Enhancing m6A-mediated ferroptosis is a promising strategy
for radiosensitization.

OPEN QUESTIONS

● How does radiotherapy induce ferroptosis?
● How does m6A modification regulate ferroptosis?
● Which ferroptosis effector molecules can be regulated via

m6A-modification to enhance ferroptosis and radiosensitivity?
● How to achieve radiosensitization through the regulation of

m6A modification?

INTRODUCTION
Radiotherapy is a common treatment for many kinds of cancers.
However, radioresistance is a major issue, which greatly limits the
clinical efficiency and prognosis of cancer patients. Overcoming
radioresistance is a major challenge in cancer treatment. There-
fore, it is urgent to uncover the potential mechanism leading to
radioresistance and find possible solutions. Recently, several

studies have shown that radiotherapy can induce ferroptosis in
various types of tumors [1–4]. Ferroptosis is a type of regulated
cell death triggered by unrestricted lipid peroxidation [5]. It has
been found to play an important role in radiation sensitization
[6–8]. Induction of ferroptosis may provide a potential therapeutic
strategy for clinical radioresistance.
N6-methyladenine (m6A) modification is the most prevalent

epitranscriptome modification in mammalian mRNA [9, 10]. It is
widely involved in the regulation of various physiological and
pathological processes by regulating RNA stability, mRNA splicing,
microRNA processing and mRNA translation [11–14]. There is
increasing evidence that m6A modification and m6A regulatory
factors regulate the susceptibility of cells to ferroptosis, thereby
affecting the radiosensitivity of tumor cells [6, 15–18]. Therefore,
understanding the regulation of m6A modification on ferroptosis
and its significance in the response of tumor cells to radiotherapy
will help to find novel targets to improve the efficacy of
radiotherapy and alleviate or overcome radioresistance. In this
review, we will summarize the mechanism and significance of
radiotherapy-induced ferroptosis, as well as the regulation of m6A
modification on it, and discuss the radiosensitization via enhan-
cing m6A-mediated ferroptosis.

THE MECHANISM AND SIGNIFICANCE OF RADIOTHERAPY-
INDUCED FERROPTOSIS
Ferroptosis and its regulation
Ferroptosis is a new type of iron-dependent programmed cell death
triggered by lipid peroxidation, which is involved in a variety of
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physiopathological processes [5]. Iron is an essential trace mineral
element in almost all organisms, but it can promote lipid
peroxidation by catalyzing the production of reactive oxygen
species (ROS) through the Fenton reaction [19, 20]. Iron can also
indirectly promote ferroptosis by acting as a cofactor in the enzymes
that promote lipid oxidation [5, 21, 22]. Lipid biosynthesis and
metabolism are closely related to ferroptosis. The peroxidation of
lipids, specifically polyunsaturated fatty acids (PUFAs), is the key
driver of ferroptosis [23, 24]. Ferroptosis is induced when the
peroxidation of phospholipid-PUFAs exceeds the scavenging
capacity of the cell antioxidant system. The synthesis of phospho-
lipids containing PUFAs provides substrates for peroxidation [25],
which requires acyl-CoA synthetase long-chain family member 4
(ACSL4) to esterify CoA onto long PUFAs [26].
Ferroptosis is regulated by multiple factors, and solute carrier

family 7 member 11 (SLC7A11) and glutathione peroxidase 4
(GPX4) are the main regulators (Fig. 1). GPX4 can use reduced
glutathione (GSH) as a coenzyme to eliminate lipid peroxides,
thereby inhibiting ferroptosis [27–29]. GSH depletion promotes
the ferroptosis of cancer cells by reducing GPX4 activity [28, 30].
The biosynthesis of GSH requires the rate-limiting precursor
cysteine (the reduced form of cystine) as the substrate. The
import of extracellular cystine is regulated by cystine/glutamate
antiporter (system XC

−) [31], which is composed of a heavy
chain (SLC3A2) and a light chain (SLC7A11) [32]. SLC7A11 is a
key transporter of cysteine and introduces extracellular cystine
into the cells. Cysteine is subsequently used to synthesize GSH
[33].
The expression and activity of SLC7A11 can be regulated at

multiple levels. SLC7A11 is a target of p53-mediated transcrip-
tional repression [34]. Interferon-γ from CD8+ T cells can impair
tumor cystine uptake by downregulating SLC3A2 and SLC7A11
[35]. Nuclear factor erythroid factor 2-related factor 2 (Nrf2) and
kelch-like ECH-associated protein 1 (KEAP1) signalling can regulate
the system XC

− and reduce ferroptosis [36]. Nrf2 is a transcription
factor that promotes the transcription of SLC7A11 under oxidative
stress by binding to the antioxidant response elements in its
promotor region [37]. The transcription of SCL7A11 can also be
regulated by the tumor suppressor BRCA1-associated protein 1

