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Hepatocyte-derived exosomal miR-146a-5p inhibits hepatic
stellate cell EMT process: a crosstalk between hepatocytes and

hepatic stellate cells
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Recently, Salidroside (Sal) has been demonstrated to suppress hepatic stellate cell (HSC) activation, a crucial event for liver fibrosis.
Moreover, Sal has been reported to decrease hepatocyte injury. A growing number of reports have indicated that the crosstalk
between hepatocytes and HSCs is very crucial for liver fibrosis development. Whether Sal-treated hepatocytes could inhibit HSC
activation is unclear. Exosomes, as vital vehicles of intercellular communication, have been shown to transfer cargos between
hepatocytes and HSCs. Herein, we aimed to investigate the roles of exosomal miRNAs from Sal-treated hepatocytes in HSC
activation as well as liver fibrosis. Our results showed that Sal suppressed carbon tetrachloride (CCl,)-induced liver fibrosis in vivo.
HSC activation as well as cell proliferation was repressed in HSCs co-cultured with Sal-treated hepatocytes. Interestingly, miR-146a-
5p was up-regulated by Sal in CCl,-treated mice. Also, enhanced miR-146a-5p was found in hepatocytes isolated from Sal-treated
CCl; mice and hepatocyte-derived exosomes. Notably, hepatocyte exosomal miR-146a-5p contributed to HSC inactivation.
Inhibiting miR-146a-5p in hepatocyte exosomes resulted in reduced E-cadherin (E-cad) and increased desmin in HSCs, indicating
that miR-146a-5p caused HSC inactivation via epithelial-mesenchymal transition (EMT). miR-146a-5p inhibition-mediated HSC
activation and EMT process were blocked down by loss of EIF5A2. Further studies revealed that EIF5A2 was a target of miR-146a-5p.
Furthermore, exosomes with miR-146a-5p overexpression inhibited liver fibrosis in CCl; mice. Collectively, exosomal miR-146a-5p
from Sal-treated hepatocytes inhibits HSC activation and liver fibrosis, at least in part, by suppressing EIF5A2 and EMT process.

Cell Death Discovery (2023)9:304; https://doi.org/10.1038/541420-023-01602-y

INTRODUCTION

Liver fibrosis, a wound-healing process, is generally caused by
chronic liver damages such as viral hepatitis as well as metabolic
diseases. Continuous liver damage contributes to fibrosis and
even hepatocellular carcinoma [1, 2]. One of the crucial events of
liver fibrosis, characterized by excessive extracellular matrix
proteins, is hepatic stellate cells (HSCs) activation [3, 4.
Epithelial-mesenchymal transition (EMT), a reversible procedure,
is the transformation of epithelial cells into a mesenchymal state
[5]. EMT process has been reported to play a crucial role in fibrosis
as well as cancer development [6-8]. Recent studies have
demonstrated the involvement of EMT process in HSC activation
[91.

It is known that traditional Chinese medicine contributes to the
inhibition of liver fibrosis development including liver inflamma-
tion, hepatic blood flow and liver regeneration [10]. Salidroside
(Sal), a phenolic compound and also main active component in
plants of Rhodiola rosea L, exhibits a series of pharmacological
properties, such as anti-inflammation, anti-oxidation and anti-
cancer [11-13]. Recently, Sal has been shown to have curative
effects on liver injury, hepatocyte apoptosis, and liver fibrosis. For

instance, Sal has been demonstrated to repress insulin resistance
and hepatic steatosis via down-regulating miR-21 in high fat diet-
fed rats [14]. Additionally, Sal has been shown to suppress HSC
activation as well as autophagy [15].

Exosomes, 40-100 nm in size, are small membrane vesicles that
have the same topology as the cells [16]. Generally, exosomes,
released by various cells into biological fluids, carry contents like
microRNAs (miRNAs), proteins and mRNAs. With a large number of
bioactive molecules, exosomes mediate information exchange
among cells. Increasing evidence has shown the vital roles of
exosomes in many cellular processes [17]. For example, Zhang
et al. previously reported that exosomes arising from hepatitis B
virus contribute to liver fibrosis progression through miR-222/
TFRC axis [18]. Therefore, exosomes participate in liver fibrosis
development.

