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Prostate development and regeneration depend on prostate stem cell function, the delicate balance of stem cell self-renewal and
differentiation. However, mechanisms modulating prostate stem cell function remain poorly identified. Here, we explored the roles
of Yes-associated protein 1 (YAP) in prostate stem cells, prostate development and regeneration. Using YAP? CD133-CreER mice,
we found that stem cell-specific YAP-deficient mice had compromised branching morphogenesis and epithelial differentiation,
resulting in damaged prostate development. YAP inhibition also significantly affected the regeneration process of mice prostate,
leading to impaired regenerated prostate. Furthermore, YAP ablation in prostate stem cells significantly reduced its self-renewal
activity in vitro, and attenuated prostate regeneration of prostate grafts in vivo. Further analysis revealed a decrease in Notch and
Hedgehog pathways expression in YAP inhibition cells, and treatment with exogenous Shh partially restored the self-renewal ability
of prostate sphere cells. Taken together, our results revealed the roles of YAP in prostate stem cell function and prostate
development and regeneration through regulation of the Notch and Hedgehog signaling pathways.

Cell Death Discovery (2023)9:339; https://doi.org/10.1038/s41420-023-01637-1

INTRODUCTION

Prostate cancer has become one of the most common and lethal
diseases among American men [1]. Although most prostate cancer
cases show an indolent tumor behavior and prostate cancer
treatment is developing rapidly, it remains a major public health
problem. Therefore, the malignant disease has been the focus of
intense investigation to understand its pathobiology and provide
improved treatment [2, 3]. Though the hypothesis that malig-
nancy, including prostate cancer, may be aroused due to a re-
awakening of the developmental process that occur during
organogenesis has not been fully proved, several recent
researches have demonstrated key similarities in gene expression
patterns between prostate organogenesis and cancer [4-6]. Thus,
to gain a deeper understanding of prostate development is
considerably rational.

The most distinctive features of stem cell are self-renewal and
differentiation, and the delicate balance between them drives
organ development and repair [7, 8]. Therefore, the deregulation
of these biological process leads to cancer and developmental
defects. However, many of the critical regulators of stem cell and
the underlying mechanisms remain poorly identified. The prostate
is a small walnut-sized male sex accessory gland that is located
below the bladder and surrounds the urethra. In the mouse, the
initial outgrowth of epithelial buds arises at approximately
E17.5 days in a 19-21-day gestation strain [9]. The continuous
morphogenesis process can be categorized in a series of
developmental stages, including organ determination, epithelial

initiation or budding, branching morphogenesis, differentiation,
and pubertal maturation [10]. In the neonatal prostate, stem cells
differentiate into basal, luminal and neuroendocrine cells and
contribute to the development of the prostate [11]. In contrast, in
the adult prostate, the respective stem/progenitor cells within the
lumina and basal cell lineages are relatively quiescent and
maintain epithelial homeostasis [12]. Meanwhile, many researches
have shown that stem cells within basal cell lineage retain the
capacity for multi-lineage differentiation [13, 14]. Although many
efforts have been made in the study of prostate stem cell self-
renewal and differentiation, underlying mechanism of prostate
stem cell regulation remains largely unknown [15-18].

As the downstream effector of the Hippo pathway, the Yes-
associated protein (YAP, also known as YAP1) is a multifunctional
transcriptional coactivator acting by binding to the TEA domain
family members (TEAD), and plays crucial roles in organ size
regulation [19, 20]. Several studies have reported that mutations
of Hippo pathway kinase or YAP overexpression leads to the
overgrowth of various organ and appendages [20-23]. Targeting
deletion of YAP”" in mice results in developmental arrest around
E8.5d, demonstrating a critical role for normal development [24].
Meanwhile, YAP also take a crucial role in maintaining stem cell
pluripotency. It has been reported that YAP knockdown leads to
loss of embryonic stem (ES) cell pluripotency, while ectopic
expression of YAP prevents ES cell differentiation in vitro and
maintains stem cell phenotypes even under differentiation
conditions [25]. Moreover, YAP regulates a multitude of stem
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cell-related genes, including Nanog. Oct4 and Sox2, via binding
directly to their promoters [25, 26]. Thus, it was reasonable to
expect that YAP could function as a key stem cell regulator and be
critical for prostate development. Here, we determined the role of
YAP in the functional regulation of prostate stem cell by applying
time- and organ-conditional-specific YAP-deficient transgenic
mouse model, prostate regeneration model, and primary prostate
sphere culture.