(BAP1) that encodes a nuclear deubiquitinase to reduce histone
2 A ubiquitination (H2Aub) on chromatin [38]. BAP1-mediated
deubiquitination dissociates H2Aub from the SLC7A11 promoter
and inhibits the expression of SLC7A11, which subsequently
suppresses cystine uptake and induces ferroptosis. In addition to
transcriptional regulation, the level of SLC7A11 is also regulated
by posttranslational modification and stability. For example,
noncanonical deubiquitinase OTU domain-containing ubiquitin
aldehyde-binding protein 1 (OTUB1) interacts with SLC7A11 to
prevent its degradation [39] and the adhesion molecule CD44
variant (CD44v) acts as a binding partner for stabilizing SLC7A11
[40].
Inhibition of GPX4 and SLC7A11 by corresponding inhibitors

can trigger ferroptosis, so they are ferroptosis inducers (FINs).
Ferroptosis suppressor protein 1 (FSP1), also known as AIFM2, is a
glutathione-independent ferroptosis suppressor, which acts as a
coenzyme Q10 oxidoreductase and restores the antioxidant
capacity of cells [41]. Many cancer cells are sensitive to ferroptosis
[27, 42, 43]. If oxidative damage caused by radiotherapy can to a
certain extent lead to ferroptosis, ferroptosis inducers may be
used as a radiosensitizer. Recently, ferroptosis has been recog-
nized as an important mechanism of tumor suppression and
radioresistance mediated by radiotherapy [44].

Contribution of ferroptosis to radiotherapy
It is well known that radiotherapy can induce DNA double-strand
breaks and subsequent unregulated cell death [2, 45]. Further
studies found that the response of tumor to radiotherapy involves
many other forms of regulated cell death, including apoptosis,
necroptosis, and autophagy [46–49]. In addition to DNA damage,
radiotherapy also generates ROS, which can induce oxidative
damage of cell components including the lipid membrane [50, 51].
Actually, two decades ago, it was found that ionizing radiation can
induce lipid peroxidation [52]. It has also been confirmed that ROS
induced by radiotherapy can lead to peroxidation of PUFAs
[2, 20, 53]. Excessive production of lipid peroxidation can lead to
ferroptosis [5]. In recent years, the contribution of ferroptosis to
radiotherapy efficacy or radiosensitization has attracted great
attention [54–56]. Several studies have confirmed that ferroptosis

Fig. 1 Induction of ferroptosis and radiotherapy-induced ferroptosis. Excessive production of lipid peroxides can lead to ferroptosis. GPX4
helps to eliminate lipid peroxides and exerts anti-ferroptotic effects, which requires GSH to provide reducing power. SLC7A11 imports cystine
into the cell, providing the substrate for the synthesis of GSH. Ionizing radiation induces the expression of ACSL4, which provides the
substrate PUFA-PLs for lipid peroxidation. Ionizing radiation-mediated ROS consumes cellular GSH and promotes lipid oxidation.
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is an important factor in the radiotherapy-induced cell death
response, and ferroptosis inactivation can promote radioresistance
[1–4]. Oxidative stress and ferroptosis caused by ionizing radiation
are one of the most important biological effects that destroy
tumors [4].
It has been proved that radiotherapy can induce ferroptosis in

many cancer models, including non-small cell lung cancer
(NSCLC) [1], ovarian cancer [2], fibrosarcoma, adenocarcinoma
and glioma [3]. At first, it was found that ionizing radiation could
induce ferroptosis in tumor cells of xenograft mice. Ferroptosis
agonists enhance the efficacy of radiotherapy, while ferroptosis
antagonists have the opposite effect [2]. Further research
confirmed that ferroptosis is partly responsible for radiation-
induced cancer cell death. Significant genetic and biochemical
characteristics of ferroptosis are observed in cancer cells treated
with radiation, and ferroptosis inhibitors suppress radiation-
induced cell death. Radiation-induced lipid peroxidation can
trigger ferroptosis in several cancer types and act in synergy with
ferroptosis inducers such as system XC

– inhibitor erastin and
GPX4 inhibitor RAS-selective lethal 3 (RSL3) [3]. Importantly, this
effect is attributed to increased cytoplasmic lipid peroxidation,
rather than the enhancement of DNA damage or caspase
activation. The application of ferroptosis inducers enhances the
antitumor efficacy of radiation in a murine xenograft model and
in human patient-derived models [3]. The study also confirmed
that radiotherapy can induce ferroptosis in cancer patients, and
the increase of ferroptosis in cancer patients is related to better
response to radiotherapy and longer survival periods [1]. In
addition, the measurements of ferroptosis characteristic indica-
tors, such as the expression of SLC7A11 and GPX4, as well as the
intracellular lipid peroxidation and Fe2+ concentration, indicate
that high level of ferroptosis increases the radiosensitivity of
hepatocellular carcinoma [57].
The mechanism of ionizing radiation-induced lipid peroxidation

and ferroptosis is not completely clear. First, excessive ROS
produced by radiotherapy can promote lipid peroxidation (Fig. 1).
Next, ionizing radiation induces ferroptosis partly through
upregulating ACSL4 [1]. ACSL4 is a lipid metabolism enzyme
required for the synthesis of phospholipids containing PUFAs.
ACSL4 deficiency significantly eliminates the radiation-induced
ferroptosis and leads to radioresistance. Finally, ionizing radiation
also depletes intracellular GSH, which impairs the anti-ferroptosis
effect mediated by GPX4 and further promotes ferroptosis [3, 55].
In previous studies, the effect of ionizing radiation on the
expression of SLC7A11 was not entirely consistent. As an adaptive
response, ionizing radiation induces the expression of ferroptosis
inhibitors SLC7A11 and GPX4. Inactivation of SLC7A11 or GPX4
with ferroptosis inducers (FINs) can make radioresistant cancer
cells and xenograft tumors sensitive to ionizing radiation,
indicating the potential significance of radiotherapy combined
with FINs in cancer treatment [1]. However, some studies have
reported the inhibitory effect of ionizing radiation on the
expression of SLC7A11 [2]. DNA damage-induced ataxia telan-
giectasia mutated (ATM) kinase activated by radiotherapy
transcriptionally inhibits the expression of SLC7A11 to promote
tumor ferroptosis. In addition, immune cells, especially CD8+