miRNAs, the members of the family of post-transcriptional gene
repressors, have been widely related to the adjustment of gene
expression in diverse surroundings, encompassing almost all
respects of metabolism about systemic control [19]. Recent studies
have shown that miRNAs could modulate physiological and
pathological functions of the liver. Dysregulation of miRNAs is
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closely associated with liver fibrosis, liver metabolism imbalance,
liver injury and tumor development [20]. Currently, miRNAs have
been found to act as crucial therapeutic factors for the diagnosis
and treatment of hepatic fibrosis. Du et al. previously reported
that miR-146a-5p inhibits activation of HSCs via suppressing Wnt1
and Wnt5a [21]. Chiabotto et al. identified miR-146a-5p as a key
component of human liver stem cell (HLSC) exosomes that have
an inhibitory effect on HSC activation [22]. Recently, Sal has been
shown to promote the secretion of miR-146a-5p via exosomes by
epithelial-like cells that have an effect on macrophage-like cells
[23]. Combined with these, it is interesting whether exosomal miR-
146a-5p derived from Sal-treated hepatocyte has inhibitory effects
on the activation of HSCs.

RESULTS

Sal alleviates CCl -induced liver fibrosis in mice

A classical mouse model of liver fibrosis induced by CCl, was
established to explore the effects of Sal on liver fibrosis. Compared
with the control, CCl, induced typical hepatic fibrosis character-
istics in mice, with an increase in collagen production (Fig. 1B, C).
HE staining revealed that CCl, destroyed liver normal structure
(Fig. 1D). As shown in Fig. 1E, results of Hyp revealed that CCl,
caused a significant increase in Hyp level, suggesting the
enhancement of collagen by CCl,. In line with it, serum ALT and
AST were enhanced by CCl, (Fig. 1F). All the data suggest the
establishment of CCl, model. However, the effects of CCl, on liver
fibrosis were inhibited by Sal (Fig. 1B—F). To confirm the inhibitory
effects of Sal, Cur (an effective anti-fibrosis drug) was used as a
positive control. Cur additionally inhibited CCls-induced liver
fibrosis in mice (Fig. 1B-F). Our results suggest that Sal contributes
to suppressing liver fibrosis in vivo.

Sal-treated hepatocytes suppress HSC activation

Due to the importance crosstalk between hepatocytes and HSCs
as well as the inhibitory effect of Sal on liver fibrosis development
[15, 24], it is interesting whether Sal-treated hepatocytes have
inhibitory effects on HSC activation. Firstly, we isolated primary
HSCs from healthy mice. Generally, isolated primary HSCs will be
gradually activated during culture time. Herein, we found that
compared with primary 1-day-old HSCs, enhanced fibrotic markers
including a-SMA, collagen type | alpha 1 chain (Col1A1) and FN
were found in HSCs at Day 3 (Fig. 2A, B). In line with it, results of
EdU assays showed an increase in cell proliferation in primary 3-
day-old HSCs compared with primary 1-day-old HSCs (Fig. 2C, D).
Next, to determine the effects of Sal-treated hepatocytes on HSC
activation, fibrosis-related genes such as a-SMA, Col1A1 and FN
were examined in HSCs co-cultured with Sal-treated hepatocytes
(Fig. 2E). The co-culture between hepatocytes and HSCs resulted
in HSC inactivation, including reduced fibrosis-related genes and
proliferation rate (Fig. 2F-H). Combined with these, we demon-
strate that Sal-treated hepatocytes contribute to HSC inactivation.

miR-146a-5p is up-regulated by Sal

The underlying molecular mechanism for Sal-treated hepatocytes-
mediated HSC inactivation was subsequently explored. Previously,
Zheng et al. found that Sal could suppress the inflammation
activity of alveolar macrophages via enhancing the secretion of
exosomal miR-146a-5p in pulmonary epithelial cells [23]. Whether
miR-146a-5p participates in the effect of Sal-treated hepatocytes
on HSC inactivation was investigated. Notably, hepatocyte miRNA-
sequence analysis indicated that miR-146a-5p was predominately
increased among all the up-regulated miRNAs (Fig. 3A). gRT-PCR
analysis confirmed that miR-146a-5p was obviously increased by
Sal in hepatocytes, whereas HSCs not (Fig. 3B). However, miR-
1191a, as an unrelated control, was no change in cells (Fig. 3B). We
additionally found that in vivo, there was a significant increase
in miR-146a-5p in the livers from CCl, mice after Sal treatment
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(Fig. 3Q). In line with it, enhanced miR-146a-5p was found in
primary hepatocytes and primary HSCs isolated from mice after
Sal treatment (Fig. 3C). Consistent with it, higher miR-146a-5p was
shown in primary hepatocytes isolated from the healthy mice
compared with primary HSCs (Fig. 3D). Moreover, miR-146a-5p
was gradually reduced in HSCs during culture time (Fig. 3E). These
results collectively suggest that increased miR-146a-5p in HSCs
may be from hepatocytes. Further studies confirmed that
increased miR-146a-5p was shown in HSCs co-cultured with Sal-
treated hepatocytes (Fig. 3F). Our data reveal the induction of miR-
146a-5p by Sal in vivo and in vitro.

