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Clonal haematopoiesis - a novel entity that modifies
pathological processes in elderly
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Progress in the development of new sequencing techniques with wider accessibility and higher sensitivity of the protocol of
deciphering genome particularities led to the discovery of a new phenomenon – clonal haematopoiesis. It is characterized by the
presence in the bloodstream of elderly people a minor clonal population of cells with mutations in certain genes, but without any
sign of disease related to the hematopoietic system. Here we will review this recent advancement in the field of clonal
haematopoiesis and how it may affect the disease’s development in old age.
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FACTS

● Clonal haematopoiesis is a condition affecting elderly people.
● Clonal haematopoiesis is associated with mutations in certain

genes that give expansion advantages to the cells.
● Mutations associated with clonal haematopoiesis change the

functions of immune cells.
● Clonal haematopoiesis may affect various diseases and their

response to treatment.

OPEN QUESTIONS

● Is there any difference in clonal haematopoiesis with
mutations in epigenetic regulators versus DNA damage
response genes?

● What are the consequences of clonal haematopoiesis to
immune system?

● Can subdivide Clonal haematopoiesis into several subtypes
based on mutation profile and prognosis?

INTRODUCTION
New high-throughput sequencing techniques were widely intro-
duced into clinical practice at the beginning of the XXI century. In
contrast to the classical Sanger sequencing protocol, next-
generation sequencing (NGS) can detect mutations, even if they
are present only in a small number of cells of investigated sample
[1]. In order to detect a mutation by classical Sanger sequencing,
~20% of the cells in the tissue sample must carry this mutation in
their genome [2]. Then new generation sequencing allows us to
determine the mutation when the mutated allele is found in 1% of
cells and less [2]. The advantages of next-generation sequencing

greatly expanded our knowledge of the spectrum of mutations
found in tumors, and confirmed the theory of tumor hetero-
geneity when tumor cells with mutations on different parts of the
mutation spectrum were detected in the same tumor [3]. Blood is
one of the most accessible and most frequently studied samples
for clinical diagnosis. It is not surprising that, following the whole
genome analysis of tumor tissue, a large amount of data has been
accumulated from the early 2000s from the NGS analysis of blood
cells. Bioinformatic analysis of these data showed that in the blood
of both healthy people and patients with various diseases, there
are clones of cells carrying a particular mutation. The presence of
such clones with mutations was strictly correlated with the age of
the subject [4–10]. In the young age group (<45 years) mutations
were found in <1% of the cases [6, 10]. In elderly people over 60
years old, the phenomenon of clonal haematopoiesis was
detected in 10% of people and more [6, 8, 10]. Thus, clonal
haematopoiesis (CH) is appearance of hematopoietic cells with
certain mutations detected in at least 1% of blood cells [11]. The
term “clonal haematopoiesis of indeterminate potential” (CHIP)
was first introduced by David Steensma and Benjamin Ebert in
2015 for individuals carrying somatic leukemia-associated muta-
tions at variant allele frequency (VAF) ≥ 2% [11]. Since 2015, more
than 100 articles have been published that describe this
phenomenon.
It can lead to changes in the functions of the gene and its

products, but does not significantly affect the morphology of cells
and does not cause any pathological condition in the hemato-
poietic system immediately. That was a reason why CH was also
called Clonal Haematopoiesis of Indeterminate Potential (CHIP) in
contrast to the clonal detection of cells already associated with
morphological changes (Myelodysplastic syndrome, MDS) or
disease (Acute myeloid leukemia, AML). Despite the last state-
ment, with time the clones of cells with mutations can serve as a
reservoir for the emergence of new additional mutations and the
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gradual onset of a preleukemic state (MDS), leukemia [6, 8, 10],
lymphoma [12–14], and multiple myeloma [15, 16]. CHIP increases
the risk of developing leukemia, but most of the patients with
CHIP will never develop malignancies. It should be noted that
mutations in certain genes could change the function of blood
cells, which in turn can affect the course of concomitant diseases,
including cardiovascular diseases [17–19].