RESULTS
Generation and characterization of stem cell-specific YAP
knockout (scYAPKO) mice
To explore the function of YAP in prostate stem cells, which play
key roles in prostate development, and avoid lethality of YAP
deletion embryo, the Loxp-CreER recombination system was
applied to conditionally inactivate the YAP alleles in stem cells of
the urogenital sinus at late embryonic stages (E17) by Tamoxifen
induction. As Fig. 1A depicted, YAP was highly expressed in
urogenital sinus-enriched prostate stem cell. CD133, a five-
transmembrane domain containing glycoprotein, is expressed on
the surface of a variety of normal stem cell and cancer stem cell,
including prostate [27-31]. Combining flox YAP mice with CreER
recombinase linked to the CD133 promoter, we were able to
develop stem cell-specific YAP knockout (scYAPKO) mice
(Fig. 1B-D). For experimental purposes, YAP"" mice or YAP™/*,
CD133-CreER littermates were used as wild-type (WT) controls.
Genotyping results from both groups are demonstrated in Fig. 1E.
To confirm that YAP proteins have been partially deleted in
YAPKO mice prostate, YAP immunohistochemistry (IHC) staining
was applied (Fig. 1F, G). We found that YAP expression was
significantly reduced in scYAPKO mice compared to WT mice, and
cells with reduced YAP expression showed a regional distribution
(Fig. TF-H). Moreover, to ensure that deletion of stem cell YAP will
not affect serum testosterone concentration, the serum from
scYAPKO and WT mice was collected and we found no obvious
difference in testosterone concentration (Fig. 11). In conclusion, we
successfully developed a conditional specific YAP-deficient
transgenic mouse model and validated its efficacy.

Reduced prostate size with impaired branching
morphogenesis and partial loss of glandular epithelial
infolding in scYAPKO mouse prostate

To examine the phenotype changes between two groups after
prostate development, mice were sacrificed at 6 weeks old when
the prostate has gone through most of the developmental process
and is basically mature. The gross appearance from 6-week-old
scYAPKO anterior prostate (AP) and ventral prostate (VP) exhibited
slight size reduction as compared with WT; however, dorsal-lateral
prostate (DLP) was comparable (Fig. 2A). Then we quantified the
scale of prostate lobes using relative prostate lobe weight (mg
lobe/g body weight). We found that the weight of scYAPKO AP
and VP were reduced compared to WT AP and VP while DLP from
both groups were comparable (Fig. 2B). During ductal morpho-
genesis, the prostatic epithelial buds elongate and canalize to
form ducts, which ultimately give rise to paired lobes with unique
branching patterns [32]. To analyze the branching morphogenesis,
microdissection of digested prostate lobes from WT and scYAPKO
mouse were applied (Fig. 2C). The results showed a significant
reduction in branching ducts in all scYAPKO prostate lobes. The
quantification results of ductal tips were also provided (Fig. 2D).
Meanwhile, the dilated and malformed prostatic ducts were also
found in scYAPKO mice, which may explain the slight difference in
prostate size and weight between the two groups.

The histological examinations were also carried out to show
histological differences (Fig. 2E, F). The prostate epithelial cells
often form infolding within each duct, thereby increasing surface
area [33]. Compared with WT prostates, scYAPKO prostates

SPRINGER NATURE

performed a distinct decrease of the infolding structure (Fig. 2E,
quantitative results depicted in Supplementary Fig. 1). In addition,
there were several regions composed of irregularly arranged cells
in scYAPKO prostate sections (as depicted by red arrows in
Fig. 2F). While WT luminal cells aligned and formed a single layer,
scYAPKO luminal cells often aggregated as clusters, possibly due
to impaired cell migration. Taken together, our data suggested
that stem cell YAP plays critical roles in prostate morphogenesis
and development.