Up-regulation of miR-146a-5p in exosomes of Sal-treated
hepatocytes

Increasing studies have revealed that miRNAs could be transported
by exosomes among different cells. Therefore, we hypothesized that
enhanced miR-146a-5p in HSCs is derived from exosomes of Sal-
treated hepatocytes. As shown in Fig. 3G, results of TEM confirmed
the classic shape of exosomes in the supernatant of Sal-treated
hepatocytes. Exosome markers such as CD9 and TSG101 were also
detected by western blot (Fig. 3H), suggesting successful extraction
of exosomes. As expected, up-regulation of miR-146a-5p was shown
in exosomes from Sal-treated hepatocytes (Sal pre-exo) in compar-
ison with the control exosomes from hepatocytes (Un-exo) (Fig. 3l).
GW4869, a widely used pharmacological agent, has been reported to
inhibit exosome generation. To further determine the role of
exosomes from Sal-treated hepatocytes in HSC activation, hepato-
cytes were treated with GW4869. Interestingly, the expressions of a-
SMA, Col1A1 and FN were enhanced in HSCs co-cultured with
GW4869-treated hepatocytes after Sal treatment in comparison with
HSC co-cultured with Sal-treated hepatocytes (Fig. 3J and Fig. 3K). In
line with it, results of EdU assays showed an increase in HSC
proliferation after GW4869 treatment (Fig. 3L). These results were
confirmed the crucial role of hepatocyte exosome in HSC inactiva-
tion. Taken together, increased miR-146a-5p in HSCs may be from
exosomal miR-146a-5p of Sal-treated hepatocytes.

Exosomal miR-146a-5p suppresses HSC activation

To address whether exosomal miR-146a-5p from hepatocytes acts
as a regulator of HSC activation, miR-146a-5p inhibitor was
transfected into hepatocytes. Compared with the control, miR-
146a-5p was reduced in hepatocytes and exo-miR-146a-5p inh
(Fig. 4A). Next, the fibrosis-related genes were examined in HSCs
with exo-miR-146a-5p inh. Loss of miR-146a-5p induced the
expressions of a-SMA, Col1A1 and FN compared with the
untreated HSCs (Fig. 4B, C). Loss of miR-146a-5p additionally
promoted HSC proliferation (Fig. 4D). Notably, exo-miR-146a-5p
inh promoted EMT process, with reduced E-cad and increased
desmin (Fig. 4E). Immunofluorescence analysis further confirmed
reduced E-cad (red) as well as enhanced desmin (red) in HSCs with
exo-miR-146a-5p inh (Fig. 4F). Our results reveal the importance of
exosomal miR-146a-5p in the crosstalk between Sal-treated
hepatocytes and HSCs, and the involvement of EMT process in
the biological role of miR-146a-5p in HSCs.

miR-146a-5p inhibits HSC EMT process via targeting EIF5A2

Bioinformatic analysis was performed to determine potential
targets of miR-146a-5p. In addition, the underlying mechanism
responsible for the inhibitory role of miR-146a-5p in EMT process
as well as HSC activation was also explored. To identify the
potential targets of miR-146a-5p, bioinformatics analysis (miRDB)
was then performed. It was found that there were 20 predicted
genes with the highest score. We found that only EIF5A2 was
significantly down-regulated in HSCs co-cultured with exosomes
of Sal-treated hepatocytes, whereas other predicted genes not
(Fig. 5A). Therefore, EIF5A2 was selected for the next studies. Using
pmirGLO, we generated a EIF5A2 luciferase reporter, EIF5A2-Wt or
EIF5A2-Mut, containing the miR-146a-5p-binding sites (Fig. 5B).
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Fig. 1 Sal alleviates CCl;-induced liver fibrosis in mice. CCl,-induced

mice were treated with Sal (100 mg/kg or 200 mg/kg) or Cur (200 mg/

kg). A Chemical structure of Sal. B The quantitative results of Sirius red staining and Masson staining. C Sirius red staining and Masson staining
were used to evaluate collagen deposition. Scale bar, 100 pm. D HE staining. Scale bar, 100 um. E, F Levels of Hyp, ALT and AST. Each value is

the mean £ SD of six experiments. ***p < 0.001.