THE SPECTRUM OF GENES WITH MUTATIONS IN CLONAL
HAEMATOPOIESIS
Modern sequencing methods open a possibility to detect
mutations in one or several genes contained in a small number
of cells in the analyzed sample, and screen large groups of people
simultaneously. In a study by Giulio Genovese et al. [6], the whole-
genome sequencing of peripheral blood cells from more than 12
thousand individuals was performed. These people were not
specifically pre-selected for cancer or hematological abnormalities.
As expected, signs of clonal haematopoiesis were detected in 10%
of persons over 65 years of age and only in 1% of people under
the age of 50 [6]. A list of the genes frequently mutated in clonal
haematopoiesis is given in the Table 1. It is interesting to note that
when a similar study was performed on a group of cancer patients
without any sign of onco-hematological pathology, the frequency
of occurrence of genes with mutations changed. The genes
involved in cellular response to DNA damage, such as PPM1D,
TP53, and ATM, were found to be among the most frequently
mutated genes [20]. This frequency bias to DNA-damage response
genes can be explained by sampling, that included therapy-
related patients.
The most frequently mutated gene associated with CHIP in the

majority of works on clonal haematopoiesis is DNMT3A
[8, 10, 20–22]. The second place is usually shared by two other
epigenetic regulators, TET2 and ASXL1 genes [8, 10, 21, 22]. The
fourth place in a number of works is given to the PPM1D serine-
threonine phosphatase genes [8, 10, 21, 22]. It should be
mentioned that mutations in the PPM1D gene are often detected
in individuals with a history of chemotherapeutic drug treatment
[23]. Mutations in the DNMT3A, ASXL1, and TET2 genes can
contribute to the development of blood cancer, and are
frequently found in MDS [24] and AML patients [25–28]. It is
assumed that oncogenic transformation is associated with
impaired epigenetic regulation of the entire genome, for example,
impairment of DNA methylation in the case of DNMT3A mutations,
the DNA methyltransferase gene [29].
Mutations in the PPM1D gene have previously been detected

mainly in nonhematopoietic tumors [30]. The majority of PPM1D
mutations in clonal haematopoiesis are located in the last two
exons [6], which leads to the loss of the regulatory domain of the
product of this gene, serine-threonine phosphatase Wip1 [31]. This
leads to elevated levels of the enzyme in the cells due to protein
stabilization [31]. Figure 1 shows that various mutations, shift of
frame or deletion, are shortening the expressed protein and
preventing the expression of the regulatory domain of phospha-
tase located in the fifth and sixth exons. This leads to the
disappearance of the polyubiquitation (Ub) site, which is a signal
for proteasome protein degradation [32]. Thus, the protein is
stabilized and present in the cell at a higher concentration than
normal. Despite the fact that Wip1 is a regulator of the activity of
the tumor suppressor p53 [32], this type of mutation does not
have a significant correlation with the hematological cancers. The
presence of genetic amplifications of PPM1D was shown by us and
others in 2002 [33, 34] Interestingly, in 2008 a group led by
Sakaguchi K. published a splice form PPM1D430, which is almost
identical to the shortened gene products produced by mutations
found in clonal haematopoiesis [30]. L. Makurek’s group first
described the “gain-of-function” mutations in the sixth exon of
PPM1D in tumors [31].

Mutations in the PPM1D gene in CHIP not only result from
chemotherapy, but also provide resistance to chemotherapy,
which contributes to the expansion of a clone with an increased
level of the gene product, Wip1 phosphatase [23]. We have also
shown the increased resistance of cells with an increased level of
Wip1 to a combination of chemotherapeutic drugs, oxaliplatin and
5-fluorouracil [35].
The origin of CHIP in the haematopoietic stem cell compart-