YAP ablation regulates prostate epithelial cell proliferation,
apoptosis, and impairs luminal epithelial cell maturation

To explore the possible mechanisms leading to impaired
prostate development of the scYAPKO mice, we applied Ki67
immunohistochemistry and TUNEL assay to evaluate the
proliferation and apoptosis of prostate epithelial cells. The
wild-type mouse prostate undergoes extensive branching
morphogenesis and 85% of the adult number of ductal tips
and branch points are formed during the first 2 weeks after birth
[9]. By puberty, when prostate start to mature in response to
androgen, the proliferation of epithelial cells rised again [15, 33].
Therefore, we compared the proliferative nuclei staining from 4-
week-old scYAPKO and WT prostates. The results indicated that
scYAPKO prostate displayed less proliferative epithelial cells
compared with WT controls, possibly leading to diminished
branching morphogenesis (Fig. 3A, B). To investigate apoptosis
in prostate epithelial cells, we applied TUNEL assay on mice at
6 weeks of age. While WT prostates showed barely detectable
apoptotic cells, we identified more apoptotic cells located in the
lumen of scYAPKO mouse prostates (Fig. 3C, D). The increased
apoptotic signals in scYAPKO mouse prostates indicated that
YAP-mediated signaling plays an important role in maintaining
epithelial cell survival.

In normal mouse prostate, functional luminal epithelial cells
express cytokeratin 8 (CK8) and androgen receptor (AR) [33, 34].
We next examined the consequences of YAP loss on luminal cell.
Immunofluorescence of CK8 and Immunohistochemistry of AR
were applied. In WT mouse prostates of 6 weeks age, luminal
cells were tall columnar epithelial cells aligned and formed a
single layer. However, some regions in scYAPKO mouse
prostates were composed of irregularly arranged cells (Figs. 2E,
F and 3E). These luminal cells lacked columnar morphology,
aggregated as clusters, had decreased cytoplasmic content and
more crowded, condensed nuclei. Furthermore, as Fig. 3F shows,
AR expression of these abnormal luminal cells in scYAPKO
mouse prostates was significantly reduced compared with WT
mouse. These results indicate that YAP ablation on stem cell
impairs stem cell differentiation and luminal cell maturation.
Together, these data imply that YAP expressed on stem cells
promotes epithelial cell proliferation and branching morpho-
genesis in early prostate development, and may inhibit epithelial
cell apoptosis and affect prostate stem cell differentiation during
later development stages.

YAP regulates prostate regeneration and branching
morphogenesis

As a male sex accessory gland, the sensitive response of the prostate
to androgen makes it an ideal model for studying stem cell
properties. It has long been recognized that the rodent prostate
has an infinite cyclic regenerative capacity, atrophying in the
presence of androgen deprivation but regenerating the organ in
response to androgen replenishment [35]. Therefore, rodent prostate
stem cell can be defined by their ability to regenerate the prostate
during the androgen “deprivation-repletion” cycle. To explore the
function of YAP in prostate regeneration, Verteporfin (VP), an inhibitor
of YAP, was used to inhibit the function of YAP (Fig. 4A). As the
regeneration process proceeded, YAP inhibition in mice resulted in a
dramatic decrease in prostate size compared to normal regeneration,
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especially at day 14 (Fig. 4B). However, the relative prostate weight
was similar in both groups (Supplementary Fig. 2). Next, the prostate
histology at different stages of regeneration was compared (Fig. 4C
and Supplementary Fig. 3). The vehicle group showed significantly
regressed prostate histology at all stages of regeneration, such as
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dramatically regressed lumen and atrophied cytoplasm. As for the
other two groups, several deficiencies could be found in YAP-
inhibited prostate in addition to the decreased gland size. First,
reduced luminal folding was noticeable in YAP-inhibited prostates
beginning at day 3 (Fig. 4C). Second, by 14 days, normal regeneration
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Fig. 1 Generation and genotyping of scYAPKO mice by Cre-loxP strategy. A The expression of YAP in the urogenital sinus of EO mice was
investigated via IHC. Scale bar is 50 pm. B Schematic of the floxed YAP alleles for conditional disruption. The genomic DNA containing exons
1-3 was shown and exons 1-2 were disrupted via CreER recombinase. C, D Breeding strategy to generate the tissue-specific scYAPKO mice.
YAPV CD133-CreER littermates were applied as scYAPKO mice and YAPﬂ/fi mice or YAP*/*, CD133-CreER littermates were used as WT controls.
E Genotypes of tail snips of YAP", CD133-CreER mice. The CD133 gene promoter is selectively expressed in the stem cells. The size of floxed
YAP, WT YAP, CD133-ERT2 mutant band, and WT band are 392 bp, 305 bp, 320 bp, and 586 bp, respectively. F, G The expression of YAP in 6-
week-old scYAPKO and WT APs and DLPs were determined by IHC, respectively, scale bars are shown. The quantification data was quantified
and presented in (H). I The serum T levels in the adult WT and scYAPKO males. Results are presented as mean+SEM (n=4). IHC
immunohistochemistry, scYAPKO stem cell-specific YAP knockout, WT wild-type, AP anterior prostate, DLP dorsal-lateral prostate, T

testosterone.