T cells, may participate in the induction of ferroptosis during
radiotherapy. Immunotherapy can make tumors sensitive to
radiotherapy by promoting ferroptosis of tumor cells. IFNγ
produced by immunotherapy-activated CD8+ T cells can promote
tumor ferroptosis and induce radiosensitization. Radiotherapy-
activated ATM and IFNγ-induced STAT1 signalling jointly repress
SLC7A11 to reduce cystine uptake and enhance tumor lipid
peroxidation and ferroptosis [2]. This explains why radiotherapy
and immunotherapy can synergistically induce tumor ferroptosis.
In addition, other mechanisms mediated by DNA damage, such as
mitochondrial DNA stress-activated autophagy, may contribute to
ferroptosis in radiotherapy [58].

THE REGULATION OF M6A MODIFICATION ON FERROPTOSIS
OF CANCERS
m6A modification and its regulators
N6-methyladenine (m6A) is the most common post-transcriptional
modification of eukaryotic RNAs [9, 10]. Modification is a dynamic
reversible process coordinated by m6A methyltransferases and
demethylases (Fig. 2A). m6A methyltransferases, also known as
m6A writers, acts in the form of complex and transfer methyl onto
the nitrogen atom on amino group at the 6th position of adenine.
Known m6A writers include methyltransferase-like (METTL) -3/14/
16, Wilms tumor 1-associated protein (WTAP), RNA binding motif
protein 15 (RBM15), RBM15B, vir-like m6A methyltransferase
associated (VIRMA), and zinc finger CCCH-type containing 13
(ZC3H13). m6A demethylases, such as fat mass and obesity-
associated protein (FTO), AlkB homolog 5 (ALKBH5) and ALKBH3,
act as m6A erasers to remove m6A from modified RNAs. The m6A
writers and erasers cooperate to maintain the dynamic balance of
m6A modification. The m6A modification of RNAs can be
recognized by the m6A reader proteins to exert different biological
functions. Many proteins function as m6A readers, including
YT521-B homology (YTH) domain-containing proteins (YTHDC) 1/
2, YTH domain-containing families (YTHDF) 1/2/3, insulin-like
growth factor 2 mRNA binding proteins (IGF2BP) 1/2/3, hetero-
geneous nuclear ribonucleoprotein (HNRNP) A2B1 and C, and
eukaryotic initiation factor 3 (eIF3).
RNA m6A modification is involved in the regulation of RNA

splicing, translation, stability, translocation, and advanced struc-
ture, which has broad biological significance [11, 12]. m6A
modification and its regulatory genes affect many aspects of
tumors [11, 12, 59]. For example, m6A writer METTL3-mediated
signalling can promote the development and progression of
tumors [60–65], and resistance [18] of tumors to chemotherapy
and radiotherapy. The m6A demethylation of different signal
molecules mediated by demethylase FTO promotes the occur-
rence, growth, metastasis and progression of tumors [66–72]. The
biological significance of m6A modification is very complicated,
largely depending on the targets of the modification [73, 74].

m6A modification is involved in the regulation of ferroptosis
Many studies have linked m6A modification with programmed cell
death including ferroptosis [75–78]. The system XC

− plays an
important role in the control of ferroptosis. The regulation of
system XC

− and its components through m6A modification will
greatly affect cell’s ferroptosis activity. SLC3A2 and SLC7A11 are
two subunits of system XC

−, and are the targets of the m6A reader
YTHDC2 to execute ferroptosis in lung adenocarcinoma cells
[79, 80]. YTHDC2 can disrupt the stability of Homeo box A13
(HOXA13) mRNA in m6A-dependent manner. The latter can
regulate the transcription of SLC3A2 subunit of system XC

− (Fig.
2B). Therefore, YTHDC2 inhibits SLC3A2 and induces ferroptosis by
inhibiting HOXA13 in an m6A-indirect manner [80].
SLC7A11, the catalytic subunit of system XC

−, is the key
regulatory target of m6A modification. YTHDC2 destabilizes
SLC7A11 mRNA in an m6A-dependent manner [79]. METTL3 can
mediate m6A modification of SLC7A11 mRNA (Fig. 2B), which
stabilizes SLC7A11 mRNA and promotes its translation, thus
enhancing ferroptosis resistance of lung adenocarcinoma [81] and
hepatoblastoma [82]. This process may need YTHDF1 [81] or
IGF2BP1 [82] as the m6A readers of SLC7A11. IGF2BP1 can
enhance SLC7A11 mRNA stability by inhibiting SLC7A11 mRNA
deadenylation in an m6A-dependent manner [82]. METTL14
induces m6A modification of SLC7A11 mRNA at 5’-UTR and
subsequent YTHDF2-dependent degradation. Hypoxia blocks
ferroptosis of hepatocellular carcinoma by inhibiting METTL14 in
a HIF-1α-dependent manner [83]. SLC7A11 has been identified as
a potential FTO regulatory gene. FTO regulates ferroptosis of
papillary thyroid carcinoma cells by mediating m6A demethylation
of SLC7A11, thus preventing the progression of thyroid cancer
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[84]. NF-κB activating protein (NKAP) is an RNA-binding protein
that acts as an inhibitor of ferroptosis. NKAP protects glioblastoma
cells from ferroptosis by binding to m6A and promoting SLC7A11
mRNA splicing and maturation [85]. m6A-hypomethylation med-
iates upregulation of fibroblast growth factor receptor 4 (FGFR4) in
anti-HER2 resistant breast cancer. FGFR4 inhibition triggers
ferroptosis via the β-catenin/TCF4-SLC7A11/FPN1 axis [86].
FSP1 is another important regulatory target of m6A modifica-