ment and the influence of clonal mutations on the differentiation
of mutated hematopoietic stem cells (HSCs) into mature blood
lineages are still to a large extent obscure. Using VAF analysis of 91
mutations in six peripheral blood cell fractions of CHIP carriers,
significantly higher VAFs were found in monocytes, granulocytes,
and NK cells compared to B and T lymphocytes. Thus, these data
indicate a predominant involvement of monocytes, granulocytes,
and NK cells in CHIP [36]. Besides that, investigation of lineage
repartition patterns in peripheral blood and bone marrow samples
from individuals with CHIP revealed mutated Lin-CD34+ CD38-
hematopoietic stem cells as cells of CHIP origin [36]. It is also
worthy of note interesting findings concerning to DNMT3A
mutation frequency. The DNMT3A-carriers demonstrated higher
T-cell VAFs compared other analyzed CHIP genes. It was
suggested that DNMT3A mutations could be earlier event in HSC
affection or played minor role in myeloid bias [36]. In line with this
investigation, VAF analysis of different immune cell lineages in
another group of CHIP carriers showed the highest prevalence of
DNMT3A mutation lesions in the haematopoietic multipotent cell
compartment, rather than TET2 mutations being dominant in the
myeloid cell lineage [37]. These findings suggest a distinct role of
DNMT3A and TET2 mutational lesions in the differentiation
pathway of affected HSC. Another similar study on the role of
ASXL1 mutational lesions revealed that ASXL1 mutations are more
specific for myeloid-primed progenitors or involved in myeloid
bias [38]. Thus, DTA (DNMT3A, TET2, ASXL1) mutations are thought
to play different roles in mutant HSC differentiation, with TET2 and
ASXL1 lesions being responsible for myeloid bias.

POSSIBLE IMMUNOLOGICAL CONSEQUENCES OF CLONAL
HAEMATOPOIESIS
Franceschi C et al. [39] proposed a mathematical model of
“inflammatory aging” (inflammoaging) and suggested that the
expansion of immune cell clones with mutations resulting from
spontaneous clonal haematopoiesis in old age is responsible for
the creation of a pro-inflammatory microenvironment in the
organs and tissues of an aging organism, which is part of the
aging of the immune system - immunosenescence. Thus, one of
the possible consequences of clonal haematopoiesis is the
appearance of immune cells with altered properties that can
affect the functioning of the immune system.
For example, as mentioned above, mutations associated with

CHIP occur in 5–6 exons of the PPM1D gene and lead to the
stabilization of the protein [32]. These changes lead to increased
levels of the serine-threonine phosphatase protein, Wip1, which
plays a significant role in important signaling pathways in immune
cells (Fig. 2).
The role of PPM1D in the cells of the immune system was

studied mainly on PPM1D knockout (KO) mice [40, 41]. We and
others have shown that the Wip1 encoding gene, PPM1D, is
expressed in hematopoietic progenitors, HSCs and all immune cell
lines including neutrophils, macrophages, B and T lymphocytes in
both bone marrow and peripheral blood [42], and plays an
essential role in several physiological pathways [43, 44].
PPM1D has been shown to promote the active proliferation of

HSCs [45]. Normally, elevated levels of PPM1D are observed in
blood, intestinal, and mesenchymal stem cells [46]. During aging
its amount decreases. Decreased level of PPM1D expression leads
to the faster aging of stem cells and an increased occurrence of
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apoptosis [47, 48]. Wip1 plays an essential role in the fate of these
stem cells [47, 48], particularly in the hematopoietic compartment
where it has been shown that Wip1 modulates HSCs functional
activity and differentiation through mTOR pathway [45].
Notably, PI3K/AKT/mTOR pathway is an important target of

PPM1D signaling [49]. In several models, it has been described
how Wip1 modulates this signalization [49–51]. Indeed, activating
phosphorylation of mTOR at Ser2448, 2481, and 2159 and
phosphorylation of mTOR downstream target, p70S6 Kinase, are
dephosphorylated by Wip1 in a direct or ATM-dependent manner
[49, 50]. Besides inhibition of mTOR signaling pathway, Wip1 is
involved in reducing AKT and PI3K signaling by dephosphoryla-
tion of AKT and inhibition of Rac1-GTPase in an ATM-dependent
and independent manner [52–54].
In physiological conditions, Wip1 activity is dedicated to the

maintenance of HSCs quiescence and the facilitation of their
differentiation [45]. Wip1 deficiency leads to the premature aging
phenotype of HSCs, which is associated with higher self-
proliferation rates and a poorer capability to differentiate [45].
Given the role played by Wip1 in normal haematopoiesis, the