prostate luminal cells aligned regularly and formed a monolayer with
columnar luminal cells showing a natural nuclear versus cytoplasmic
ratio, while YAP-inhibited prostate luminal cells lacked columnar
morphology, had reduced cytoplasmic content and more crowed,
condensed nuclei (Fig. 4D-F). Third, lumen secreta of YAP-inhibited
prostate at day 14 was reduced compared to normal regeneration,
implying to some extent a disruption of luminal cell function.
Together, above results suggested that YAP plays critical roles in
prostate regeneration and branching morphogenesis.

YAP is required for prostate regeneration and epithelial cell
differentiation

To uncover how YAP regulates prostate regeneration, we
examined cell proliferation and apoptosis during prostate
regeneration (Fig. 5A-C). In the vehicle group, the proliferation
rate (% Ki67") of regressed prostate epithelial cells remained
consistently low because of the absence of androgen stimula-
tion. In the other two groups, as the regeneration time
progressed, the proliferation of epithelial cell first increased
and then decreased, and the most vigorous proliferation was at
3d and 7d. By 14d, the epithelial cell proliferation rate was
dramatically reduced. However, in 3d and 7d YAP-inhibited
prostate, Ki67-positive cells were significantly reduced com-
pared to normal regeneration prostate, possibly leading to a
reduction in gland size (Fig. 5A, B). On the other hand, the
apoptotic cells were significantly increased in the regressed
prostate than in the other two groups. Moreover, we could find
several apoptotic cells in YAP-inhibited prostate, especially at
day 14, whereas no apoptotic cells were found in normal
regeneration prostate (Fig. 5C).

Next, we investigated the consequences of YAP inhibition on
basal and luminal cell layers (Fig. 5D-F). In the regressed
prostate, the ratio of basal to luminal cells (% CK5"/CK8"
positive cell) was increasing due to the continued apoptosis of
luminal cells. Meanwhile, the ratio of basal to luminal cells in
normal regenerating prostates kept decreasing due to the
differentiation of CK57/CK8" intermediate cells and the con-
tinued loss of CK5 expression. As for YAP-inhibited prostates, the
ratio of basal to luminal cells also decreased. However, on day 1,
the ratio of basal to luminal cells in YAP-inhibited prostates was
significantly reduced compared to normal regenerating pros-
tates, yet by day 14 it became higher than in normal
regenerating prostates (Fig. 5D-F). Moreover, CK57/CK8™" inter-
mediate cells on day 1 were also decreased in YAP-inhibited
prostates (Fig. 5F). Finally, YAP-inhibited prostates retained a
high ratio of basal to luminal cells, suggesting that the
differentiation of CK57/CK8" intermediate cells was arrested
by YAP inactivation. Together, these data indicate a critical role
of YAP in prostate cell fate determination.

YAP regulates prostate regeneration via Notch signaling and
Hedgehog signaling

Given that verteporfin inhibits YAP function primarily by
competitively binding to its downstream transcription factor
TEADs (TEAD1-4) [19, 36, 37], we used Co-IP assay to verify that
YAP function was suppressed. In YAP-inhibited prostates, a
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dramatic reduction in TEADs proteins bound to YAP was found
compared to normal regenerating prostates (Fig. 6A). Next, we
examined the mRNA expression of YAP and several key genes
directly regulated by it in all groups. Although the expression
of YAP was comparable in both YAP-inhibited and normally
regenerating prostates, the expression of its direct targets,
including CTGF and Cyr6, was dramatically decreased in YAP-
inhibited prostates compared with normally regenerating
prostates (Fig. 6B).

Since AR signaling is essential for the development and
regeneration of the prostate, the mRNA expression of AR and
its classical targets including Probasin and Nkx3.1 during early
regeneration was first examined to explore the potential
molecular mechanisms of YAP regulation. Unfortunately, we
did not find significant differences between YAP-inhibited and
normally regenerating prostates (Fig. 6C). Then we examined
MRNA expression of several key genes and transcription factors
critical for prostate development and regeneration during early
regeneration (Fig. 6D, E). As shown in Fig. 6D, E, the expression
of Notch signaling and Hedgehog signaling genes of YAP-
inhibited prostates, including Notch1, Hes1, DII, Shh, Gli1,
cyclinD1, and cyclinE1, was significantly decreased compared
to normal regenerating prostates. These results suggest that
YAP may modulate prostate progenitor cell proliferation and
differentiation through Notch signaling and Hedgehog
signaling.