tion. miR-4443 can regulate m6A modification and expression of
FSP1 by targeting METTL3, and subsequent FSP1-mediated
ferroptosis [87]. Therefore, exosomal miR-4443 promotes cisplatin
resistance in NSCLC. High-density lipoprotein-binding protein
(HDLBP) binds to and stabilizes ferroptosis-associated lncRNA
(lncFAL), which mediates an FSP1-dependent anti-ferroptosis in

hepatocellular carcinoma (HCC) [88]. lncFAL interacts with FSP1,
inhibiting Trim69-dependent FSP1 polyubiquitination degrada-
tion. YTHDF2 could promote lncFAL expression in an
m6A-dependent manner. These results support the great potential
of targeting FSP1 as a promising therapeutic approach for cancer
patients [88]. Moreover, the upregulation of METTL3 induced by
fear stress stabilizes FSP1 mRNA through m6A modification, which
leads to glioma progression by inhibition of ferroptosis. The data
provide a new understanding of the psychological impact on
tumor development [89]. Similarly, GPX4 is also regulated by m6A
modification. Neutrophil extracellular traps (NETs) mediate m6A
modification and regulate sepsis-associated acute lung injury by
activating ferroptosis in alveolar epithelial cells. The upregulation
of ferroptosis depends on the m6A modification of GPX4 induced

Fig. 2 m6A modification and its regulation on ferroptosis of cancers. A The m6A writers and erasers cooperate to maintain a dynamic
balance of m6A modification, while the m6A readers recognize m6A modification on RNAs and mediate downstream biological functions.
B Several major regulatory factors of ferroptosis regulate ferroptotic cancer cell death through m6A modification.
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by METTL3 [90]. METTL16 enhances m6A modification-mediated
GPX4 expression and anti-ferroptosis effect to promote breast
cancer progression [91]. IGF2BP3 is highly expressed in lung
adenocarcinoma and desensitizes ferroptosis in a manner that
depends on its binding capacity to m6A-methylated mRNAs
encoding anti-ferroptotic factors, including GPX4, SLC3A2, acyl-
CoA synthetase long-chain family member 3 (ACSL3), and ferritin
heavy chain 1 (FTH1) [92].
Another target modified by m6A methylation is Nrf2. WTAP can

promote m6A modification on 3’-UTR of endogenous antioxidant
factor Nrf2 mRNA and its stability by binding with m6A reader
YTHDF1 on the m6A site of Nrf2 mRNA [93]. Thus, WTAP
accelerates bladder cancer progression by targeting Nrf2 through
m6A-dependent ferroptosis regulation. It was reported that RNA
demethylase ALKBH5 can affect the progression of various tumors.
ALKBH5 promotes ferroptosis in hypopharyngeal squamous cell
carcinoma by inhibiting the expression of Nrf2 in an m6A-IGF2BP2-
dependent manner. ALKBH5 demethylates the 3’-UTR m6A sites of
Nrf2 mRNA. m6A modification and the m6A reader IGF2BP2 are
necessary to stabilize Nrf2 mRNA [94]. ALKBH5 also suppresses the
progression of thyroid cancer by reducing the m6A level of TIAM1
and inducing ferroptosis through m6A-TIAM1-Nrf2/HO-1 axis [13].
Since IGF2BP3 recognizes m6A modification of Nrf2 mRNA and
stabilizes it, IGF2BP3 knockdown significantly promotes ferroptosis
of hepatocellular carcinoma cells after administration of sorafenib
[95].
In addition to directly mediating m6A modification of anti-

ferroptotic factors such as SLC7A11 [81, 82], FSP1 [87] and GPX4,
m6A regulatory factors also regulate ferroptosis through other
different mechanisms. High glucose and high fat (HGHF)-induced
ferroptosis in osteoblasts may be the main cause of osteoporosis
in diabetes. Osteoblast ferroptosis is activated through the
METTL3/ASK1-p38 signalling pathway to promote HGHF-induced
diabetic bone loss [96]. METTL14 promotes doxorubicin (DOX)-
induced ferroptosis in cardiomyocytes through regulating the
KCNQ1OT1-miR-7-5p-TFRC axis. DOX induces the upregulation of
METTL14, which catalyzes the m6A modification of the long non-
coding RNA KCNQ1OT1. KCNQ1OT1, as a miR-7-5p sponge, can
prevent miR-7-5p-mediated degradation of transferrin receptor
(TFRC) and subsequent ferroptosis [97]. The m6A writer WTAP-
mediated m6A modification on circCMTM3 inhibits hepatocellular
carcinoma ferroptosis by recruiting IGF2BP1 to increase the
stability of Parkinson’s protein 7 (PARK7) [98]. PARK7 shows
antioxidant activity and anti-ferroptosis effect [99].
m6A modification may regulate ferroptosis through autophagy

signaling pathway [100, 101]. The ferroptosis of hepatic stellate
cells (HSCs) induced by m6A modification can be attributed to
autophagy activation by stabilizing BECN1 mRNA via m6A reader

protein YTHDF1 [100]. BECN1 is a key regulator of autophagy, and
promotes ferroptosis through the regulation of system XC