PPM1D mutations that can occur during CHIP can disturb the
production and amount of circulating immune cells. Moreover,
Wip1 cannot only modulate HSC compartment – it is also known
to regulate the differentiation and functional activity of several
immune effector cells [55, 56].
Wip1 plays an essential role in the development of one of the

most important effectors of immune response, T cells [55, 57].
Wip1 positively regulates T cell development at several levels.
Using Ppm1d-deficient mouse models, Choi et al. [40] described

an absence of proliferative responses of T cells in Wip1-/- mice.
This phenomenon is partially explained by the necessity of Wip1
activity during the maturation of T cells inside the thymus. Briefly,
the development of T effectors answers to a well determined
spatial and temporal differentiation program which begins with
the entry of CD4- CD8- double negative lymphoid progenitors into
the thymus, which then progress through 4 main stages of
development (DN1 to DN4) to become CD4+CD8+ double
positive. They then undergo a re-arrangement of their TCR, and
then a positive or negative selection during the transition to
simple positive T lymphocyte. Schito et al. [55] determined that
the block of T-cells development at the DN3 stage in Ppm1d-KO
mice led to reduced numbers of DP thymocytes which where
prone to apoptosis, subject to abnormal cell cycles, and associated
with the reduced size of lymphoid organs. Using Wip1-/- and p53-/-

double KO mouse models, they showed that Wip1 controls cell
death and cell cycle arrest at the DN3 stage of T-cell development
in a p53-dependent manner. Moreover, Sun et al. [57] reported a
few years later, that Wip1 is a critical regulator of the functional
thymic stroma. Wip1 modulates in an intrinsic manner medullary
thymic epithelial cell maturation through negative regulation of
the p38MAPK pathway. Therefore, Wip1 is essential to the normal
development of T lymphocytes and the maintenance of the
functional organization of the thymus, a key organ of the immune
compartment, by preventing the hyperactivation of the p53 and
p38MAPK pathways.
Another essential component of adaptive immunity has also

been shown to be positively regulated by Wip1. Similarly, to T-cell
differentiation, the differentiation of the common lymphoid
progenitor to B cells is known to be associated with mechanisms
that generate elevated levels of DNA damage and p53 activation.
In this context, Yi et al. [56], showed that Wip1 is able to promote
B-cell maturation and proliferation by keeping in check the p53-
mediated pro-apoptotic pathway.
The importance of Wip1 activity for T effector cells and B cells,

two major components of adaptive immunity, underline even
more the potential negative consequences of the PPM1D
mutations during CHIP on the efficiency of the immune
response.Ta
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The significance of Wip1 in the immune compartment does not
only limit to adaptive immunity. Indeed, it has not only been
shown that Wip1 controls myeloid lineage differentiation, but that
it can also modulate inflammatory response [40, 58–60].
Several groups have described how Wip1 increased activity

during the maturation and production of neutrophils, thus
preventing the differentiation of common myeloid progenitors
(CMPs) to pro-inflammatory mature granulocytes, to the detriment
of other myeloid lineages [61]. Under normal conditions, the
inhibition of the p38MAPK-STAT1 pathway by Wip1 is essential to
prevent neutrophilia and the normal development of myeloid
lineages [61]. Wip1’s influence is not limited only to myeloid cell
differentiation; Sun et al. [57] described that phosphatase Wip1 is
an intrinsic negative regulator of many pro-inflammatory cyto-
kines and seems especially important for the control of migration
and pro-inflammatory behavior of neutrophils through the
negative modulation of NFKB, p38 MAPK, and STAT1 pathways.
Therefore, the hyperactivation of Wip1 by the PPM1D mutations

that can appear during CHIP could lead to a defective immune
response through the inhibition of previously cited pathways and
an absence of inflammatory response, which is necessary for
coordination and good activity of immune system.
Ultimately, these various functions of PPM1D in the immune

system indicate that immune response could be highly affected
by clones of cells bearing the PPM1D mutations during CHIP.