YAP inactivation in prostate stem cells leads to impaired
differentiation and in vivo prostate graft regeneration

To examine the function of YAP in prostate stem cell self-
renewal and differentiation in vivo, and to eliminate possible
mesenchymal and hormonal effects of YAP inactivation, the
prostate graft regeneration assay was performed using shYAP or
control prostate primary cells mixed with normal urogenital
sinus mesenchymal (UGSM) cells (Supplementary Fig. 4). Two
months after engraftment into the SCID mice, both shYAP and
control prostate stem cells were able to regenerate glandular
structures (Fig. 7A). However, shYAP prostatic grafts weight was
dramatically reduced and the number of glandular structures
was also significantly decreased (Fig. 7A, B). Moreover, the
enfolding and epithelial morphology of glandular structure were
compromised in shYAP grafts (Fig. 7C). Interestingly, examina-
tion of graft cell lineage commitment revealed the same pattern
as depicted in prostate development and regeneration. In
control grafts, the luminal cells which was completely differ-
entiated exhibited a typical columnar secretory epithelial
morphology and aligned in a single layer; in addition, only
limited numbers of basal cells were present. In contrast, shYAP
grafts lacked columnar morphology and had reduced cytoplas-
mic content, as well as the persistence of high number of basal
cells (Fig. 7C-E). Furthermore, the epithelial proliferation rate (%
Ki67") of shYAP grafts was also significantly decreased
compared to control grafts (Fig. 7F, G). Taken together, these
data suggest that YAP functions in a stem cell-cell-autonomous
manner to modulate prostate epithelial proliferation and
differentiation, as well as branching morphogenesis.

Cell Death Discovery (2023)9:339
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Fig. 2 Disruption of YAP alleles on stem cells leads to perturbed prostate morphogenesis and histology. A Overview of the prostate
glands dissected from 6-week-old WT mice and scYAPKO mice. B Relative prostate lobe weight (mg lobe/g body weight) of scYAPKO mice
were measured. C Epithelial ducts were dissected from each prostate lobes of the prostate of 6-week-old mice from both genotypes, and the
quantification data are shown in (D). The data shown above are presented as mean + SEM (*P < 0.05 vs. WT littermate controls; **P < 0.01 vs.
WT littermate controls, n = 4). E, F Histologic examination of 6-week-old WT and scYAPKO mice prostates. AP and DLP tissue sections were
subjected to hematoxylin and eosin staining. The infolding glandular epithelium is shown by black arrows. The irregular region is shown by
red arrows. Scale bars are shown. n =4-5 for each group. AP anterior prostate, DLP dorsal-lateral prostate, VP ventral prostate.

YAP regulates prostate stem cells through Notch signaling
and Hedgehog signaling

In order to explore prostate stem cell self-renewal and differentia-
tion directly, prostate primary cells from 10-week-old mice were
isolated and subjected to 3D sphere culture in vitro (Supplementary
Fig. 4). To test prostate stem cell self-renewal in the absence of YAP,
prostate spheres were transfected with shYAP lentivirus and
passaged. YAP ablation significantly inhibited the sphere formation
potency of prostate stem cells, resulting in decreased sphere
number and reduced sphere size (Fig. 8A-C). We also explored the
expression of YAP and its direct target genes in cultured prostate
spheres. The mRNA expression of YAP and its target genes were
dramatically decreased in shYAP prostate spheres (Fig. 8D).

To further determine whether YAP modulates prostate stem
cells through the Notch signaling and Hedgehog signaling, the
mRNA expression of both pathway genes in cultured prostate
spheres and scYAPKO prostates were examined. Notchl, a
critical modulator of early prostate development, in shYAP
prostate spheres and scYAPKO prostates was significantly
reduced (Fig. 8E, F). Consistently, its target gene Hes1, as well
as DII1 were also decreased. Meanwhile, the expression of Shh

Cell Death Discovery (2023)9:339

and its target genes including Gli1, CyclinD1, and CyclinE1 was
also reduced. Together, these results suggest that Notch
signaling and Hedgehog signaling are regulated by YAP. To
further confirm the above results, cultured prostate spheres
were treated with Shh. Interestingly, Shh treatment significantly
increased the size of shYAP prostate sphere, but it remained
smaller in diameter than control prostate spheres (Fig. 8G). The
results indicate that Shh treatment partially restored stem cell
function in shYAP prostate spheres.