− activity
in cancer cells [102]. Dihydroartemisinin (DHA) increases the
autophagy level of HSCs, thus preventing the activation of HSCs
via ferroptosis pathway. The up-regulated m6A modification by
reducing FTO is required for DHA to activate autophagy and
alleviate liver fibrosis by inducing ferroptosis in HSCs [103].
On the contrary, the induction of ferroptosis will lead to

changes in m6A modification level and m6A regulator activity. Our
recent research has found that oxidative stress induced by the lack
of an important antioxidant gene GPX8 causes reprogramming of
the m6A epitranscriptome in oral cancer cells [104]. The m6A level
of HSCs treated with ferroptosis inducers is enhanced by up-
regulating the methyltransferase METTL4 and down-regulating
the demethylase FTO [100]. Erastin can induce HSCs ferroptosis,
thereby alleviating liver fibrosis in mice, while HSCs-specific
inhibition of m6A modification can weaken erastin-induced HSC
ferroptosis in murine liver fibrosis. The ferroptosis inducers may be
used to prevent liver fibrosis. These studies link m6A with
ferroptosis; therefore, targeting m6A to induce ferroptosis may
be a promising strategy for ferroptosis-based therapy.

IMPROVING RADIOSENSITIVITY VIA M6A-MEDIATED
FERROPTOSIS
Radiosensitization through inducing ferroptosis
The main mechanism leading to radioresistance of tumor cells is
hypoxia. Hypoxia can also trigger ferroptosis by inducing ROS
production and activate hypoxia-inducible factors [55]. Therefore,
FINs-mediated ferroptosis of tumor cells may overcome the
radioresistance induced by hypoxia [6]. By inducing ferroptosis,
tumor cells can be re-sensitive to radiotherapy [6–8]. It was found
that a ferroptosis-related gene prognostic index may predict
biochemical recurrence and radiation resistance of prostate cancer
patients receiving radical radiotherapy [105]. Changing the lipid
composition of cell membrane by regulating lipid metabolism will
affect the sensitivity of tumor cells to radiotherapy. For example,
the lack of ACSL4 reduces the efficacy of radiotherapy by
inhibiting the synthesis of PUFAs [1].
SLC7A11 is a main inhibitor of ferroptosis and plays a key

regulatory role in radioresistance. As mentioned above, radio-
therapy can induce ferroptosis of cancer cells [55]. Radiotherapy
can also inhibit ferroptosis to induce radiotherapy resistance by
inducing the expression of SLC7A11 and GPX4 as a negative
feedback regulatory pathway (Fig. 3). The combination of
ferroptosis inducer targeting SLC7A11 and radiotherapy synergis-
tically induces ferroptosis and improves the sensitivity of cancer
cells to radiotherapy [1, 3]. Several pharmacologic inhibitors of

Fig. 3 SLC7A11 and GPX4 are two key target molecules to re-sensitize tumor cells through inducing ferroptosis. The activity of SLC7A11
can be regulated by many regulatory proteins or small molecules.
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SLC7A11, such as erastin and sulfasalazine, can increase the
sensitivity of cancers to radiotherapy or re-sensitize radioresistant
cancer cells [1, 3, 106]. Application of ferroptosis inducers can
improve the curative effect of radiotherapy. Many proteins
regulate ferroptosis and radioresistance through controlling
cellular level of SLC7A11. It was reported that RNA-binding motif,
single-stranded interacting protein 1 (RBMS1), an RNA-binding
protein, directly binds to the translation initiation factor eIF3d to
bridge the 3’- and 5’-UTR of SLC7A11, which in turn promotes the
translation of SLC7A11 [107]. RBMS1 ablation promotes ferroptosis
through inhibiting SLC7A11 translation and SLC7A11-mediated
cystine uptake. RBMS1 depletion or inhibition of RBMS1 expres-
sion by nortriptyline hydrochloride sensitizes radioresistant lung
cancer cells to radiotherapy through promoting ferroptosis [107].
The suppressor of cytokine signaling 2 (SOCS2) promotes
ferroptosis and radiosensitization in cancer by enhancing the
ubiquitination of SLC7A11 [57]. The expression of SOCS2 is
negatively correlated with radiosensitivity of HCC and positively
related to ferroptosis. In terms of mechanism, the SH2-domain of
SOCS2 can specifically interact with the N-terminal domain of
SLC7A11. SOCS2 acts as a bridge to transfer the attached ubiquitin
to SLC7A11, and promotes K48-related polyubiquitination degra-
dation of SLC7A11. Therefore, SOCS2 can enhance the ubiquitina-
tion degradation of SLC7A11 and promote ferroptosis, which
suggests that targeting SOCS2 may improve the efficiency of
radiotherapy [57]. In addition, immunotherapy can enhance the
efficacy of radiotherapy, which cooperatively inhibits SLC7A11 to
induce ferroptosis of tumor cells [2, 35].
SLC7A11 is also regulated by p53. p53 is the most common