THE EFFECT OF CLONAL HAEMOPOIESIS ON DISEASES OF THE
CARDIOVASCULAR SYSTEM
The presence of the mutations described above in blood cells can
have a significant effect on the cardiovascular system and can
alter the course of diseases. Clonal haematopoiesis leads not only
to blood cancer, but also to diseases of the cardiovascular system
[8, 17–19, 62], autoimmune diseases [63], and also reduces life
expectancy [8, 18, 19, 64, 65]. The number of abnormalities in the
genome of blood cells increases with age [22, 66]. Comparison of
blood stem cells from old and young mice showed that older
animals had high prevalence of clonal hematopoiesis in the bone
marrow. It indicates an increased mutation rate [67].
CHIP correlates with increased mortality [8, 64]. Surprisingly, in

CHIP carries after 80 years of age clonal haematopoiesis is not a
factor of higher risk of death [68, 69] while many studies have
reported, that younger individuals with CHIP are characterized by
inferior survival [6, 8, 22]. This suggests that clonal haematopoiesis
affects all body systems. Indeed, the association of clonal
haematopoiesis with the risk of developing cardiovascular
diseases, in particular atherosclerosis, was shown [8, 18, 62].
CHIP-carries has been proved to characterize higher risk of
ischemic stroke, heart failure, and myocardial infarction in contrast
to patients without clonal haematopoiesis [18, 62, 64, 70]. It is
important to emphasize that the development of cardiovascular
diseases can be initiated by mutations associated with blood

Fig. 2 The PPM1D role in immune system and cell differentiation. A deletion in the PPM1D gene promotes the differentiation of myeloid
cells into monocytes and neutrophils, and also inhibits the differentiation of lymphoid into T and B lymphocytes.

Fig. 1 Various mutations, shift of frame or deletion in the PPM1D gene are shortening the expressed protein and preventing expression
of regulatory domain of phosphatase located in the fifth and sixth exons. This leads to the disappearance of polyubiquitation (Ub) site,
which is a signal for proteasome protein degradation. Thus, the protein is stabilized and present in the cell at higher concentration than
normal.
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cancer (DNMT3A, JAK2, ASXL1, and TET2) [18, 21, 64]. In patients
harboring these mutations, the vessels were more calcified, which
is a sign of developing atherosclerosis [18]. This was probably due
to dysfunctions of macrophages, which, in the presence of a TET2
mutations, express an increased level of cytokines and chemo-
kines (for example, interleukin 1β, IL-6, IL-8) [62, 71, 72]. In turn,
this leads to inflammation and the formation of atherosclerotic
plaques. It was shown that in mouse models of atherosclerosis the
size of the plaques increased significantly after the transplantation
of bone marrow cells with mutations in the TET2 gene [73].
Contrary to traditional understanding, it has been recently
suggested atherosclerosis is a cause of CHIP [74]. This study
reported, that atherosclerosis conditions promoted higher hema-
topoietic stem cell division rate, that in turn facilitated CHIP
emergency [74]. Suggested hypothesis was confirmed in mouse
models of atherosclerosis. Although molecular determinants of
atherosclerosis that promote HSC proliferation are unclear [75],
undoubtedly this model is of great interest.
Our laboratory primarily focused on studying the functions of

the PPM1D gene. We have established the role of this gene in
inflammatory diseases and in oncogenesis [47, 52, 76, 77]. In
addition to the importance of PPM1D in oncology, it was found
that PPM1D played an important role in atherosclerosis, and its
role was realized by regulating the formation of “foam” cells of
atherosclerotic plaque [50] (Fig. 3). Due to the frequent occurrence
of PPM1D mutations in clonal haematopoiesis [23, 78] and the
involvement of the gene in the regulation of immune functions
[42] it is promising to study the effect of immune cell alterations
on the course of cardiovascular diseases.