DISCUSSION

In this study, we elucidate the crucial role of YAP as a modulator
of prostate stem cell, prostate development and regeneration
via multiple models. YAP is highly expressed in mouse
urogenital sinus-enriched prostate stem cell. YAP deletion on
prostate stem cell attenuated prostate size, branching morpho-
genesis and luminal epithelial cell enfolding by diminishing cell
proliferation. Simultaneously, YAP ablation on stem cell affected
its cell fate determination leading to luminal cell maturation
failure. Moreover, YAP inhibition significantly affected the

SPRINGER NATURE
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vs. WT littermate controls, n = 4). E CK8 immunofluorescence in DLP of 6-week-old mice from both genotypes. Scale bars are shown. F AR IHC
in the adult scYAPKO and WT littermate prostates. Scale bar is 100um.

regeneration process of mice prostate, leading to impaired
regenerated prostate. Mechanistically, YAP regulates the expres-
sion of Notch and Hedgehog pathway genes, which are critical
for prostate stem cell activity and prostate development.

Over the past two decades, YAP, as a key downstream
component of the Hippo pathway, has increasingly been connected
with developmental processes and tissue repair, being intimately
related to the function of tissue-specific progenitor cells. Plenty of
studies have suggested that YAP activity is key for the growth of
whole organs, for amplification of tissue-specific progenitor cells
and for cell proliferation. The simple overexpression of YAP in the
liver is sufficient to induce a fourfold increase in liver mass caused
by the proliferation of mature hepatocytes [26, 38]. On the other
hand, liver-specific inactivation of YAP causes a decrease in
hepatocyte proliferation and an increase in apoptosis [39].
Conditional deletion of YAP in embryonic cardiomyocytes affect
their proliferation leading to severe hypoplasia, while overall heart
size is increased via YAP overexpression [40-42]. YAP overexpres-
sion in transgenic mice intestine expands its progenitor cells and
intestine cell proliferation [26]. Moreover, lack of YAP impairs
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intestine epithelia proliferation and crypt repopulation leading to
rapid death during intestinal regeneration [43]. However, few
studies focused on YAP function during prostate development and
prostate stem cell. A previously study has reported that YAP
deletion embryos arrested during developmental around E8.5 and
displayed developmental perturbations that included a notably
shortened body axis, convoluted anterior neuroepithelium, caudal
dysgenesis, and failure of chorioallantoic fusion [24]. Since plenty
researches have showed that YAP plays a key role in regulating stem
cell, we applied YAP ablation on stem cells to investigate its function
during prostate development. Therefore, we established a unique
conditional knockout transgenic mouse model to investigate YAP
function in prostate stem cell and development by inserting CreER
recombinase behind the promoter of CD133 [44, 45].

As a male sex accessory gland, epithelial as well as mesenchyme AR
and a series of common and organ-specific morphological regulatory
genes expressed in unique temporal and spatial patterns can regulate
various aspects of prostate development and regeneration
[10, 34, 46-51]. Meanwhile, the delicate balance between stem cell
differentiation and self-renewal drives major prostate development
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and regeneration. It has been reported that Lgr4/Gpr48 modulates
prostate stem cell properties through Wnt/B-catenin signaling, and
Lgr4 ablation mice had comprised branching morphogenesis and
delayed epithelial differentiation, leading to decreased prostate size
and impaired luminal cell function [15]. In our study, we employed YAP
deletion specifically on stem cells rather than the whole genome and
we surprisingly found that the phenotype of scYAPKO mouse prostate
was similar to that of Lgr4 ablation mouse. In contrast, our data indicate
that YAP modulates prostate stem cell via the Notch and Hedgehog
pathways. Plenty of studies have highlighted the critical role of Notch
signaling in prostate development and growth, and it has been
reported that Notch1 inactivation leads to defects in prostate epithelial
differentiation [52-54]. Dalrymple et al. demonstrated that Notch
signaling is essential for the survival of transient amplifying prostate
cells [55]. Furthermore, Shahi et al. found that the Notch signaling plays
critical roles in prostate progenitor cells and concluded that Notch
signaling is required to modulate the cell cycle and permit normal
development and differentiation of prostate spheres [56]. Consistent
with our results, Li et al. suggested that cell-autonomous epithelial Shh-
Gli signaling and stromal Gli signaling are both essential to the renewal
and differentiation potential of epithelial stem and progenitor cells
[57, 58].