mutation gene in human cancers, and is also the main effector
to radiotherapy. Studies have found that ferroptosis is related to
p53-mediated radiosensitization. Radiotherapy-mediated p53
activation promotes irradiation-induced ferroptosis partly
through antagonizing irradiation-induced SLC7A11 expression
and inhibiting glutathione synthesis [44]. p53 deficiency
promotes radioresistance in tumors partly through SLC7A11-
mediated ferroptosis inhibition. Ferroptosis inducers that inhibit
SLC7A11 can cause radiosensitization of p53-deficient tumor
cells, tumor organoids and tumors. Therefore, Ferroptosis
inducers combined with radiotherapy can be used to treat
p53-mutant cancers [44]. In addition, PKR-like ER kinase (PERK), a
sensor of unfolded protein response, facilitates ferroptosis via
regulating p53 expression to down-regulate SLC7A11, contri-
buting to the sensitivity of HCC cells to high linear energy
transfer carbon ions radiation [108].
Nrf2 induces transcription of antioxidant genes, which plays an

important role in resisting oxidative damage [19]. Many genes
involved in cellular iron homeostasis are regulated by Nrf2. Since
ferroptosis is triggered by unrestricted lipid peroxidation and
iron accumulation, Nrf2 inhibition significantly increases sensi-
tivity to ferroptosis [19]. Many Nrf2 target genes are involved in
the regulation of ferroptosis [109]. At first, SLC7A11 is one of the
downstream target genes of Nrf2. SLC7A11-mediated ferroptosis
inhibition contributes to radioresistance. Nrf2 can directly bind to
the SLC7A11 promoter region and induce the expression of
SLC7A11, thereby promoting radioresistance by inhibiting
ferroptosis [110]. Esophageal squamous cell carcinoma patients
with high Nrf2 nuclear expression and SLC7A11 expression have
poor prognosis and treatment responses [110]. FSP1 has also
been identified as a transcriptional target of Nrf2, and acts as the
key effector in Nrf2-mediated ferroptosis resistance and radio-
resistance in KEAP1 deficient lung cancer cells [109, 111]. KEAP1
is frequently mutated or inactivated in lung cancers, while KEAP1
mutant lung cancers are resistant to most therapies including
radiotherapy. It is ubiquinone (CoQ)-FSP1 axis that mediates
ferroptosis resistance and radioresistance in KEAP1 deficient lung
cancer cells. Ferroptosis induced by pharmacological inhibition
of the CoQ-FSP1 axis makes KEAP1 deficient lung cancer cells or

patient-derived xenograft tumors sensitive to radiation
[109, 111]. Inhibition of the Nrf2-antioxidant response element
(ARE) pathway can improve the sensitivity of artesunate and
eliminate the head and neck cancer resistance to ferroptosis
[112]. AGuIX nanoparticles based on gadolinium have been
proven to improve the radiosensitivity of cancers, which may
regulate the anti-ferroptosis system by inhibiting the Nrf2-GSH-
GPX4 signaling pathway [113].
Regulating GPX4 activity also affects ferroptosis and radio-

sensitivity of cancers. The inhibition of GPX4-mediated ferroptosis
and the reduction of lipid peroxidation have been proven to be
related to hypoxia-induced radioresistance. Hypoxic NSCLC cells
express higher level of angiopoietin-like 4 (ANGPTL4) compared to
normoxic cells. The expression level of ANGPTL4 is positively
correlated with the radioresistance of NSCLC cells and xenograft
tumors [114]. ANGPTL4 derived from the exosomes of hypoxic
cells is ingested by adjacent normoxic cells, leading to the
radioresistance of these neighbouring cells in a GPX4-dependent
manner [114]. Both intracellular and exosomal ANGPTL4 con-
tribute to hypoxia-induced radioresistance of lung cancer. Erastin
decreases the radioresistance of NSCLC cells partially by inducing
GPX4-mediated ferroptosis [106]. Hyperbaric oxygen can signifi-
cantly enhance the ferroptosis of oral squamous cell carcinoma
(OSCC) cells induced by X-ray, and re-sensitize radioresistant OSCC
cells through GPX4/ferroptosis regulation [115].
In addition, the metabolism or related mechanism of iron,

lipid, and amino acids also mediate the radioresistance by
regulating ferroptosis. Iron metabolism is associated with
ferroptosis and radiotherapy efficacy. Iron-saturated holo-
Lactoferrin could increase total iron content, which induces
ferroptosis in triple-negative breast cancer cells and sensitizes
tumor cells to radiotherapy [116]. Stearoyl-CoA desaturase
(SCD1) is an enzyme responsible for the formation of oleic acid
and palmitoleic acid. It was reported that targeting SCD1 can
enhance radiation-induced ferroptosis and immunogenic cell
death, thus improving radiation sensitivity [117]. SCD1 inhibitors
can induce ferroptosis by reducing the formation of mono-
unsaturated fatty acids. Inhibition of SCD1 makes tumor cells
sensitive to radiotherapy and inhibits the growth of esophageal
squamous cell carcinoma in vivo. The metabolomics analysis of
irradiation-resistant HepG2 cells shows that the intracellular
amino acids, especially N-acetylglutamine, increase significantly
during the stress of ferroptosis [4]. N-acetylglutamine is a
derivative of glutamine, which plays an important role in
maintaining redox homeostasis. Glutamine starvation can
significantly promote ferroptosis, and vice versa. Bioinformatics
analysis based on TCGA data indicates that the glutamine
transporter SLC1A5 is an independent prognostic amino acid-
ferroptosis gene. The knockdown of SLC1A5 promotes lipid
peroxidation and irradiation-mediated oxidative damage. The
results indicate that SLC1A5 may be a potential target for
radioresistance as an anti-ferroptosis gene [4]. The stem cell
characteristics of tumor cells are also related to the resistance of
radiotherapy and ferroptosis. It was found that the spheroids
with the stem cell-like traits formed by nasopharyngeal
carcinoma (NPC) cells exhibit a certain degree of radioresistance
and ferroptosis resistance, while itraconazole partially reverses
the radioresistance of NPC spheroids through inducing ferrop-
tosis [118].
miRNAs can also affect radiation resistance by regulating