Analysis of luciferase activities showed that miR-146a-5p resulted
in a reduction in the luciferase activity of EIF5A2-Wt and had no
effect on EIF5A2-Mut, indicating that EIF5A2 is a target of miR-
146a-5p (Fig. 5C). Moreover, miR-1191a had no effect on the
luciferase activity of both EIF5A2-Wt and EIF5A2-Mut (Fig. 5C).
Next, whether miR-146a-5p targets EIF5A2 was further studied. It
was found that miR-146a-5p was up-regulated and down-
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regulated in HSCs transfected with miR-146a-5p mimic and
inhibitor, respectively (Fig. 5D). Then, miR-146a-5p mimic led to
a reduction in EIF5A2 in HSCs, while miR-146a-5p inhibitor
contributed to the enhancement of EIF5A2 (Fig. 5E, F). Accord-
ingly, we found that decreased miR-146a-5p as well as increased
EIF5A2 was found in patients with cirrhosis in comparison with the
healthy controls (Fig. 5G).
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Next, whether EIF5A2 is involved in miR-146a-5p-inhibited HSC
activation and EMT process was explored. si-EIF5A2 was trans-
fected into HSCs with miR-146a-5p inhibitor. Clearly, in HSCs with
miR-146a-5p inhibitor, miR-146a-5p inhibition-induced EIF5A2 was
inhibited by si-EIF5A2 (Fig. 6A, B). Then, miR-146a-5p inhibition-
caused HSC activation including enhanced a-SMA, Col1A1 and FN,

Cell Death Discovery (2023)9:304

was blocked down by loss of EIF5A2 (Fig. 6C, D). In line with it,
miR-146a-5p inhibition-induced HSC proliferation was also sup-
pressed by silencing EIF5A2 (Fig. 6E). We additionally explored
whether EIF5A2 is responsible for miR-146a-5p-mediated EMT
process. Clearly, results of western blot showed that reduced E-cad
as well as increased desmin caused by miR-146a-5p inhibition was

SPRINGER NATURE
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Fig. 3 Up-regulation of miR-146a-5p in exosomes of Sal-treated hepatocytes. A Volcano plot displayed changed miRNAs in hepatocytes
after Sal (100 pM) treatment group. B Expression of miR-146a-5p and miR-1191a in hepatocytes and HSCs after Sal treatment. C Expression of
miR-146a-5p in liver tissue, isolated hepatocytes and HSCs from CCl, mice with Sal treatment (200 mg/kg). D Expression of miR-146a-5p in
hepatocytes and HSCs isolated from healthy mice. E Expression of miR-146a-5p in HSCs at day 1 and day 3. F Expression of miR-146a-5p in
HSCs co-cultured with Sal-treated hepatocytes. G Isolated exosomes from hepatocytes visualized by TEM. H The protein expressions of CD9
and TSG101 in exosomes. | Expression of miR-146a-5p in Un-exo and Sal pre-exo groups. J Protein expressions and (K) mRNA expressions of o-
SMA, Col1A1 and FN in HSCs co-cultured with GW4869 (10 uM)-treated hepatocytes after Sal treatment. L EdU assay of cell proliferation in
HSCs co-cultured with GW4869-treated hepatocytes after Sal treatment. Cont, the control group; CCl,, the CCl, group; CCls+Sal200, mice
given 200 mg/kg Sal treatment; Un-exo, exosomes from hepatocytes; Sal pre-exo, exosomes from Sal-treated hepatocytes. Each value is the
mean + SD of three experiments. *p < 0.05, ***p < 0.001, ns, no significant.

suppressed by loss of EIF5A2 (Fig. 6F). Likewise, similar results
were found in analysis of immunofluorescence (Fig. 6G). All the
data suggest that miR-146a-5p inhibits EMT process during HSC
activation.