In conclusion, our data indicate that YAP plays crucial roles in
normal prostate development, ductal branching and epithelial cell
differentiation. Recently, a numerous of publication suggested
dysregulation of YAP is associated with plenty of human cancer
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initiation and cancer stem cell proliferation, including prostate
cancer [36, 59-62]. Nguyen et al. have found that YAP over-
expression can induce the development of age-related prostate
tumors [60]. Furthermore, Lee et al. reported that YAP over-
expression contributes to the development of enzalutamide
resistance by induction of cancer stemness [62]. Our recent studies
also found that YAP was overexpressed in prostate cancer stem cell
and YAP inhibition significantly diminished its sphere-forming
ability in Matrigel (data not shown). Therefore, we proposed that
YAP plays important roles not only in prostate stem cell but also in
prostate cancer stem cell and tumor progression. Our findings argue
that the investigation of roles for YAP in human prostate cancer is
highly warranted from another perspective.

MATERIALS AND METHODS

Mice

All animal experiments were conducted in accordance with the principles
and procedures of the Guiding Principles for the Care and Use of Animal
Research and were approved by the Institutional Animal Care Committee.
YAP (Stock Number: 027929) and CD133-CreER (Stock Number: 017743)
mice were purchased from The Jackson Laboratory and described
previously [27, 39]. Combining the conditional site-specific recombination
system with tissue-specific expression of CreER allows gene modification in
a spatiotemporally regulated manner. It is worth noting that the mode and
dosage of Tamoxifen administration in late pregnancy is closely related to
the pregnancy abortion rate of the female mice [44]. The study was once
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spheres treated 10 days with recombinant Shh or control media.

suspended due to the high abortion rate. After many attempts and failures,
we finally found a suitable administration mode and dosage.

All mice were maintained on the C57BL/6 background. DNA extracted
from mice tails was used for PCR to determine the genotype of the mice.
Primers used for genotyping YAPY™ and CD133-CreER mice are listed below:

Primer Sequence (5’-3') Product size
(bp)
YAP-5loxp-F TGAGGAGCTTTTAGCATTGGTGCAGT Wild-type: 200
YAP-5loxp-R AGCAGTGTGGTTACTTTTCCAGGTT Mutant: 311
YAP-3loxp-F AGCC TGCAGACTTTTGTGGCA Wild-type: 305
YAP-3loxp-R AACGTCATCTCTTCCCTAAGTCCCT Mutant: 392
Common CAGGCTGTTAGCTTGGGTTC
Wild-type TGCTGATTGCCTTCTGTCTG Wild-type:
reverse 586 bp
Mutant AGGCAAATTTTGGTGTACGG Mutant:
reverse 320 bp

We defined midday of the day of vagina plug as embryonic day E0.5 and
most pregnant mice give birth on E20 in our study. Also, induced Cre
recombination, as previously described, were administered by Tamoxifen
to chosen genotype dams at E17 [44]. Tamoxifen (T5648, Sigma) was
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dissolved at a concentration of 20 mg/ml in corn oil (C8267, Sigma) and
first administered by intraperitoneal injection at the selected time points
(6 mg/40 g of body weight), then changed to oral gavage (5 mg/40g of
body weight) due to the high abortion rate.

Castration of 10-week-old male mice was performed using standard
protocols. Two weeks after castration, placebo pellets, DHT pellets
(Innovative Research of America, Sarasota, FL, 7.5mg) and Verteporfin
(MedChemExpress, 1.5 mg/d/25g of body weight) were implanted and
administrated by intraperitoneal injection according to the experimental
protocol. Following prostate regeneration, mice were sacrificed at different
time points.

Mouse prostate dissection, branching morphogenesis, and
histology
Mice were euthanized, serum was obtained via cardiac puncture, and the whole
urogenital tract was excised into PBS. Prostate lobes were dissected under an
illumination microscope, weighted and further fixed in 4% paraformaldehyde for
6-8h, depending on size. Fixed tissues were then serially dehydrated with
ethanol, embedded in paraffin, and completely sectioned according to standard
procedures. Sections of 5-um thickness were stained with hematoxylin and eosin.
ImageJ was applied for further image analysis.