ferroptosis. The expression of miR-7-5p in clinically relevant
radioresistant cells is up-regulated, and the radioresistance is lost
after miR-7-5p knockdown [119]. Knockdown of miR-7-5p
increases ROS production and ferroptosis, characterized by
increased intracellular Fe2

+ amount, up-regulation of ferroptosis
marker gene expression, and excessive production of lipid
peroxides [120]. These indicate that miR-7-5p controls radio-
resistance by producing ROS, which can lead to ferroptosis.
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Radiosensitization through m6A regulation
Concurrent radiotherapy and chemotherapy is the most common
treatment after surgery [121]. Radiotherapy is an effective treatment
for many kinds of cancers, and radioresistance is the main reason
for local treatment failure. However, the potential mechanism and
valuable markers of radioresistance have not been well established
[17]. m6A modification plays an important role in gene expression
regulation. Although m6A modification is involved in the develop-
ment of tumor, its role in therapeutic resistance is still unclear.
Understanding the effect of m6A modification on radiation
response is of great significance for finding new targets and
improving tumor treatment. Considering that m6A modification is
involved in the regulation of ferroptosis and ferroptosis contributes
to radiosensitivity, m6A methylation will regulate the efficacy of
radiotherapy. In fact, some studies have shown that m6A RNA
modification contributes to the regulation of radiotherapy resis-
tance [6, 15, 16]. The dysregulated expression of many m6A
enzymes, including demethylase FTO, methyltransferase METTL3
and WTAP, mediates the development of resistance of cancer cells
to chemotherapy and radiotherapy [122, 123].
It was reported that m6A demethylase FTO enhances the

radioresistance of NPC via promoting deubiquitylase OTUB1-
mediated anti-ferroptosis [17]. The OTUB1 can mediate ferroptosis
via the stabilization of SLC7A11 in human cancer [39]. The inhibition
of OTUB1 on ferroptosis depends on the interaction between
OTUB1 and SLC7A11 [17]. FTO, as an m6A demethylase, erases the
m6A modification of the OTUB1 transcript, which up-regulates the
expression of OTUB1 and leads to radiotherapy resistance of NPC
[17]. The expression of FTO in radioresistant NPC tissues and cells is
significantly higher than that of its parental radiosensitive tissues
and cells. Accelerating ferroptosis by FTO inhibitor or ferroptosis
inducer overcomes the radioresistance of NPC patient-derived
xenografts [17]. This is the first report that m6A regulator can
promote tumor resistance to radiotherapy by suppressing radiation-
induced ferroptosis (Fig. 4), suggesting that m6A regulator may
serve as a potential therapeutic target and prognostic biomarker. It
was reported that FTO can also enhance the radiotherapy resistance
of cervical squamous cell carcinoma through regulating expression
of β-catenin by reducing m6A levels in its mRNA transcripts [124].
Methyltransferase METTL3-mediated m6A modification plays a

critical role in the development and maintenance of radioresistance.
Cell response to ultraviolet-induced DNA damage can induce RNA
m6A modification, which is regulated by METTL3 and FTO. METTL3
knockdown impairs the repair of irradiation-induced DNA damage
and improves therapeutic sensitivity, suggesting the importance of
m6A modification in the irradiation-mediated DNA damage response
[125]. The expression of METTL3 is increased in glioma stem-like cells
(GSCs), which plays an important role in the maintenance and
radioresistance of GSCs by regulating m6A modification of SOX2
mRNA [126]. METTL3-mediated m6A mRNA contributes to the
resistance of pancreatic cancer and NSCLC to radiotherapy [18, 127].

After carbon ion radiotherapy, the level of METTL3 and its mediated
m6A modification in NSCLC cells is increased. METTL3-mediated
mRNA m6A modification inhibits the decay of H2A histone family
member X (H2AX) mRNA and enhances its expression, thus
facilitating DNA damage repair and cell survival [127].
Several studies have also proved the regulatory effect of m6A

readers on radioresistance. For example, YTHDC2 promotes radio-
therapy resistance of NPC cells by activating the IGF1R/ATK/
S6 signalling axis. YTHDC2 is consistently highly expressed in
radioresistant NPC cells, and its expression is associated with the
therapeutic effect of radiotherapy. YTHDC2 can bind to insulin-like
growth factor 1 receptor (IGF1R) mRNA and promote translation
initiation of IGF1R mRNA, which in turn activates the IGF1R-AKT/
S6 signalling pathway [128]. YTHDF3 accelerates the translation of
the DNA repair protein RAD51 homologue 4 (RAD51D) in an
m6A-dependent manner, thereby mediating effect of hepatocyte
nuclear factor 1-alpha (HNF1α) on radioresistance of cervical cancer.
HNF1α is significantly up-regulated in radioresistant cervical cancer,
thus promoting the resistance of cervical cancer cells to radiation.
HNF1α enhances the transcription of YTHDF3, and
YTHDF3 subsequently promotes m6A modification of RAD51D
mRNA [129]. We must note that most of the above studies have
shown to a large extent that radiotherapy can be sensitized
through m6A regulation, but only a few studies have attributed
radiosensitization to ferroptosis mediated by m6A modification [17].
Since the radiosensitivity of tumor cells can be regulated by