CLONAL HAEMATOPOIESIS AND OTHER DISORDERS
Although, most studies about relationship CHIP with disorders are
devoted to blood neoplasms and CVDs, more and more findings
concerning other diseases has been reported. Some studies have
demonstrated, that CHIP is associated with chronic obstructive
pulmonary disease (COPD) [4, 69], which is accompanied with
inflammatory state.
Notably, recent studies revealed associations of CHIP with

infection diseases [79, 80]. It has been shown CHIP is a risk factor
for bacterial (Clostridium Difficile, Streptococcus/Enterococcus)
[79] and viral infections (human immunodeficiency virus (HIV))
[80]. Furthermore, potential association between CHIP and severe
Covid-19 outcomes is a current subject of debate. Although
published data dealing with CHIP as a risk factor for Covid-19
patients are controversial [79, 81–83] it is important to emphasize,
that CHIP and severe Covid-19 have a number of common
features, both are typical for elderly people, being associated with
cardiovascular and neoplasm disorders, proinflammatory condi-
tions [79]. Proinflammatory state as connection between Covid-19
and CHIP is under intensive examination. Recently it has been
shown that CHIP-carries are characterized by higher IL-6 in serum
[72] and C-reactive protein [84], conditions are also similar to
Covid-19 [85, 86]. The molecular mechanisms linking Covid-19 and
clonal haematopoiesis as well as opportunity to use CHIP analysis

as a biomarker of severe Covid-19 are the subject of ongoing
research.

CONCLUSION
Clonal haematopoiesis is defined not as a pre-leukemic condition,
such as myelodysplastic syndrome, but as a condition with an
undefined potential in which mutations that appear in cells can
lead, or not lead, to the development of the disease. This depends
on a number of factors, including the appearance de novo new
genetic mutations in other genes, which in most cases does not
occur and clonal haematopoiesis a priori does not end with a
pathological condition. Therefore, clonal haematopoiesis is a
potential pre-pathological condition that could have an effect on
immune, cardiovascular, and other systems and organs. It has to
be considered during the development of an individual protocol
for the diagnosis, treatment, and rehabilitation of patients with
various diseases.
The study of the immunological consequences of clonal

haematopoiesis is necessary for a clearer understanding of the
immune system in the elderly, since this phenomenon is observed
mainly in aging people. The aging of the population is a modern
global trend and one of the main challenges to biomedical science
due to the increase in the number of patients aged 60 years and
more, and due to an insufficient level of accumulated knowledge
in the field of physiology and pathology of aging, including the
field of immune system aging.
The term clonal haematopoiesis with undetermined potential

(CHIP) was introduced initially to describe processes that
contribute to leukemogenesis. Today, it becomes obvious that
these mutations instead increase the resistance of hematopoietic
cells to various stresses, including genotoxic stress during
chemotherapy. Therefore, CHIP in most of the cases is a protective
reaction of the organism. Moreover, these mutations do not
definitely lead to leukemia.
It is important to pay attention, that clonal haematopoiesis has

been found to contribute in early screening of solid cancer using
non-invasive blood test of tumor-derived mutations in plasma
samples, so-called cell-free DNA analysis (cfDNA) or cancer liquid
biopsy. Nowadays plasma cell-free DNA analysis is used as clinical
tool for early cancer diagnostics, therapy response monitoring,
and minimal residual disease detection [87]. However, recent
studies have shown tumor-derived mutations in plasma cell-free
DNA included clonal haematopoiesis-related mutations [87–90].
Presence of clonal haematopoiesis-related mutations in cell-free
DNA is challenge for interpretation of cell-free DNA test. To
overcome this issue matched plasma and white blood cells
sequencing is recommended [87]. However, this distinction is
especially problematic in case of similar mutations for both solid
tumor and clonal haematopoiesis, like TP53 abnormalities. For this
reason, cfDNA test in advance-aged patients and patients exposed
chemotherapy needs to be added with diagnostics for CHIP-
related mutations in blood.
Interestingly, CHIP with mutations in the PPM1D gene, without

causing hematologic changes leads to such changes in the

Fig. 3 The role of PPM1D in atherosclerosis. PPM1D accumulation increases the number of foam cells which ultimately contributes to the
development of atherosclerotic plaques in blood vessels.
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hematopoietic system that promote oncogenesis. This is probably
done by creating a pro-tumor environment [78]. In further studies
of clonal haematopoiesis, we should pay attention to the
functional changes in the immune system introduced by CHIP
mutations, since these changes can affect not only oncogenesis,
but also modify the role of immune cells in the course of various
diseases.
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