Micro-dissections of prostate lobes were performed as previously
described [9]. Distinct ductal networks of individual prostate lobe were
observed after incubation in 1% collagenase-PBS at 37°C for 30 min.
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Numbers of main ducts and distal ductal tips from three independent
experiments were counted for statistical analysis.

Immunohistochemistry and immunofluorescence

Sections were dewaxed in xylene and rehydrated in graded ethanol
concentrations under standard procedures. The antigens were retrieved in
10 mM sodium citrate buffer (PH6.0) for 15 min at 95 °C. Then the slides were
incubated in 3% H,0, and 10% normal goat serum for 10 min individually to
block endogenous peroxidase activity. Subsequently, primary antibodies were
used to incubate with the slides overnight at 4 °C. The primary antibodies used
were YAP (Abcam ab14074), AR (Abcam ab74272), Ki67 (Cell Signaling
Technology 12202 S), CK5 (Abcam ab52635), CK14 (Proteintech Group 60320-
1-g) and CK8 (Abcam ab9023 or ab53280). Then second antibody was added
and incubated for 1h. Development was achieved through use of 3-3™-
diaminobenzidene, and then Mayer’'s hematoxylin was applied to counterstain
the sections. For immunofluorescence, a fluorescein isothiocyanate-labeled
secondary antibody (Abcam) was applied to slides. Tissue sections were then
counterstained with 4',6-diamidino-2-phenylinodole. For the detection of
apoptosis, the Terminal-deoxynucleotidyl Transferase Mediated Nick End
Labeling (TUNEL) Apoptosis Assay Kit (Beyotime Biotechnology) was used
according to the manufacturer’s instructions.

Co-immunoprecipitation (IP) and immunoblot analysis
Whole-cell lysates from tissue were incubated with lysis buffer (pH 7.4,
0.025M Tris, 0.15M NaCl, 0.001 M EDTA, 1% NP4 0, 5% glycerol, 5 mM
PMSF) for total protein extraction. Co-IP was performed using Pierce™
Crosslink Magnetic IP/Co-IP Kit (Thermo Scientific) following the manu-
facture’s instructions. For each experiment, 10 ug YAP antibody (Cell Signal
Technology 14074) was used. The immunoprecipitates were then
subjected to SDS-PAGE and standard immunoblotting procedures. Pan-
TEAD antibody (Cell Signal Technology 13295) was used.

RNA extraction and quantitative RT-PCR

Total RNA was isolated from prostate tissue and primary prostate sphere using
Trizol reagent (Invitrogen) and then applied to cDNA synthesis via the Reverse
Transcription System (Thermo Scientific). PCR was performed using Applied
Biosystems 7900 RT-PCR System (Thermo Scientific) and SYBR Green PCR
Master Mix (Roche) to analyze mRNA expression. The relative expression of
each gene was calculated using the comparative Ct method and normalized to
GAPDH. Primer sequences are listed in the Supplementary Table.

Prostate sphere-forming assay and in vivo prostate
regeneration

Prostate primary cell isolation in 8-week-old mice and prostate sphere-
forming assay were performed as described [63-65]. After 8 days of
culture, prostate spheres were collected, counted, and passaged by
dispase digestion. Approximately 15,000 cells were then reseeded in
Matrigel in a 12-well plate for secondary spheroid formation. In several
experiments, 0.25ug/ml recombinant mouse Sonic Hedgehog (MedChem-
Express) was used to treat prostate spheres.

Sphere lentivirus infection was performed as described [65]. Briefly,
shYAP lentivirus was transfected into sphere cells using the centrifugation
method at 2000 rpm and room temperature for 90 min. Then the pellet
was resuspended and reseeded as described above [63].

In vivo prostate regeneration was performed as described [63, 64]. In
brief, UGSM cells were isolated and cultured as described. Then infected or
control sphere cells were mixed with UGSM cells and resuspended in
Matrigel on ice. The cell mixture was injected subcutaneously into SCID
mice. The transplants can be harvested for further analysis after 2 months.

Statistical analysis

Statistical analysis was performed with GraphPad Prism 8.0 software (San
Diego, CA, USA). Differences between experiment and control group were
measured using either unpaired two-tailed Student’ t test or one-way
ANOVA. P<0.05 was considered statistically significant. *P<0.05,
**P < 0.01. The results were shown as mean + SEM.

DATA AVAILABILITY

All datasets generated and analyzed during this study are included in this published
article and its Supplementary Information files. Additional data are available from the
corresponding author upon reasonable request.
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