m6A modification, targeting m6A regulators has shown great
potential in tumor therapy [130, 131]. Many studies have
attempted to identify small molecule inhibitors associated with
m6A. Some compounds have been reported as potential METTL3
inhibitors [132, 133]. The anti-HIV drug elvitegravir has also been
identified as a novel inhibitor of METTL3, which can inhibit the
metastasis of esophageal carcinoma [134]. STM2457 is the first
METTL3 catalytic inhibitor with high affinity for METTL3 [135]. It
can reduce overall m6A levels and mRNA translation efficiency,
and inhibit the growth of acute myeloid leukemia (AML). STM2457
exhibits a synergistic effect with PD-1 antibody in colorectal
cancer [136]. Some small molecules can inhibit demethylase
activity of m6A eraser proteins. Several FTO inhibitors have been
identified, such as rhein [137], N-CDPCB [138], CHTB [139], and
meclofenamic acid [140] and its derivatives [141, 142]. For
example, rhein can disrupt the binding of FTO to m6A RNAs by
competitively binding to the FTO catalytic domain [137].
Meclofenamic acid specifically inhibits FTO by competitively
binding to FTO sites of m6A-modified oncogenic mRNAs, thus
effectively inhibiting cancer cell proliferation [140]. Some small
molecule inhibitors of FTO can exert effective anti-tumor effects
by making cancer cells sensitive to the cytotoxicity of T cells [143].
A compound with anti-ALKBH5 catalytic activity has been
identified to inhibit the proliferation of leukemia cells [144].
BTYNB has been shown to block the interaction between m6A

Fig. 4 The m6A regulatory factor promotes tumor resistance to radiotherapy by suppressing radiation-induced ferroptosis. The
demethylation of OTUB1 transcript by FTO promotes the expression of OTUB1, which inhibits ferroptosis through binding to SLC7A11 and
stabilizing it.
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reader IGF2BP1 and its substrate RNAs [145], leading to cancer cell
cycle arrest [146]. Cucurbitacin B and 7773 block different RNA
binding domains of IGF2BP1 respectively and regulate different
downstream targets [147, 148]. CWI1-2 and JX5 have been
identified as IGF2BP2 inhibitors, which selectively disrupt the
binding of IGF2BP2 to its m6A modified target RNAs and exhibit
good anti-leukemia activity [149, 150].
Before these m6A related inhibitors enter clinical application,

further comprehensive research is needed, especially to
strengthen in vivo research and clinical trials. Currently, only a
few studies have conducted similar work. For example, the
treatment of mice with R-2-hydroxyglutarate (R-2HG), a FTO
inhibitor, can inhibit FTO demethylase activity, thus increasing the
overall m6A levels and leading to anti-tumor effects in vivo [151].
METTL3 inhibitor STM2457 impairs engraftment and prolongs
survival in AML mouse model [135]. METTL3 inhibitor STC-15 has
entered the first stage of clinical trials [131]. In addition, the role or
significance of these inhibitors in radiotherapy and radioresistance
is not yet well understood. It is still unclear whether the role of
these inhibitors is related to the ferroptosis. Due to the context-
dependent epigenetic characteristics of cancers, it is also
necessary to improve the target selectivity of inhibitors. However,
some m6A related inhibitors have been shown to inhibit cancer
progression, indicating that m6A could be a target for cancer
therapy.

CONCLUSIONS
Radiotherapy is widely used to treat cancer, but often leads to
resistance. The well-known mechanisms of radiation resistance
include activation of DNA repair and inhibition of cell apoptosis.
Therefore, it is valuable to make cancer cells sensitive to radiation by
alternative cell death pathways [3]. Recently, it has been confirmed
that lipid peroxidation can trigger ferroptosis, which is also a major
feature of cell death induced by radiotherapy and contributes to
radiosensitivity [1–4]. The combination of ferroptosis inducers and
radiotherapy will greatly improve the efficacy of radiotherapy.
Importantly, many anti-tumor drugs have been found to cause ROS
accumulation, oxidative stress, and subsequent ferroptosis in tumor
cells. For example, cisplatin can trigger ferroptosis by directly
consuming intracellular GSH and inhibiting GPX4 [152]. Temozolo-
mide induces ferroptosis by promoting the expression of SLC7A11
[153]. Sorafenib can inhibit system XC

− or regulate HIF-1α/SLC7A11
pathway to promote ferroptosis [154, 155]. Therefore, they can be
used as ferroptosis inducers. This can help us further understand the
role of concurrent chemotherapy during radiotherapy and guide us
in selecting appropriate chemotherapy drugs. As the most common
post-transcriptional modification, m6A methylation regulates ferrop-
tosis through different effectors and affects the sensitivity of tumor
cells to radiotherapy. This makes various m6A regulatory molecules a
promising therapeutic target in radiotherapy. Radiosensitization
through m6A-mediated ferroptosis may be an alternative method
for improving the efficacy of radiotherapy in the future.
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