Exosomal miR-146a-5p mitigates liver fibrosis in vivo

Finally, we assessed the effect of exosomal miR-146a-5p on CCl,-
induced liver fibrosis in vivo. CCl; mice were treated with the exo-
miR-146a-5p mimic (Fig. 7A). Results of HE staining showed that
exo-miR-146a-5p mimic mitigated liver fibrosis in CCl, mice
(Fig. 7B). In addition, compared with the control, the level of liver
injury caused by CCl, was suppressed by exo-miR-146a-5p mimic
(Fig. 7C). Results of Hyp content revealed reduced collagen
deposition in CCl, mice with exo-miR-146a-5p mimic (Fig. 7D). In
sum, our data suggest the inhibitory role of exosomal miR-146a-5p
in liver fibrosis.

DISCUSSION
Hepatocytes, the most abundant parenchymal cells and the main
responsors upon inflammatory stimulus, consist of 90% of liver
biomass. It is known that chemokines, produced by hepatocytes,
recruit immune cells to participate in disease progression [25].
HSCs, resident non-parenchymal liver pericytes, have been
demonstrated to act as a key liver fibrosis-related factor. Upon
liver injury, HSCs will be activated or transdifferentiated from a
static state into proliferative, motional myofibroblasts that secrete
extracellular matrix [26]. Increasing evidence has shown the
importance of the crosstalk between hepatocytes and HSCs
during liver fibrosis. However, the underlying mechanism of the
crosstalk between hepatocytes and HSCs remains largely unclear.
In this study, owing to elevated miR-146a-5p in exosomes from
Sal-treated hepatocytes, miR-146a-5p was increased in HSCs and
suppressed EIF5A2 expression, leading to the suppression of EMT
process as well as HSC inactivation. Hepatocyte exosomal miR-
146a-5p contributes to the suppression of HSC activation via
regulation of EIF5A2 and EMT process, and this is a first report.
Sal, a natural compound obtained from Chinese herbs of the
genus Rhodiola, has demonstrated to inhibit apoptosis and
autophagy [27]. Previously, Ouyang et al. reported that Sal and
mesenchymal stem cell could synergistically improve liver fibrosis
[28]. Consistent with the previous study, Sal was shown to have an
inhibitory effect on CCls-induce liver fibrosis, with a reduction in
collagen level and ALT/AST. Chiabotto et al. revealed the inhibitory
role of HLSC exosomal miR-146a-5p in HSCs [22]. Herein, our results
firstly revealed that exosomes are the key crosstalk medium
between Sal-treated hepatocytes and HSCs. Activation of HSC is
inhibited by Sal, at least in part, via hepatocyte exosomal miR-
146a-5p, which is a novel mechanism suppressing liver fibrosis.
Exosomes play a key role in intercellular crosstalk by delivering
the instructional payload, such as mRNAs, miRNAs and proteins
[29, 30]. miRNAs have been shown to act as key factors in the
transformation of HSC fibrotic phenotypes [31]. For instance, miR-
146a-5p has been reported to act as an anti-fibrotic factor in
irradiated and TGF-B1-stimulated LX2 cells via PTPRA-SRC signal-
ing [32]. In this study, miR-146a-5p, reduced in activated HSCs, had
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an inhibitory effect on HSC activation, which is consistent with the
previous study [21]. Subsequently, increased miR-146a-5p in HSCs
was confirmed to be associated with exosomes from Sal-treated
hepatocytes, which was shown to inhibit HSC activation. Further
studies showed that exosomal miR-146a-5p from Sal-treated
hepatocytes effectively reduced HSC proliferation, activation and
EMT process via regulation of EIF5A2.

EIF5A, a highly conserved protein, has been shown to be
involved in mRNA translation, cellular proliferation and inflamma-
tion [33]. In addition, EIF5A2 is crucial for maintaining polyamine
homeostasis [33, 34]. Recently, EIF5A2 contributes to enhancing
the EMT process of tumors, resulting in the progression and
metastasis of cancers [35, 36]. Zhu et al. previously demonstrated
that EIF5A2 induces colorectal carcinoma cell EMT, leading to
enhanced invasiveness of cancer cells [37]. EMT/MET are known to
occur when tissues are constructed during embryogenesis/
development. They are also thought to occur during adult tissue
remodeling responses, including carcinogenesis and fibrosis.
During culture, several resident adult liver cells appear capable
of undergoing EMT and/or MET, raising the possibility that EMT/
MET might be involved in liver regeneration. When EMT activity
outstrips MET, repair is mainly fibrogenic, causing liver fibrosis.
Conversely, predominance of MET favors more normal liver
regeneration [38]. Herein, bioinformatics analysis predicted that
EIF5A2 may be a target of miR-146a-5p, which was confirmed by
further studies. Notably, miR-146a-5p inhibition-mediated HSC
activation and EMT process were blocked down by loss of EIF5A2.
Taken together, the present study revealed a novel mechanism of
miR-146a-5p-inhibited HSC activation. Additionally, a negative
correlation between EIF5A2 and miR-146a-5p was found in HSCs
and patients with cirrhosis. Collectively, we demonstrate that
exosomal miR-146a-5p inhibits HSC EMT process, at least in part,
via its target EIF5A2.

CONCLUSION

In conclusion, exosomal miR-146a-5p from Sal-treated hepato-
cytes inhibits HSC activation and liver fibrosis, at least in part, via
suppressing EIF5A2 and EMT process.

MATERIALS AND METHODS

Clinical samples collection

Serum samples of 20 patients with liver cirrhosis and 20 normal
participants (with normal liver biochemistry, no history of liver disease or
alcohol abuse and no viral hepatitis) were collected from the First Affiliated
Hospital of Wenzhou Medical University (FAHWMU). The FAHWMU Ethics
Committee reviewed and approved this study. Informed consents were
obtained from all participants before obtaining the samples.

Animal treatments

C57BL/6J mice were administered carbon tetrachloride (CCl;) (Sigma)
using olive oil (10%, 7 uL/g mice) twice per week for a total of 8 weeks
(n=16) [39]. The allocation of mice in each group were randomized and
blinded. Control group (n = 6) received the identical volume of olive oil. Sal
was purchased from Sigma (Fig.1A). The Sal group consisted of mice
(n =6) given Sal (100 mg/kg) and mice (n = 6) given Sal (200 mg/kg) daily
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via gavage during CCl; period. Additionally, Curcumin (Cur) group
consisted of mice (n=6) given Cur (200 mg/kg) daily via gavage during
CCl, period.

For tail vein injection, forty micrograms exosomes with miR-146a-5p
overexpression (n =6) or miRNA negative control (miR-NC) (n =6) were
administered two injection per week for 8 weeks during CCl, period [40].
The exosomes were isolated from the supernatant of hepatocyte culture
medium with miR-146a-5p mimic transfection.

Cell culture

Isolation of primary HSCs was conducted from C57BL/6 J mice [41]. Primary
hepatocytes isolation was done from mouse livers using a collagenase
perfusion method [42]. For co-culture, primary 1-day-old HSCs were seeded
into the lower compartment of the Transwell chamber and hepatocytes
were inoculated into the upper chamber at a density of 1 x 10° per well. In
addition, hepatocytes or primary 1-day-old HSCs were pretreated with Sal
(100 pM). Furthermore, primary 1-day-old HSCs, treated with exosomes
from hepatocytes with miR-146a-5p mimic (exo-miR-146a-5p mimic) or
inhibitor (exo-miR-146a-5p inh) transfection, were washed for further
studies. Hepatocytes were treated with Sal (100 uM) and GW4869 (10 uM).

SPRINGER NATURE

Histologic analysis

Liver tissues of mice were fixed and then paraffin-embedded, which were
further used for Sirius red staining, Masson staining and Hematoxylin and
eosin (HE) staining. Leica DM4B microscope was used to capture images.

Hepatic hydroxyproline (Hyp) content

As described previously [43], based on manufacturer's instructions,
Hydroxyproline Colorimetric Assay kit (Jiancheng Biological Engineering
Research Institute) was used to detect the Hyp content in liver tissues.

Alanine Aminotransferase (ALT) and Aspartate
Aminotransferase (AST) assay

From the mice, collection of serum samples was done, followed by the
measurement of serum ALT and AST via a commercial kit (Rongsheng).

Western blot analysis

With the use of RIPA buffer, proteins were extracted. The protein samples
were electrophoretically segregated using a 10% SDS-PAGE. Then, the
protein samples were transferred onto PVDF membranes and the
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incubation was performed overnight at 4 °C. The antibodies for Western
blotting were: anti-eukaryotic initiation factor 5A2 (EIF5A2) (Abcam), anti-a-
smooth muscle actin (a-SMA) (Abcam), anti-fibronectin (FN) (Abcam), anti-
type | collagen (Abcam), anti-B-actin (Abcam), anti-CD9 (Abcam), anti-
Tumor Susceptibility Gene 101 (TSG101) (Abcam), anti-E-cadherin (E-cad)
and anti-desmin antibodies, at a dilution of 1:1000. Next, the second
antibody (HRP-conjugated Affinipure goat anti-rabbit IgG; 1:5000 dilution;
proteintech) was treated for 1h at room temperature. Bands were
visualized using an ECL chemiluminescent agent (Beyotime). An automatic
chemical luminous imaging analysis system was used for capturing
images. Quantification of protein expression was via ImageJ software (NIH
Image) 1.47). B-actin was used as an internal reference to normalize
protein expression.

Quantitative Real-Time PCR (qRT-PCR) analysis

TRIzol reagents (Thermo Fisher) were used to isolate total RNA from
cultured cells or liver tissues. According to the manufacturer’s instruction,
RNA was transcribed to cDNA. SYBR Green Master Mix (Promega) was used
for examining gene expression. The detection of miRNAs was conducted
by miRNA Detection kit (GenePharma). RT-PCR was performed using a
7500 Fast system (Applied Biosystems). $-actin and U6 were used as the
control to evaluate the relative quantitative of mRNAs and miRNA,
respectively. The expression levels (27°2%") of genes were calculated as
described previously [44]. The primers were shown in Table S1.

5-Ethyny-2'-Deoxyuridine (EdU) assay

Cell proliferation was detected using EdU assay (RiboBio). HSCs were
labeled with EdU for 2 h. A fluorescent microscope (Leica) was used to
visualize the EAU™ cells.
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miRNA-sequencing (miRNA-seq)

Total RNA was isolated from the mesangial cells using TRIzol® (Invitrogen)
per the manufacturer’s instructions. miRNA-Seq was performed using the
lllumina HiSeqTM 2000 sequencing system. Expressions of transcripts with
|Log, Fold Change|>2, adjusted P<0.05 were deemed statistically
significant.

Exosome extraction and identification

According to the 2018 MISEV guideline [45], exosomes were isolated from
hepatocyte supernatant. Transmission electron microscope (TEM) was used
to verify exosome themorphology. Then, exosomal marker proteins were
examined using western blot analysis, including CD9 and TSG101.

Cell transfection

Transfection was performed when cell confluence reached 80%. 50 nM
miR-146a-5p mimic, miR-146a-5p inhibitor, miR-NC or EIF5A2 short
interfering RNA (si-EIF5A2) (Genomeditech) were transfected into hepato-
cytes or HSCs with serum-free media (non-use of antibiotics) using
Lipofectamine 2000 (Invitrogen), respectively. After 6 h, cells were cultured
for additionally 48 h in normal media (10% fetal bovine serum and 1%
antibiotics) at 37 °C and 5% CO..

Immunofluorescence analysis

Primary HSCs from mice were immobilized in 4% paraformaldehyde. After
fixation, cells were washed with PBS and blocked with 5% BSA. Then, cells
were incubated with anti-E-cad (1:100 dilution; Abcam) and anti-desmin
(1:100 dilution; Abcam) antibodies overnight at 4°C. Then, cells were
stained with fluorescence-labeled anti-rabbit Alexa 594 (1:50 dilution;
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Dianova)-conjugated antibodies. For nuclear counterstaining, 4,6-diami-
dino-2-phenylindole (DAPI) was applied.

Bioinformatic analysis
The possible targets of miR-146a-5p as well as association between miR-
146a-5p and EIF5A2 were predicted using miRDB (https://mirdb.org/).

Luciferase activity assay

As described previously [43], in order to generate luciferase reporter
constructs, the 3’'UTR fragment of EIF5A2 wild type (EIF5A2-WT), which
encompasses potential sites binding with miR-146a-5p, was cloned into
the pmirGLO plasmids (Promega). The EIF5A2 mutant type (EIF5A2-MUT)
was also generated. To detect luciferase activity, HEK293 cells were
transfected with either WT or MUT plasmid along with miR-146a-5p mimic
or miR-1191a mimic using lipofectamine 3000 transfection (Invitrogen).
After 48 h, Dual-Luciferase Reporter Assay System (Promega) was used to
determine the relative luciferase activity.

Statistical analysis

Data were presented as the means+SD. Student's t-test was used to
compare differences between two groups. For multiple groups, One-way
analysis of variance (one-way ANOVA) was used to analyze the data.
P < 0.05 was considered significant. All statistical analyses were performed
using the SPSS software (version 16.0; SPSS, Chicago, IL).

DATA AVAILABILITY
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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